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Abstract—Combinatorial optimization problems are commonly
found in different stages of electric distribution systems deploy-
ing. Such problems demand the use of metaheuristics to find
good solutions with acceptable computational effort. Among these
metaheuristics, genetic algorithms prove to be an interesting
method for this kind of problem due to the good solutions
found by them in several applications. From this context, the
present paper proposes an analysis of the effect of different
crossover operators on the quality of obtained solutions in a
genetic algorithm applied to the switch allocation problem in
power distribution systems. The comparisons were conducted
based on a hypothetical system from the literature with 135
buses and 1 feeder. The experiments showed which the restriction
degree imposed on the search space influences the differences
between crossover operators. The results suggest which exists an
ideal number of cut points for the multi-points crossover operator
which found better results than the one-point, uniform, and other
crossovers.

Index Terms—Power Distribution Systems, Switch Allocation
Problem, Power System Reliability, Combinatorial Optimization,
Genetic Algorithms, Crossover Operators

I. INTRODUCTION

In the planning stage of an electrical power distribution
network, there is a critical concern related to the capacity to
supply electricity continuously. It is expected to the power
systems supply the consumers loads with high reliability and
service quality [1].

Many factors contribute to the occurrence of interruptions
on the energy supply service of a distribution system, such
as atmospheric discharges, tree branches, interferences from
external agents, etc [2].

There are several types of devices that can be placed in
the network such as sectionalizing switches, circuit breakers,
capacitor banks, and fuse switches. These devices can manage
the system operation in several ways in order to decrease
the impact of unexpected interruptions and minimize the
failure propagation, keeping a high continuity of service, hence
improving its reliability [3].

Formally, the protective and controlling devices allocation
problem consists of finding the best number, locations, and
types of devices to improve the reliability and minimize

the costs of the system [3]. This problem is classified as
a combinatorial optimization problem and there is not a
polynomial approach to solve it [3]. Thus, it demands the
use of metaheuristics approaches to find good solutions in an
acceptable computational time and effort.

Several metaheuristics have been studied and applied to
switch allocation problems such as reactive tabu search [2],
particle swarm optimization [4], ant colony optimization [5],
[6], genetic algorithms [7]–[11], and others. All cited method-
ologies have obtained success in finding good solutions to the
problem, despite the difference between the solutions found.

In genetic algorithms (GA), the main operator accountable
for the search strategy of the method is the crossover operator
[12]. Crossovers create new solutions from the recombination
of selected ones made in the selection step of the GA. There
are several ways to recombine solutions, and it is common to
compare these approaches in order to find the best methods
in terms of results obtained, speed of the convergence, and
more. In optimization literature, there are some studies aimed
to compare crossover operators in many contexts such as
in multi-objective optimization [13], video-game controller
automation [14], and also for specific problems, like the job
shop scheduling problem [15], travelling salesman problem
[16], the vehicle routing problem [17], and the university
course timetabling problem [18].

This paper presents an experimental analysis of the uniform,
one-point and multi-points crossovers recombination effect in
results obtained by a GA applied to the switching devices al-
location problem in power distribution systems, a constrained
combinatorial optimization problem. For this reason, a more
basic version of the genetic algorithm was chosen to keep
the analyzes focused on the operators studied. The results
obtained show the multi-points crossover in a specific quantity
of points can reach better results than other operators, mainly
when compared to the one-point crossover, the most common
operator utilized in GA for the most applications.

The paper is organized as follows. Section II formalizes the
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definition and formulation of the switch allocation problem.
Section III illustrates the definition of the GA implemented.
Section IV presents the crossover operators studied in this
paper. Section V shows the used resources in tests and
the experimental results. Section VI presents the conclusions
drawn from the results in the previous section and points about
future works.

II. PROBLEM FORMULATION

This paper considers just the allocation of sectionalizing
switches for reliability improvement of networks. The problem
was formulated as a constrained optimization problem (COP)
[19] where the objective is to minimize the costs around the
configuration of allocated switches on the system according
to some reliability limit.

A. Graph representation of the distribution systems
The methodology used to model the distribution network

was based on modeling used by De Assis et al. [3]. Using
graph theory concepts, the network is represented as a directed
tree where the vertices represent the load buses except the
source vertex (root) that represents the energy substation, and
the edges represent the lines between the buses.

Given a distribution network represented by a graph G =
(V,E), where V is the set of vertices and E the set of edges,
sectionalizing switches can be placed in edges, delimiting
disjoint subsets Si so-called sections, where Si ⊂ V . All
vertices have a number of final customers and a power demand
value associated with itself.

B. Reliability indices
A distribution system is said reliable when supply power

with a high continuity degree. In order to estimate this degree
there are several metrics to measures, among them were
chosen the two most used: the System Average Interruption
Duration Index (SAIDI) and Energy Not Supplied (ENS) [20].

Both are used to probabilistically measure reliability. SAIDI
estimates an average time of interruption persistence per
customer. The duration of interruptions is computed using an
estimated average time to repair the failures. ENS measures
the total energy not supplied during an interruption time and it
is also used to measure the financial losses caused by outages.
The metrics are defined in (1) and (2).

SAIDI =

∑
k∈S

TkNk∑
k∈S

Nk
, (1)

ENS =
∑
k∈S

TkLk (2)

where Nk is the number of customers associated to the buses
in a section k, Lk is the total power demand of all buses into a
section k and Tk is the expected average time of interruptions
in section k, given by:

Tk =
∑
l∈S

(∑
v∈Vl

λv

)
· tkl (3)

In (3), λv is a failure rate of each vertex v ∈ V , based
on a failure probability on the system by line length (Km)
upstream of the vertex v. tkl represents the expected time of
an interruption in section k caused by a failure in a section l
and it is determined through the average time needed to repair
a failure.

C. Objective function

A configuration of sectionalizing switches is represented by
a set of decision variables such as they represent the decision
to allocate or not a switch on the line immediately upstream to
each load bus. It is a minimization problem in which function
to be optimized should consider the financial costs to a given
configuration restricted to a reliability value. To do this the
approach used the acquisition costs of these devices and the
estimation of energy not supplied costs calculated through (2).

The configuration reliability is considered as a constraint
that uses a pre-defined reference value.

Finally, the mathematical formulation uses constant values
for costs such as the electricity cost Ce which is the kWh
current cost and the acquisition costs of a sectionalizing switch
Css. The objective function is formulated as:

Min

Costs(X) = Ce · ENS(X) +
∑
xi∈X

xiCss. (4)

Subject to:

SAIDI(X) ≤ SAIDIlimit (5a)
∀v ∈ V − Vsrc,∃k ∈ S | v ∈ k (5b)
xi ∈ {0, 1}, para i = 1, 2, 3, ..., n. (5c)

In constraint (5a), SAIDIlimit is the maximum reliability
value to the solution represented by the set of decision
variables X be feasible. The constraint (5b) defines that all
vertices from set V except Vsrc (source vertex that represents
the substation) should belong to a section from the set of
sections S – it defines that should not exist load buses without
switch protection. Constraint (5c) just defines that the decision
variables were composed of boolean values.

III. THE GENETIC ALGORITHM

Genetic Algorithms (GA) are adaptative optimization algo-
rithms that get inspiration from the natural selection process
using the concepts of “survival of the fittest” [21]. Over the
years, it became popular as a method for solving combinatorial
optimization problems.

In general, GAs encode solutions for complex problems
in data structures called chromosomes, that are treated as
individuals from a population in constant evolution. The
Darwinian theory of evolution concepts inspires internal al-
gorithms named genetic operators [21] such as the selection,
crossover and mutation, generating better solutions.

The GA utilized in this paper is the classic version proposed
by Goldberg [21] called “simple genetic algorithm” (SGA).



This version consists of basic genetic operators and was
chosen because the focus of the research is investigate the
effects of the different crossover operators, therefore, SGA is
a good option in relation to more complex algorithm such as
more advanced recent versions of GA or hybrid algorithms.
A flowchart defining the steps of the genetic algorithm can be
seen in the Fig.1.

Fig. 1. Flowchart of the Simple Genetic Algorithm

A. Chromosome encoding

The chromosome structure is an important part of a GA. In
this paper, chromosomes are encoded using binary encoding,
where a chromosome represents an instance of decisions
variable shown in (4) and is composed of boolean values
where each value is mapped to a vertex on the graph of
the distribution system representing the decision to place a
sectionalizing switch on the upstream edge of that respective
vertex, in this case, 0 (zero) sign that vertex doesn’t have a
switch placed and 1 (one) sign that vertex has a switch placed
in line upstream of it, an illustration is shown in the Fig.2.

Fig. 2. (a) An example of a small distribution system topology. (b) Example
of chromosome applied on topology. (c) The respective solution coded by
chromosome on the system.

The population is randomly initialized and evaluated using a
fitness function. As the problem consists in minimize the costs,
the fitness function is the inverse of the objective function
defined in (4).

fitness(X) =
1

Costs(X)
(6)

The fitness function (6) sets a value for the chromosome
which represents the quality factor of the chromosome as a
solution to the problem. The fitness value is also used to
choose probabilistically the chromosomes that will be used
to generate new solutions for the next generation of the
population. The selection method chosen was the deterministic
tournament [16], wich consist of select the best chromosome
of a random sampling of chromosomes in the population.

The main genetic operators are recombination also called
crossover, and mutation, both aim to produce variation in the
population over generations. The crossover operator generates
new chromosomes through the combination between two
parents chromosomes, and mutation operator cause random
changes in chromosome with a certain probability rate [16].

One of the most important operators guiding the search
process in GA is the crossover operator. How this operator
is the main focus of this paper, next subsection will describe
the crossover operator in general and the crossovers utilized
for the study.



IV. CROSSOVER OPERATORS

A feature that sets GAs apart from most metaheuristics
techniques is the idea of recombining solutions to generate
better solutions. This is one of the key processes that make
GAs efficient at solving optimization problems. Many re-
combination methods have been studied for many different
problems in the field of operational research [15]–[18].

The purpose of the crossover operators is generating a pair
or more of offspring individuals from the combination of two
or more good individuals. In each generation of a GA, the
crossover operator acts after the select operation on pairs of
individuals with a predefined probability called crossover rate.
The crossover operators covered in this paper are the best
known and traditional in the literature, the one point crossover,
the multi cut points crossover, and the uniform crossover.

A. One-point crossover

It is the most simple crossover operator and the most used
in GAs. When this operator is applied, a point is randomly
generated and both parent chromosomes are split at this point
and the different parts are swapped to generating the offspring
chromosomes. For each pair of chromosomes is generated a
different point. Fig.3 shows an example of the operation of
this crossover.

Fig. 3. Example of 1-point crossover operation

Studies indicate that this is the most efficient operator
concerning the computational effort [15].

B. Multi-points crossover

Similarly to the one-point crossover operator, the multi-
point crossover split the parent chromosomes, however the
number of crossover points is increased.

Two points crossover is an instance commonly used in GAs,
but other quantities are also used. For example, Fig.4 show an
operation with four crossover points.

Theoretical and empirical studies implicate the number
of crossover points influences the performance of GA [15].
However, the study performed in this paper concern the
convergence of the search process in the algorithm.

C. Uniform crossover

This operator combines two chromosomes selecting ran-
domly the genes that will be swapped between them. A mask
can be used to represent the genes that will be swapped

Fig. 4. Example of multi-point crossover operation using 4 crossover points

in the crossover process like shown in Fig.5. The mask is
a sequence of boolean values generated using a uniform
probability distribution, values 1 in the mask indicates the
genes of the parent chromosomes that will be exchanged in
offspring.

Fig. 5. Uniform crossover example

V. EXPERIMENTS DESIGN AND RESULTS

The distribution system used for the experiments is a
hypothetical radial system with 135 buses and only one feeder.
It was adapted from a test system made available by the
Laboratory of Electrical Power System Planning from UNESP
Ilha Solteira [22].

The implementations were made using C++ programming
language with the Boost’s graph library [23] for modeling the
graph structures and the ParadisEO framework to evolutionary
computation [24], implementing the GA.

The experimental tests were performed in a computer run-
ning Arch Linux with version 5.4.2-1 of the Linux kernel,
4GB of RAM and a quad-core Intel® Core™ i3-4005U 64-bit
CPU with 1.70 GHz of processing speed. The source code
was compiled with version 9.2.0 of the GCC compiler.

A. Definition of test cases

The experiments consider different cases for reliability
constraint defined through SAIDIlimit value in (5a). Each
value for this constraint has a different effect in search space,
the lower the SAIDIlimit value defined, the fewer feasible
solutions in the search space.
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Fig. 6. Comparisons of average costs for different restriction degrees situations.

For the choice of SAIDIlimit values for the test cases,
the GA was executed free of reliability restrictions and the
obtained solutions had a reliability index around 10. For this
reason, three situations for reliability constraint was chosen
classified by restriction degree. SAIDIlimit = 10 was defined
as a value with a low restriction degree, SAIDIlimit = 1
was chosen as a situation with a high restriction degree,
and SAIDIlimit = 5 was chosen as an intermediary value
between previous two.

B. Parameters for experiments

The selection step chosen is the tournament method. A fixed
number of generations as stop criteria. The GA had some of its
input parameters with fixed values, keeping variation restricted
to parameters related to the recombination process. Table I
shows the chosen parameters which were fixed and Table II
presents the parameters that were isolated in the experimental
phase. In Table III is presented the parameters for real-world
variables chosen for the simulation. All financial costs values
are based in current costs from Belém, a city in the North
region of Brazil.

TABLE I
FIXED PARAMETERS IN THE GENETIC ALGORITHM

Parameter Value
Size of population 400
Number of generations 100
Tournament selection’s ring 4
Mutation rate by chromosome 10%
Mutation rate by gene 5%

TABLE II
SETS OF VARIABLE PARAMETERS IN EXPERIMENTS

Parameter Set of values
SAIDIlimit {1, 5, 10}
Crossing rate {60%, 80%, 100%}

The experiments set consists of a same number of exe-
cutions for each combination of the parameters defined in
Table II. Were performed a total of 40 executions. The
parameter variation aims consider situations that influences the
recombination process of the GAs, hence, the exploration and
convergence process. Data generated through these executions
are used to compare the operators through average and varia-
tion of obtained results with each given crossover rate.

The crossovers operator used were the uniform, one-point,
and multi-points considering an increase in the number of
points N according to a geometric progression with a1 = 2
and ratio r = 2 in order to have better contrast between the
instances of this operator.

C. Experimental results

Fig.6 shows the results of the comparisons for each situa-
tion considering a crossover rate of 100%. The investigation
consists to compare the averages and dispersion of obtained
results by GA for each crossover operator in different versions
of the search space, defined by restriction degree.

As the different restriction degrees naturally guide to differ-
ent ranges of financial costs, the three boxplot groups in Fig.6
were kept to the same scale referent to points in the y-axis
(financial costs found) to maintain a good comparison quality
between the different degrees of restriction considered in the
experiments.

In all cases, uniform crossover (UX) had a good average
of results. For the one-point (1P) and multi-points (2P, 4P, 8P,
16P, and 32P) operators, as the number of crossover points

TABLE III
REAL-WORLD BASED VARIABLES

Description Variable Value
Cost of electricity Ce 0.599 R$/kWh
Cost of switches CSS 8.860,50 R$
Failure rate λv 0.18
Expected repair time tkl 2.2 hours
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Fig. 7. Comparison of convergence when using one-point, 8-points and 32-points operator.

increases, the average of the obtained results drops until a
particular number of crossover points when the average is
increased again. These results suggest a specific number of
crossover points where GA has more efficient convergence.
For this instance of the problem, the 8-points and the 16-
points operators had better results. The numeric results for all
the test case may be seen in Table IV.

Moreover, for each one of the restriction degrees covered,
a greater contrast was observed on the effect of increasing
the number of crossover points. For the case where the
restriction degree is higher (i. e. the narrowest search space),
the improvements in results are better than in other cases.
This suggests that in this constrained optimization problem,
the convergence of the algorithm can be influenced by both
the number of points and how restricted is the reliability index
to be reached.

Despite the changes in the search space motivated by the
restriction degree, it is interesting to observe the behaviour
of the crossover operators compared are quite similar, and
the best configurations were the same of all the three cases
analysed.

Observing and aligning the averages of results obtained
through the use of each of the cut-points crossovers, it is
clear that the increase in the number of points forms a kind
of parable. By isolating the “crossover rate” parameter, as
shown in Fig.8, it is noted that the restriction condition of the
search space also influences the effect that the crossover rate
has on the search process. In a less restricted solution space,
the variation in crossover rate doesn’t cause considerable
advantage for a specific crossover operator. However, in a
more limited space of solutions, there is a steeper curve
between the efficiencies of each operator, showing that in
these circumstances there is a great advantage in using a
specific number of cut-points, even when compared to uniform
crossover.

By observing the convergence of the objective function
with multi-points crossover operators as shown in Fig.7, it is
possible to note the behavior of the GA when using the best

Fig. 8. Effect of variation of crossover rate on the obtained results

operator pointed by the results (8P) is similar to the maximum
number of points considered (32P) depending on restriction
on the search space. In summary, the narrower the search
space, the more premature the 8P convergence is regarding



TABLE IV
NUMERIC RESULTS

SAIDIlimit = 1 SAIDIlimit = 5 SAIDIlimit = 10

Crossover Rate Crossover
Operator

Best
Result

Average Std.
Deviation

Best
Result

Average Std.
Deviation

Best
Result

Average Std. Deviation

60% UX 463347.7 482084.93 9050.61 253656.2 264004.09 5989.90 237774.0 244035.10 3728.89
1P 470687.4 500463.25 13481.79 269570.8 288302.92 9357.61 245083.2 260352.20 8068.25
2P 479333.5 497086.81 9896.33 260464.1 279139.03 9854.60 243980.5 257051.57 6981.52
4P 462391.5 484596.21 11532.79 256992.9 272578.96 8422.23 240444.4 254399.34 8688.31
8P 461037.9 475399.25 11403.25 250008.4 264827.42 7548.22 236631.8 246214.16 5173.76
16P 461099.9 473583.97 7718.97 251775.0 261450.80 5999.12 236643.1 244618.44 5557.15
32P 460856.3 472112.82 9353.89 249997.6 261035.70 4304.03 236564.1 243222.39 4046.74

80% UX 453072.8 470239.75 6548.73 249586.7 259818.73 3991.81 236242.2 243748.49 3814.77
1P 480300.1 495987.04 8885.79 267020.3 284246.11 10685.39 244942.1 256656.94 5863.45
2P 469746.7 483674.23 9499.13 258268.9 277423.51 8516.63 240873.5 254548.15 6919.02
4P 460695.3 470912.46 7177.27 253502.9 267300.17 8015.77 237704.2 247771.79 5284.97
8P 452127.4 461430.50 6493.64 250929.8 259709.12 4651.36 236631.8 241778.04 3028.33
16P 452617.5 461835.82 6024.01 249476.6 257443.83 3304.27 236178.3 241410.17 3734.99
32P 452409.7 466914.14 6263.85 250286.6 258504.45 3766.27 236068.3 241072.88 2933.71

100% UX 452956.8 465463.48 5613.02 253858.0 260178.11 3263.45 237492.3 243015.44 3552.84
1P 470540.2 490076.29 10598.99 262339.0 280421.68 10931.3 245913.8 258325.02 5982.42
2P 461060.2 476256.88 11184.21 257896.2 271802.11 8321.42 239054.2 251158.62 6918.84
4P 452034.9 462199.14 5558.81 252250.6 261619.60 5825.91 237348.3 245110.95 5604.80
8P 444871.1 458096.82 5690.53 249663.3 256334.77 2715.38 236068.3 240098.09 2838.19
16P 452303.5 458374.42 5458.30 250060.9 255899.37 2898.87 236068.3 239503.02 2504.03
32P 452846.3 463361.64 5461.70 251774.6 257332.99 2699.57 236178.3 239798.84 2062.38

the increase in the number of points.
Charts shown in Fig.7 were created by running the GA five

times, getting the best fitness of each one of 100 generations
and, using the mean of fitnesses for each generation. It also
shows that the increase in the number of generations not would
affect significantly the convergence of the SGA. The operators
used were one-point (1P) which has the lower number of
points, the 32-points crossover which is the higher number
of points considered in this study and, the 8-points crossover
operator which has the best results in the comparison shown
in Fig.6.

VI. FINAL REMARKS

This paper was presented a comparative study of crossover
operators applied to the switches allocation problem in
power distribution systems. The results show that multi-points
crossover has an ideal number of cut points to solving the
current instance of the problem more efficiently, using binary
chromosome encoding.

In this study, only one instance of the problem was used
for analysis. However, one should keep in mind that the
effect of multi-point crossovers is related to the size of the
chromosomes to which they are applied. In the present work,
chromosomes were coded with the number of power demand
bars (135 genes). It is interesting to observe which the values
chosen for restriction degrees in the experiments concerning to
the chromosomes with 135 genes i. e. there are 2135 possible
solutions in the search space. In other instances of the switch
allocation problem, these same values would can have different

effects. For a more accurate analysis, it would be interesting
to apply this study to instances of this problem with different
sizes.

About the performance of the multi-points crossovers was
verified which there is not a significant decrease in the time of
processing when the number of points is increased. Concern-
ing the convergence of the searching process, this increase
produces an improvement in the optimization depending on
the restriction of search space. The presented results around
the restriction degree of the problem demand more studies
applying to other constrained optimization problems.

As an expansion of this paper, the authors intend to perform
similar studies in other constrained optimization problems,
preferentially, known problems in the computer science and
operational research field. Another proposal is a mathematical
formulation for the dynamic definition of the number of points
to reach a balance between the convergence of the search and
performance.
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