
Harnessing Particle Swarm Optimization Through
Relativistic Velocity

Mateus Roder, Gustavo Henrique de Rosa,
Leandro Aparecido Passos, João Paulo Papa

Department of Computing
UNESP - São Paulo State University

Bauru - SP, Brazil
{mateus.roder, gustavo.rosa,

leandro.passos, joao.papa}@unesp.br

André Luis Debiaso Rossi
UNESP - São Paulo State University

Itapeva - SP, Brazil
andre.rossi@unesp.br

Abstract—In the last century, Albert Einstein’s perceptions
of the world afforded a revolution in the understanding of
the universe. In his theory of general relativity, he describes
the space-time continuum, a concept capable of explaining
several phenomena, ranging from gravity to black holes and
supernovas. Further, it also provides a set of formulations
to generalize classical physics concepts to accommodate the
relativistic notions. Meanwhile, several mathematicians have been
working on optimization tools aiming to solve complex problems
associated with a large number of variables. Nowadays, despite
the computational power, many daily tasks still pose a challenge
and are becoming more prohibitives, mostly due to the massive
amount of data to be processed. Therefore, efficient optimization
techniques are more desirable than ever. In this context, meta-
heuristic optimization has arisen, i.e., stochastic nature-inspired
methods capable of finding sub-optimal solutions for complex
problems with a reasonable computational effort. However, such
approaches still suffer from some drawbacks related to low
convergence and getting stuck on local optima, among others.
Therefore, in this paper, we introduce relativistic concepts into
the well-known meta-heuristic optimization technique Particle
Swarm Optimization (PSO). The experimental results evince the
robustness of the proposed approach compared to the standard
PSO as well as three other variations for five benchmarking
functions.

Index Terms—Global Optimization, Meta-Heuristic Optimiza-
tion, Particle Swarm Optimization, Theory of Relativity, Rela-
tivistic Particle Swarm Optimization

I. INTRODUCTION

During humankind’s evolution, several tools were developed
in the most different areas of knowledge aiming to improve
living quality and longevity. In the last decades, the advent
of powerful computers has brought the development and use
of such tools to a cumbersome baseline, being sophisticated
technologies employed even in the most straightforward shores
from daily life. However, such computer-aided approaches
generally come with a high computational complexity cost,
which demands either an optimization performed by experts or

The authors would like to thank São Paulo Research Foundation (FAPESP)
grants #2013/07375-0, #2014/12236-1, #2017/25908-6, #2019/02205-5,
#2019/07825-1, and #2019/07665-4, and National Council for Scien-
tific and Technological Development (CNPq) grants #307066/2017-7 and
#427968/2018-6.

the development of “meta-tools”, or the so-called optimization
techniques [1].

Optimization techniques are algorithms developed to either
maximize or minimize some target function. In this context,
traditional methods generally employ a brute-force [2], i.e.,
testing all possible solutions, or gradient-based approaches [3],
which gradually converges to some optimum. However, both
methods may become prohibitive when the number of vari-
ables and possibilities are very high. Additionally, gradient-
based approaches present some constraints concerning the
objective function characteristics. Thus they are dependent on
the problem definition.

On the other hand, meta-heuristic optimization methods [4]
obtained notorious popularity in the last decades due to its
simplicity and capability of finding sub-optimal solutions
for complex problems with a reasonable low computational
cost, such as hyperparameter fine-tuning of machine learning
techniques [5], [6], feature selection [7], [8], and general-
purpose benchmarking function optimization [9], [10], to cite
a few. These methods are stochastic algorithms that mimic
intelligent behavior observed on nature, like a swarm of birds
or the evolution of species, among others, to tackle a stated
problem. In short, these techniques employ a set of candidate
solutions, denoted as individuals, who evolve according to
some specific rules during several iterations towards the best
solution.

Among a wide variety of meta-heuristic optimization tech-
niques, the Particle Swarm Optimization (PSO) [11] has
become one of the most popular due to its simplicity and
consistent performance over a broad diversity of problems. In
a nutshell, PSO particles share information about their position
to perform an in-depth exploration and exploitation of the
search space towards optima locations. Such information is
employed to update the particle’s velocity and, consequently,
their position.

In this context, several works proposed variants of tradi-
tional PSO considering different methods for updating the
velocity function. Nickabadi et al. [12], for instance, proposed
the Adaptive Inertia Weight Particle Swarm Optimization
(AIWPSO), which employs the dynamically change in inertia

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

weight to better global exploration or local exploitation in
any dimension. Yang et al. [13] proposed the Vertical Particle
Swarm Optimization (VPSO), claiming that the algorithm is
capable of avoiding problems related to premature conver-
gence and loss of population diversity. Recently, Ye et al. [14]
proposed the PSO with Dynamic Learning Strategy (PSO-
DLS) to improve the balance between global exploration and
local exploitation.

Regarding velocity variation, in the last century, Albert
Einstein [15] proposed the revolutionary Theory of General
Relativity, which generalizes basics concepts of classical
physics, such as the velocity, to accommodate the distortion
exerted over the space-time continuum due to near to speed-
of-light moving particles or extremely massive bodies in the
universe. However, as far as we know, no work ever employed
such concepts to improve PSO velocity formulation, and thus
the model performance.

Therefore, this paper proposes the Relativistic Particle
Swarm Optimization (RPSO) algorithm, a meta-heuristic ap-
proach that employs relativistic concepts to update PSO parti-
cles’ velocities. The efficiency of RPSO is compared against
the standard PSO algorithm and three PSO variants, namely
AIWPSO, VPSO, and PSO-DLS, which were selected due to
a similar working mechanism, i.e., to improving PSO by re-
placing the velocity formulation. Experiments were conducted
to evaluate the proposed method over five benchmarking
functions, which were selected considering distinct intrinsic
characteristics.

Hence, the contributions of the present study are twofold: (i)
to propose the Relativistic Particle Swarm Optimization algo-
rithm, and (ii) to promote the scientific community regarding
meta-heuristic optimization approaches. The remainder of this
paper is presented as follows. Section II introduces the theo-
retical background concerning PSO and its variations, while
Section III briefly presents the Theory of General Relativity,
as well as it describes the proposed method. Sections IV
and V describes the methodology and present the experimental
results, respectively. Finally, Section VI states conclusions and
future works.

II. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization is a meta-heuristic algorithm
that models each candidate solution as a nature-inspired agent
in search of a feasible objective. In other words, each agent
represents a particle that belongs to a swarm and searches for
optimal food sources (objective). More formally, each agent
is composed of a tuple (x,v), where x stands for its position
and v for its velocity. Its initial position x is represented
by a n-dimensional randomly vector, while its velocity v is
represented by an n-dimensional vector of zeros, where each
dimension stands for a unique decision variable. Furthermore,
the algorithm’s objective is to search for the most feasible
decision variables aiming to maximize or minimize a target
function, i.e., fitness function.

Let vt
i be the velocity of a particle i at iteration t, belonging

to a swarm of size K, such that i ∈ {1, 2, . . . ,K}. One can
update its velocity according to Equation 1, as follows:

vt+1
i = wvt

i + c1r1(x
∗
i − xt

i) + c2r2(g − xt
i), (1)

where x∗i stands for the best position obtained by particle i so
far, and g denotes the current best solution considering all the
swarm. Additionally, w, c1, and c2 stand for the inertia weight,
the cognitive and social parameters, respectively. Finally, r1
and r2 are uniformly distributed random numbers in the range
[0, 1].

After updating a particle’s velocity, its position needs to
be updated as well. Let xt

i be the position of a particle
i at iteration t. One can update its position according to
Equation 2, as follows:

xt+1
i = xt

i + vt+1
i . (2)

The following sections describe the PSO variants employed
in this work, as well as its formulation and particularities.

A. Adaptive Inertia Weight Particle Swarm Optimization

In this variant [12], the inertia weight changes dynamically,
providing a fast initial convergence when the particles are
randomly located in the search space and a slow approximation
to the minimum when the swarm becomes close to the optimal
solution. To accommodate the variation, one can replace the
standard inertia weight w from Equation 1 with the dynamic
inertia weight ω, computed for each iteration t as follows:

ωt = (ωmax − ωmin)π
t + ωmin, (3)

where ωmin and ωmax stand for the minimum and maximum
inertia weight range, respectively, usually between [0, 1]. Fur-
ther, πt ∈ [0, 1] denotes the swarm success, and represents the
percentage of the particles improvement in the last iteration,
computed as follows:

πt =

∑K
i=1 S(i, t)

K
, (4)

where S(·) denotes the notion of individual particles’ success,
and is computed as follows:

S(i, t) =

{
1, if fitness(x∗(t)i) < fitness(x

∗(t−1)
i)

0, otherwise.
(5)

B. Particle Swarm Optimization with Dynamic Learning Strat-
egy

The PSO-DLS [14] was proposed to improve the proper
balance between global exploration and local exploitation from
the original PSO algorithm, i.e., to achieve better solutions in
a few iterations. Moreover, such a variant also tries to maintain
the population diversity and to overcome some local optima
or earlier convergence.

This version creates sub-swarms instead of a single popu-
lation. Roughly speaking, this algorithm divides the original

swarm into several M sub-swarms, that in theory are forced to
explore different areas in a multimodal optimization function,
for instance. In this context, the author employed the l? term
on the velocity equation, which may represent the global best
solution (as in Equation 1) or the set of best solutions in each
sub-swarm, with a random probability to decide each usage.
Each particle’s velocity can be updated as follows:

vt+1
i = wvt

i+c1r1(x
∗
i−xt

i)+c2r2

(
1

M

M∑
m=1

l?m − xt
i

)
, (6)

where x∗i stands for the best position obtained by particle
i, and l?m denotes best position achieved so far in the mth

sub-swarm. Finally, the position can be updated as in the
Equation 2.

C. Vertical Particle Swarm Optimization

The Vertical PSO [13] is a variant that claims to avoid some
problems related to premature convergence to local optima
and the loss of population diversity, among others. In short,
the algorithm tries to prevent the swarm from evading the
neighborhood of the global optimum after a few iterations with
no improvements in the search. The procedure is implemented
by introducing a vertical direction while updating each parti-
cle’s position. Therefore, one can rewrite Equation 2 to fit the
concept using Equation 7, as follows:

xt+1
i = xt

i + rvt+1
i + (1− r)st+1

i , (7)

where r represents a random number generated from a normal
distribution in the range [0, 1] at each iteration and s denotes
the vertical velocity, described as follows:

st+1
i = sti −

(
(vt

i • sti)
(vt

i • vt
i)

)
vt
i , (8)

where • stands for the dot product between the vectors v and
s.

III. RELATIVISTIC PARTICLE SWARM OPTIMIZATION

In this section, we present the Relativistic Particle Swarm
Optimization (RPSO), which improves the naı̈ve PSO al-
gorithm by considering the space-time distortion. First, we
provide more in-depth concepts of the theory of relativity,
which is the foundation for RPSO.

A. Theory of Relativity

Albert Einstein accomplished one of the most important
physics works by proposing the Theory of Relativity, which
comprises the special and general relativity theories [15].
The former is responsible for introducing new approaches to
deal with celestial bodies’ motion particularities, while the
latter incorporated an acceleration concept. In other words,
the theory combined space and time into a single notion,
the well-known space-time continuum, which is distorted by
massive bodies, such as planets and stars. Such distortion in
the space-time continuum provides an elegant justification for

several phenomena observed in nature, e.g., gravity laws and
discrepancy of stars positions.

With that in mind, classical mechanics theory was extended
to model the phenomena observed by Einstein. The particular
one that we are interested in is the momentum, which is
computed in a three-dimensional space as follows:

p(u) = γ(u)mu, (9)

where u = (ux, uy, uz) denotes the velocity of an object with
mass m in a three-dimensional space, and γ is the Lorentz
factor, which is defined as follows:

γ(u) =
1√

1−
(
|u|
c

)2 , (10)

where |u| is the magnitude of vector u and c stands for the
speed of light (300, 000 km/s).

B. Algorithm Overview
The RPSO differs from the standard PSO by taking into

account the particles’ mass effect, the speed of light, and
an enhanced social behavior feature, allowing all particles to
know the space-time values of the swarm. With that in mind,
RPSO maps three-dimensional momentum formula, depicted
by Equation 9, into an n-dimensional approximation, which
is capable of calculating the velocity of each particle in an
n-dimensional search space. In order to accomplish such an
approach, one can rewrite Equation 1 into Equation 11, as
follows:

vt+1
i = p(vt

i) + c1r1(x
∗
i − xt

i) + c2r2(g − xt
i), (11)

where p(·) denotes the standard three-dimensional relativistic
momentum (9) expanded to an n-dimensional space. Ad-
ditionally, as each particle needs a mass to calculate its
relativistic momentum, we opted to draw the mass m from
a uniform distribution in the range [0, 1]. The RPSO is show
in Algorithm 1.

Algorithm 1: Relativistic Particle Swarm Optimization

1 Randomly initializes x;
2 Evaluate x;
3 x∗i ← x; ∀i ∈ 1, 2, . . . ,K;
4 do
5 for each candidate i do
6 vt+1

i = p(vt
i)+ c1r1(x

∗
i −xt

i)+ c2r2(g−xt
i);

7 xt+1
i = xt

i + vt+1
i ;

8 Evaluate xi and compute its fitness value;
9 if (xi is better than x∗i) then

10 x∗i ← xi;
11 end
12 end
13 Update g as the best position found so far;
14 while (stop criterion is not met);

IV. METHODOLOGY

This section describes the experimental setup adopted to
evaluate the RPSO and the other PSO variants for the opti-
mization of five benchmark functions.

A. Benchmarking Functions

The benchmarking functions used to evaluate the approach
proposed in this paper and their main characteristics are
described as follows:

• Sphere (f1): continuous, differentiable, separable, scal-
able, multimodal;

• Salomon (f2): continuous, differentiable, non-separable,
scalable, multimodal;

• Alpine #1 (f3): continuous, non-differentiable, separable,
non-scalable, multimodal;

• Rastrigin (f4): continuous, differentiable, separable, scal-
able, multimodal; and

• Schwefel (f5): continuous, differentiable, partially-
separable, scalable, unimodal.

Moreover, Table I introduces each function’s mathematical
formulation, as well as their upper and lower boundaries and
the global minimum.

B. Experimental Setup

The experiments were performed to optimize each bench-
mark function with D ∈ {10, 50, 100} dimensions, i.e., de-
cision variables, for t = {100, 1, 000, and 10, 000} iterations
employing 30 particles. Furthermore, the standard PSO as well
as the three other variants were employed as baselines for
comparison purposes: AIWPSO, PSO-DLS, and VPSO. The
AIWPSO hyperparameter was set to wmin = 0.1, wmax =
0.9, c1 = c2 = 1.7 according to the authors’ set up, while
the following setting was employed for PSO, VPSO and
PSO-DLS: w = 0.7, c1 = c2 = 1.7, in which the former
algorithm employed M = 10 sub-swarms, as established by
the authors [14]

For the statistical analysis, each experiment was executed 15
times and the best results according to the Wilcoxon signed-
rank test [16] with 0.05 of significance are in bold. Concerning
the implementation, we employed the Opytimizer1 [17] library.

V. EXPERIMENTAL RESULTS

This section presents and discusses the results obtained in
the experiments. Tables II to VI present the mean fit value
and standard deviation considering the proposed RPSO, stan-
dard PSO, and the PSO variants over the five benchmarking
functions considering D dimensions and t iterations, as de-
scribed in Section IV. Notice the best results, according to the
Wilcoxon signed-rank test, obtained over each configuration
considering the dimensionality and the number of iterations
are presented in bold, while the best overall results considering
each dimension are underlined.

1Available at http://github.com/gugarosa/opytimizer.

A. Overall Discussion

Considering general scenery, one can notice the RPSO
was the most accurate technique overall since it obtained
the minimum mean values over all benchmarking functions
considering every dimensional configuration. Note that VPSO
and PSO-DLS obtained similar statistical results considering
the Sphere (Table II) and Rastrigin (Table V) functions, respec-
tively, but only for D = 10. Such behavior is not surprising
once both functions were the only ones whose results converge
to the best values after less than 1, 000 iterations, denoting
simpler problems to solve.

Another general fact observed in all scenarios concerns
RPSO obtained alone the best results considering 50- and
100-dimensional configurations over 10, 000 iterations, while
VPSO and PSO-DLS obtained similar results considering a
10-dimensional space over Sphere and Rastrigin functions,
respectively. Further, RPSO also obtained the best results over-
all considering 1, 000 iterations over 10- and 50-dimensional
problems. Regarding the configuration with 100 dimensions,
it obtained the best results in three out of two benchmarking
functions, i.e., Alpine #1, Rastrigin, and Schwefel.

The main “drawback” of the proposed method relies on
the necessity of a slightly higher number of iterations for
convergence, as observed in all experiments with 50 and 100
dimensions using 100 iterations, except by Schwefel function,
presented in Table VI. Two main points can explain such
behavior: the first one is the mass dependence, which affects
the momentum of the particles, and in this work employs a
“scale factor” between [0, 1]. The second one relates directly to
the implicit relativity behavior, in which slow or low massive
particles tend to have less initial inertia (and consequently,
less momentum) in the search space, requiring a few more
steps to achieve good velocities that allow them to exploit and
explore better the search space, and therefore, distorting the
space-time continuum.

B. Convergence Analysis

Figures 1 to 5 depict the convergence from each benchmark
function considering all baselines and dimensions over 10, 000
iterations. The behavior depicted in those images corroborates
the results presented in previous tables, i.e., the proposed
approach obtained the best convergence overall. However, in
several cases, such as in Figures 1c, 2b, 2c, and 3c, one can
observe the competitors converge faster than RPSO, but they
usually get stuck at worse local optima. Thus, RPSO requires
a few more iterations to converge to best positions and surpass
such algorithms.

VI. CONCLUSION

In this work, a novel Particle Swarm Optimization variant
was proposed changing the classical velocity interpretation
by the one inspired in the relativistic momentum. The model
intrinsically incorporates several relativistic phenomena, such
as inertia, space-time distortion, and the mass effect in the
swarm, while preserving the social intelligence behavior.

TABLE I
BENCHMARKING FUNCTIONS.

Function Equation Bounds f(x∗)

Sphere f1(x) =
D∑
i=1

x2i −10 ≤ xi ≤ 10 0

Salomon f2(x) = 1− cos(2π
√∑D

i=1 x
2
i) + 0.1

√∑D
i=1 x

2
i −100 ≤ xi ≤ 100 0

Alpine #1 f3(x) =
∑D
i=1 |xisin(xi) + 0.1xi| −10 ≤ xi ≤ 10 0

Rastrigin f4(x) = 10n+
∑D
i=1

[
x2i − 10cos(2πxi)

]
−5.12 ≤ xi ≤ 5.12 0

Schwefel f5(x) =

(
D∑
i=1

x2i

)√π
−100 ≤ xi ≤ 100 0

TABLE II
MEAN AND STANDARD DEVIATION BEST FITNESS VALUES ACHIEVED OVER SPHERE FUNCTION (f1).

D = 10 D = 50 D = 100

Algorithm t = 100 t = 1,000 t = 10,000 t = 100 t = 1,000 t = 10,000 t = 100 t = 1,000 t = 10,000

AIWPSO 0.206± 0.194 0.197± 0.179 0.009± 0.014 24.905± 6.065 24.856± 6.071 7.854± 5.054 64.939± 10.959 64.663± 11.022 58.941± 13.68

PSO 0.027± 0.031 0.022± 0.028 0.022± 0.028 23.157± 10.971 23.025± 10.894 21.898± 11.469 63.871± 8.201 63.561± 8.144 61.751± 7.973

RPSO 0.008± 0.014 0.000± 0.000 0.000± 0.000 20.982± 8.379 5.326± 4.838 2.291± 2.830 92.446± 29.883 25.496± 6.683 10.547± 5.821

PSO-DLS 0.007± 0.006 0.009± 0.009 0.003± 0.006 10.053± 1.992 9.772± 1.916 4.693± 1.575 23.615± 4.309 23.43± 3.772 15.898± 2.989

VPSO 0.001± 0.001 0.000± 0.000 0.000± 0.000 13.016± 2.714 9.588± 2.500 7.653± 2.012 41.612± 10.438 34.207± 9.745 30.027± 8.769

TABLE III
MEAN AND STANDARD DEVIATION BEST FITNESS VALUES ACHIEVED OVER SALOMON FUNCTION (f2).

D = 10 D = 50 D = 100

Algorithm t = 100 t = 1,000 t = 10,000 t = 100 t = 1,000 t = 10,000 t = 100 t = 1,000 t = 10,000

AIWPSO 2.613± 0.897 2.613± 0.897 2.613± 0.897 11.393± 1.287 11.393± 1.287 11.393± 1.287 18.767± 1.336 18.767± 1.336 18.767± 1.336

PSO 1.640± 0.803 1.64± 0.803 1.64± 0.803 11.78± 2.137 11.780± 2.137 11.780± 2.137 18.213± 1.028 18.213± 1.028 18.213± 1.028

RPSO 0.916± 0.300 0.393± 0.129 0.273± 0.106 10.812± 1.384 5.724± 0.842 3.441± 0.901 20.441± 1.99 13.411± 1.911 8.112± 0.894

PSO-DLS 1.227± 0.449 1.180± 0.319 1.127± 0.353 7.461± 0.807 7.227± 0.695 7.44± 0.775 11.040± 0.700 10.967± 0.709 10.873± 0.751

VPSO 1.42± 0.564 1.413± 0.566 1.413± 0.566 9.9± 1.361 9.853± 1.338 9.853± 1.338 15.213± 1.115 15.18± 1.131 15.18± 1.131

TABLE IV
MEAN AND STANDARD DEVIATION BEST FITNESS VALUES ACHIEVED OVER ALPINE #1 FUNCTION (f3).

D = 10 D = 50 D = 100

Algorithm t = 100 t = 1,000 t = 10,000 t = 100 t = 1,000 t = 10,000 t = 100 t = 1,000 t = 10,000

AIWPSO 1.601± 0.886 1.513± 0.903 0.419± 0.685 35.873± 7.125 34.934± 7.156 30.999± 6.844 85.195± 9.976 83.786± 9.777 79.708± 13.121

PSO 1.596± 1.054 1.444± 0.973 0.822± 0.712 35.415± 5.763 34.738± 5.804 30.744± 5.040 83.194± 9.589 82.511± 9.434 73.965± 8.748

RPSO 0.130± 0.130 0.005± 0.005 0.000± 0.000 22.666± 3.427 9.572± 2.584 4.935± 2.303 76.568± 4.781 47.523± 7.616 32.721± 8.042

PSO-DLS 0.510± 0.543 0.360± 0.284 0.178± 0.183 21.503± 3.621 21.519± 3.086 17.232± 3.871 52.927± 4.322 52.652± 3.992 42.862± 5.834

VPSO 1.285± 1.03 0.516± 0.443 0.302± 0.299 33.414± 6.842 29.783± 6.624 27.928± 6.413 78.773± 15.036 74.66± 15.796 72.465± 15.492

The experiments exhibited great and impressive results
considering five benchmark functions and four baseline ap-
proaches for comparison purposes, achieving better minima
over them all. Furthermore, one can observe that growing
the number of dimensions, i.e., increasing the optimization
complexity, the proposed approach was able to escape from
strong local minima, which traped the compared baselines.

Also, the relativistic momentum provided opportunities for

better exploitation and exploration by the swarm, taking into
account the inertia that particles accumulate over the iterations,
simultaneously to the natural acceleration or deceleration
inherent by the Lorentz factor.

Regarding future works, we aim to deeply explore the
mass’ effect on RPSO performance, analyzing different distri-
butions, or even achieving a straightforward correlation with
other variables. Moreover, we consider applying the proposed

TABLE V
MEAN AND STANDARD DEVIATION BEST FITNESS VALUES ACHIEVED OVER RASTRIGIN FUNCTION (f4).

D = 10 D = 50 D = 100

Algorithm t = 100 t = 1,000 t = 10,000 t = 100 t = 1,000 t = 10,000 t = 100 t = 1,000 t = 10,000

AIWPSO 22.922± 10.404 22.859± 10.42 22.473± 10.279 346.246± 31.865 345.62± 32.005 292.589± 53.445 847.832± 79.37 845.891± 79.093 726.530± 103.608

PSO 23.190± 12.263 23.001± 12.326 22.992± 12.326 311.214± 28.381 307.965± 27.112 307.936± 27.129 838.335± 82.915 832.918± 80.977 830.185± 79.347

RPSO 19.599± 8.852 6.067± 6.067 4.179± 4.179 306.723± 34.497 184.839± 34.462 122.796± 20.329 759.052± 90.736 571.774± 50.584 441.719± 52.780

PSO-DLS 19.296± 9.255 9.974± 5.343 8.260± 4.691 320.255± 45.510 279.524± 50.155 249.476± 49.801 724.119± 87.179 659.626± 61.733 579.543± 55.305

VPSO 21.868± 8.752 21.756± 8.794 21.756± 8.794 288.390± 28.800 244.257± 30.140 216.787± 28.546 765.363± 70.529 696.636± 73.564 657.815± 78.257

TABLE VI
MEAN AND STANDARD DEVIATION BEST FITNESS VALUES ACHIEVED OVER SCHWEFEL FUNCTION (f5).

D = 10 D = 50 D = 100

Algorithm t = 100 t = 1,000 t = 10,000 t = 100 t = 1,000 t = 10,000 t = 100 t = 1,000 t = 10,000

AIWPSO 1, 629± 397 1, 628± 397 1, 623± 399 13, 453± 780 13, 433± 779 11, 856± 1, 143 30, 861± 1, 726 30, 838± 1, 723 28, 015± 2, 477

PSO 1, 516± 381 1, 511± 383 1, 511± 383 12, 220± 1, 233 12, 163± 1, 249 12, 153± 1, 243 30, 016± 1, 893 29, 898± 1, 949 29, 727± 2, 075

RPSO 701± 218 519± 259 448± 270 9,167± 1,033 5,145± 747 4,282± 654 25,102± 2,192 17,190± 1,838 12,799± 2,104

PSO-DLS 1, 656± 319 1, 044± 278 664± 369 14, 995± 735 12, 635± 977 11, 286± 837 32, 949± 1, 154 30, 114± 1, 281 27, 804± 1, 566

VPSO 1, 478± 488 1, 465± 484 1, 465± 484 11, 956± 1, 398 10, 979± 1, 526 10, 468± 1, 487 30, 084± 1658 28, 252± 1, 736 27, 186± 1, 910

(a) (b) (c)
Fig. 1. Convergence considering Sphere function over 10, 000 iterations with 10 (a), 50 (b), and 100 (d) dimensions.

(a) (b) (c)
Fig. 2. Convergence considering Salomon function over 10, 000 iterations with 10 (a), 50 (b), and 100 (d) dimensions.

approach and methodology in other benchmark functions.
Besides, we also aim to employ the proposed approach to
some applications, such as the fine-tuning of hyperparameters
of artificial neural networks, Restricted Boltzmann Machines
and Deep Belief Networks.

REFERENCES

[1] A. Törn and A. Žilinskas, Global optimization. Springer, 1989, vol.
350.

[2] B. Korte, J. Vygen, B. Korte, and J. Vygen, Combinatorial optimization.
Springer, 2012, vol. 2.

[3] Y. Bengio, “Gradient-based optimization of hyperparameters,” Neural
computation, vol. 12, no. 8, pp. 1889–1900, 2000.

[4] X.-S. Yang, “Metaheuristic optimization: algorithm analysis and open

(a) (b) (c)

Fig. 3. Convergence considering Alpine #1 function over 10, 000 iterations with 10 (a), 50 (b), and 100 (d) dimensions.

(a) (b) (c)
Fig. 4. Convergence considering Rastrigin function over 10, 000 iterations with 10 (a), 50 (b), and 100 (d) dimensions.

(a) (b) (c)
Fig. 5. Convergence considering Schwefel function over 10, 000 iterations with 10 (a), 50 (b), and 100 (d) dimensions.

problems,” in International Symposium on Experimental Algorithms.
Springer, 2011, pp. 21–32.

[5] J. P. Papa, G. H. Rosa, A. N. Marana, W. Scheirer, and D. D.
Cox, “Model selection for discriminative restricted boltzmann machines
through meta-heuristic techniques,” Journal of Computational Science,
vol. 9, pp. 14 – 18, 2015, computational Science at the Gates of Nature.

[6] L. A. Passos and J. P. Papa, “A metaheuristic-driven approach to fine-
tune deep boltzmann machines,” Applied Soft Computing, p. 105717,
2019.

[7] S. C. Yusta, “Different metaheuristic strategies to solve the feature
selection problem,” Pattern Recognition Letters, vol. 30, no. 5, pp. 525–
534, 2009.

[8] Y. Chen, D. Miao, and R. Wang, “A rough set approach to feature
selection based on ant colony optimization,” Pattern Recognition Letters,
vol. 31, no. 3, pp. 226–233, 2010.

[9] G.-G. Wang, A. Hossein Gandomi, X.-S. Yang, and A. Hossein Alavi,
“A novel improved accelerated particle swarm optimization algorithm
for global numerical optimization,” Engineering Computations, vol. 31,
no. 7, pp. 1198–1220, 2014.

[10] D. Rodrigues, G. H. de Rosa, L. A. Passos, and J. P. Papa, “Adap-
tive improved flower pollination algorithm for global optimization,” in
Nature-Inspired Computation in Data Mining and Machine Learning.
Springer, 2020, pp. 1–21.

[11] R. Eberhart and J. Kennedy, “Particle swarm optimization,” in Proceed-
ings of the IEEE international conference on neural networks, vol. 4.
Citeseer, 1995, pp. 1942–1948.

[12] A. Nickabadi, M. M. Ebadzadeh, and R. Safabakhsh, “A novel particle
swarm optimization algorithm with adaptive inertia weight,” Applied Soft
Computing, vol. 11, no. 4, pp. 3658–3670, 2011.

[13] W.-P. Yang, “Vertical particle swarm optimization algorithm and its
application in soft-sensor modeling,” in 2007 International Conference
on Machine Learning and Cybernetics, vol. 4. IEEE, 2007, pp. 1985–
1988.

[14] W. Ye, W. Feng, and S. Fan, “A novel multi-swarm particle swarm
optimization with dynamic learning strategy,” Applied Soft Computing,
vol. 61, pp. 832–843, 2017.

[15] A. Einstein, “Relativity: The special and general theory,” Holt and
Company, 1916.

[16] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[17] G. H. de Rosa and J. P. Papa, “Opytimizer: A nature-inspired python
optimizer,” 2019.

