
Evolutionary Algorithm with Non-parametric
Surrogate Model for Tensor Program Optimization

1st Ioannis Gatopoulos12

University of Amsterdam
Amsterdam, the Netherlands

johngatop@gmail.com

2nd Romain Lepert1
Qualcomm AI Research

Qualcomm Technologies Netherlands B.V.
romain@qti.qualcomm.com

3rd Auke Wiggers
Qualcomm AI Research

Qualcomm Technologies Netherlands B.V.
auke@qti.qualcomm.com

4th Giovanni Mariani
Qualcomm AI Research

Qualcomm Technologies Netherlands B.V.
gmariani@qti.qualcomm.com

5th Jakub Tomczak2

Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

j.m.tomczak@vu.nl

Abstract—The efficiency of tensor operators is key to imple-
ment fast deep learning models. However, identifying the fastest
implementation of a tensor operator for a target hardware is
challenging. A wide range of different configurations have to
be considered, and the evaluation of a configuration is time
consuming as it requires compilation and execution of the
operator. A common approach to address these issues is to boost
traditional optimization algorithms with a surrogate model, i.e., a
machine learning model that approximates the objective function
and is cheap to query compared to the target hardware. However,
as the surrogate model grows in complexity, so does the time
needed to train and maintain it. In this work, we propose to use
an evolutionary optimizer and augment it with a non-parametric
surrogate model (a weighted k-Nearest-Neighbor regression). We
evaluate our approach on the convolution layers of a ResNet18,
and show a convergence speedup of up to 1.4× when compared
to baseline operator tuners.

Index Terms—Evolutionary computing, compilers, neural net-
works, deep learning

I. INTRODUCTION

Modern deep learning (DL) models are computationally
intensive to run, as they execute a large number of tensor
operations such as matrix multiplications and convolutions.
Therefore, to deploy efficient DL models on a target device it
is of paramount importance to optimize their execution. Current
DL frameworks and packages aim to speed up computation by
optimizing the computational graph. Oftentimes, tensor operator
implementations are hand-crafted, such as Nvidia cuDNN [1].

The execution time of DL operators can be significantly
improved by optimizing them for given hardware at compile
time using automatic operator optimization techniques [2], [3].
This optimization process, also known as autotuning, alters the
execution of a tensor operator, e.g., by using different tiling
and loop unrolling. The problem of autotuning is particularly
difficult due to the large and discrete search space, which is
unique for every tensor operator. Additionally, evaluating a

1 Equal contribution.
2 Work done at Qualcomm AI Research. Qualcomm AI Research is an

initiative of Qualcomm Technologies, Inc.

1Confidential and Proprietary — Qualcomm Technologies, Inc. and/or its affiliated companies.

Tensor

operator

Operator optimizer

Target

hardware

Configurations

Train

process Measurements

New model

Optimal

solution

Tensor

operator

Optimization

algorithm

Surrogate

model

Operator optimizer

Target

hardware

Optimal

solution

Candidate

configurations

pdfcrop --margin '0 0 -510 -348' --clip intro.pdf with-inner-loop.pdf

ConfigurationsMeasurements

Inner optimization

loop

Optimization

algorithm

Surrogate

model

(a) Traditional compiler-autotuning process.

1Confidential and Proprietary — Qualcomm Technologies, Inc. and/or its affiliated companies.

Tensor

operator

Operator optimizer

Target

hardware

Configurations

Train

process Measurements

New model

Optimal

solution

Tensor

operator

Optimization

algorithm

Surrogate

model

Operator optimizer

Target

hardware

Optimal

solution

Candidate

configurations

pdfcrop --margin '0 0 -510 -348' --clip intro.pdf with-inner-loop.pdf

ConfigurationsMeasurements

Inner optimization

loop

Optimization

algorithm

Surrogate

model

(b) Proposed compiler-autotuning process.

Fig. 1: Traditional (a) and proposed (b) autotuning processes. Dashed lines
highlight high-overhead tasks (a): the execution of an inner optimization loop,
and the train process that updates the surrogate model. We propose (b) to
leverage a non-parametric surrogate model that does not need training, and we
avoid the inner optimization loop by integrating this model in the evolutionary
operators of the optimization algorithm.

single solution may be computationally expensive as it requires
compilation and profiling execution of the operator on-device.
Recently, an attempt to address this problem was outlined in
TVM [4], a general purpose end-to-end deep learning compiler
stack for CPUs and GPUs. TVM is released with a set of
autotuners implementing different optimization algorithms. A
common approach in state-of-the-art optimization algorithms
is to approximate the expensive evaluation on the target
hardware by means of a surrogate model, e.g., a machine
learning model such as XGBoost [5]. Approaches that use
these surrogate models (Fig. 1a) are often considered the best

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

available option [3], [6], [7], and work by: a) executing an
inner optimization loop over the surrogate model to select
the most promising candidate configurations, b) evaluating the
selected configurations on the target hardware, c) updating the
surrogate model with the new observations, d) looping back
to (a) until a termination criterion is met.

When on-device measurements are sufficiently fast, the inner
optimization loop and maintenance of the surrogate model
can easily become the bottleneck. Previous approaches aimed
at minimizing the total number of configurations evaluated
on target hardware [3], [8]. In this work, we specifically
investigate the total wall-clock time of the operator optimization
process, i.e., the actual time the user should wait for a
solution to be returned. We propose a novel methodology
that aims to minimize the algorithm execution time overhead
while improving the quality of the final results. To achieve
this, we employ a non-parametric surrogate model based on
the k-Nearest-Neighbor (k-NN) method [9], [10] in order
to minimize overhead related to model maintenance. We
embed our surrogate model in the operators of an evolutionary
algorithm [11]–[13] to quickly estimate the runtime of a
candidate configuration. At every iteration (generation), the
algorithm proposes a set of candidate configurations. Then,
these are evaluated using the surrogate model to select a subset
of most promising configurations for on-target evaluation. Since
we include the surrogate model as a part of the evolutionary
algorithm, there is no inner optimization loop. The full method
is visualized in Fig. 1b.

The contributions of this paper are the following:
• We propose an evolutionary algorithm with a non-

parametric surrogate model whose goal is to identify the
operator implementation with the lowest wall-clock time.

• We provide a full analysis of the search space correspond-
ing to a convolution layer on GPU target hardware. We
present a distribution of errors and a break-down on where
time is spent. This analysis allows to better understand the
autotuning problem, so that practical and efficient tuners
can be formulated.

• We evaluate our method on tuning tasks for conv2d
operators. We empirically show that the proposed solution
surpasses reference methodologies, returning better oper-
ator implementations and resulting in up to 1.4× better
performance during the first minutes of autotuning.

II. OPERATOR OPTIMIZATION USING TVM

We first provide background on the platform we use for
operator optimization, TVM [4]. TVM is a compiler stack
for CPUs and GPUs that enables optimization of an operator
for target hardware by offering fine-grained control over the
implementation of nested loops. This has a substantial impact
on the data access pattern. While this framework allows for
manual optimization of the operator, this is often a time-
intensive process that requires domain knowledge of both the
operator and hardware.

AutoTVM [3], a sub-package of TVM, allows a user to
define an operator using an execution template for optimization,

which has a fixed number of placeholder values affecting how
operators are executed. For example, a convolution template
may have a Boolean variable indicating if loop unrolling is
used or not. We refer to an instantiation of all placeholder
variables as a configuration. Note that not every configuration
corresponds to a valid kernel. Depending on the operator
implementation and the target hardware, some configurations
may lead to compilation errors. Additionally, different operators
may have different configuration search spaces.

An operator optimization algorithm (or tuner) searches for
the configuration that minimizes an objective function in the
search space defined by the template. An abstract representation
of this optimization process, often referred to as autotuning,
is given in Fig. 1a. Initial on-target measurements are used
to train a surrogate model and boost the tuning process. An
optimizer searches for the configuration that minimizes the
cost estimated by the surrogate model. The tuner can run
this inner optimization loop for one or more iterations before
returning a set of candidate configurations for evaluation.
Finally, these candidates are measured on the target device, and
their performance is stored in a database, which is then used
to fit the surrogate model. This tuning process continues until
a stop condition is met, e.g., a threshold performance is met,
or a search budget has run out. Finally, the best-performing
configuration is returned. Note that performance can be defined
in terms of any metric of interest, the most common use case
(and the use case we consider) is the minimization of operator
execution time.

Ideally, a well-performing solution is returned in the shortest
possible walltime. It is therefore important to distinguish
between optimization time, i.e., the total time the tuner spends
searching for the next configuration, measurement time, i.e., the
time spent to collect measurements, and runtime, i.e., the time
taken to run the kernel, which is the target metric the tuner
is optimizing. If executing actual measurements on-device is
cheaper than querying the surrogate model, then it could be
beneficial to pick a cheaper model class (or even omit the
surrogate entirely). In this work we leverage this idea and
propose the integration of a surrogate model that is cheaper
than the model that is used in the default tuner provided by
AutoTVM. Empirical results demonstrate a clear advantage in
terms of the quality of final solution (operator runtime) found
in a given wall-clock time.

III. METHODOLOGY

A. Problem statement of operator optimization

Let C be a finite space of configurations c ∈ C, and let
f : C → R+ be an objective function to optimize. In our case,
f represents an actual system (a compiler and a hardware) and
returns a runtime for a given configuration c ∈ C (or a proxy
metric thereof). We are dealing with a black-box optimization
problem since the objective function can be queried, but
its analytic form is unknown [14]. The goal is to find a
configuration that minimizes f , namely, c∗ = argminc∈C f(c).
There are three specific aspects of the given task that make
it challenging. First, different configurations have different

1Confidential and Proprietary — Qualcomm Technologies, Inc. and/or its affiliated companies.

k-NN

predict
elite

selection

on-device

measurement

Population

(c, f)
crossover mutation

c,fc

parent

selection

c,f

v

$> pdfcrop --margin '5 10 -140 -350' --clip nose_flowchart.pdf nose_flowchart-cropped.pdf

Fig. 2: NoSE pipeline: an evolutionary algorithm is enhanced with a k-Nearest Neighbors based elite selection operator.

measurement times, and as the aim is to achieve convergence
to a good solution in the smallest possible total walltime,
configurations with long measurement times should be avoided.
Second, the search space is discrete, which means the task is a
combinatorial optimization problem [15]. Third, the objective
function is non-convex and non-smooth.

Combinatorial optimization problems are NP-hard, but
approximate and heuristic-based methods can be used to
find solutions [16]. Further, since the objective function is
non-convex and non-smooth, local search methods cannot be
efficiently applied. To cope with this problem there exists a
plethora of non-local search algorithms within the evolutionary
computing paradigm [17]–[19], which provide convergence
guarantees [20] when the following assumptions are met - as
is the case in this work: a) there is a non-zero probability of
generating any individual from the search space, and b) the
best individual survives unperturbed. Here, we propose to use
an evolutionary algorithm to solve the stated problem.

B. Proposed solution

In order to speed up convergence of the evolutionary
algorithm, we leverage a non-parametric surrogate model. This
model guides the optimization method by updating beliefs
about the behavior of the unknown objective function once
measurements are available. In particular, as surrogate model
we consider a k-Nearest-Neighbors (k-NN) regression model
[9], [10] to minimize overhead related to model training and
usage. We refer to our approach as Non-parametric Surrogate
model for Evolutionary optimizer Tuner, or NoSE for short.

We choose to maximize GFLOPS instead of minimizing
runtime, in line with existing work [3], [8]. This does not
change the optimal solution or ranking of configurations. For
configurations that lead to compilation errors, we set a default
measurement of 0 GFLOPS.

1) Surrogate model: the weighted k-NN regressor: The
output of the surrogate model y = f̂(c|k,D) is the estimated
number of GFLOPS, where D = {(cn, yn)}Nn=1 denotes
observed pairs of configurations and measured performance and
k is a k-NN hyperparameter. The regressor takes as distance-
weighted sum of the neighborhood of the configuration c, using

a distance measure d(·, ·), as follows:

wc,i =
1

d(c, ci)
, (1)

Nk,c = {i : indices of k nearest neighbors of c}, (2)

f̂(c) =
1∑

i∈Nk,c
wc,i

∑
i∈Nk,c

wc,i yi. (3)

Importantly, we need to define a proper distance metric to
determine the k nearest neighbors. As the configuration is
comprised of ordinal and categorical variables, we use the
Canberra distance [21]:

d(x, z) =

L∑
l=1

|xd − zd|
|xd|+ |zd|

. (4)

The Canberra distance is a weighted version of the Manhattan
distance, thus, it is well-suited for ordinal variables [22].

2) Evolutionary algorithm optimizer: We use an evolu-
tionary algorithm (EA) as underlying optimization method
to implement NoSE. The traditional approach of running
the optimization algorithm on the surrogate model up to
convergence, gathering the actual measurement for the so-
identified optimum, updating the surrogate model, and looping
back by restarting the optimization algorithm on the updated
model (Fig. 1a) is not only inefficient but also prone to end up
in local optima [6]. Instead, NoSE executes only a single step
of optimization (Fig. 1b) by embedding the surrogate model
in the evolutionary operators (Fig. 2). The EA starts with a
population P0 of N configurations c ∈ P0 drawn at random
from the configuration space: P0 ⊂ C. Each individual c in
this population is a vector of discrete values, corresponding to
a configuration. During the EA initialization, we evaluate the
objective function f(c) for every configuration c ∈ P0. Then,
at each EA iteration t (generation) we proceed as follows:

1) Given the population Pt−1, we select M configuration
pairs pm = (ci, cj). Each pair represents parents for
mating. For each pm, ci and cj are selected with the
traditional method of roulette wheel [23], where the
fitness function is the real measurement f(c).

2) For each pair pm, an offspring cm is generated by
applying single-point crossover. For this offspring, each
gene has a probability p of being replaced by another
discrete value sampled at random (uniform mutation).

3) We estimate the GFLOPS f̂(cm) for each offspring cm
using the surrogate model, here, the weighted k-NN.

4) We let the best E < M offspring survive that we refer
to as the elite. These elite members are selected with
respect to f̂(c), and then evaluated by means of the
actual system to gather f(c).

5) The new population Pt is obtained by adding the new
E configurations into the old population Pt−1, and then
shrinking it back to size N by eliminating the worst
individuals with respect to their fitness f(c).

The k-NN surrogate model in NoSE does not need to be
trained, and needs only a knowledge base D of observations (as
indicated in Equations 1–3). This knowledge base is initialized
as D = P0. At every generation D is updated by adding the new
observations for the E offspring c whose actual objective f(c)
has been measured. The efficiency of the surrogate model does
decrease as the number of measurements grows, but efficient
implementations that leverage k-d trees [24] for fast lookup
are readily available [25].

IV. RELATED WORK

Computationally expensive deep learning operators such as
matrix multiplications and convolutions can be optimized at
compile time, e.g., by applying loop transformations such as
tiling, unrolling, or interchange [26], [27]. Given the benefits
that deep learning systems can achieve when using optimal
tensor operators, compile-time optimization techniques for deep
learning is an active area of research [3], [4], [8], [28].

Our algorithm fits in the field of optimizing compilers,
which concerns itself with using runtime information to further
optimize an implementation of a target program [29]. The main
challenges are the following: a) the huge discrete configuration
space, and b) the computational cost of measuring the perfor-
mance of a candidate configuration on the target device. These
problems are common in the fields of compiler and computer
architecture optimization [6], [30], [31]. Typical approaches for
these combinatorial optimization problems rely on specialized
algorithms [2], [32], [33], or by taking advantage of machine
learning to discover how the configuration parameters shall
be tuned for achieving the optimal performance [31], [34],
[35]. Combinations of these techniques that simultaneously
approximate the objective function with a surrogate model and
search that model for the optimal configuration have also been
proposed [3], [12], [13], [30].

Evolutionary algorithms are popular solutions to maximize
the performance of programs in optimizing compilers. STOKE
proposes to identify the program to be used by utilizing genetic
algorithms [32]. Tensor Comprehensions suggests to parallelize
the execution of a genetic autotuner over multiple GPUs when
possible [2]. Genetic algorithms have also been suggested to
search for optimal GCC settings [36]. Other works suggest
the autotuning of parallel computer programs by selecting
evolutionary operators adaptively by using the multi-armed
bandits paradigm [37], [38].

The autotuning algorithm we propose combines machine-
learning models with evolutionary strategies [39]. Previous
work applies those techniques to minimize the total number of
configurations evaluated by the optimization algorithm on the

actual system, and as a result, the overall tuning wall-clock time
(or walltime) decreases [3], [4], [8]. In contrast, we suggest
that the sole focus of the optimization algorithm should be
the overall walltime needed to find the optimal configuration.
This wall-clock time includes the time required to compile
the different configurations, execute on-device measurements,
and the overhead of the optimization algorithm itself. Thus,
we propose a light-weight optimization algorithm and we
demonstrate that, by applying a simple and computationally-
cheap machine-learning technique and integrating it inside an
evolutionary algorithm, we can gain significant advantages in
terms of total wall-clock time.

V. EXPERIMENTS

A. Goal

We empirically evaluate the advantages of using the proposed
NoSE methodology and compare it with two tuners provided in
AutoTVM: a genetic algorithm tuner (GA) [40], and the default
TVM tuner, namely, the combination of the simulated annealing
optimizer with XGBoost surrogate model [5]. Nowadays,
XGBoost is the most commonly used tuner, thus we consider it
as main reference methodology. The comparison is carried out
with respect to the total wall-clock time (i.e. time-to-solution),
and quality of the final solution.

We perform two experiments. First, we analyze the complete
search space for the C12 tuning task. For this purpose, we
measured all possible configurations. The aim of this analysis
is to understand the specificity of the problem (e.g., the
distribution of valid and invalid configurations, the distribution
of target values). To our knowledge, no such analysis has been
performed so far. Second, we apply the NoSE tuner on various
tuning tasks and compare its performance with baseline tuners.

B. Setup

In this work, we use TVM v0.5 [4] on target hardware
Nvidia Geforce GTX 1080Ti. We evaluate the tuning methods
on twelve tuning tasks, corresponding to the twelve unique
convolution layers of ResNet18 [41]. Each of these layers
has a unique parametrization (e.g., input sizes, kernel sizes),
leading to a unique search space of configurations. This network
architecture is widely used in computer vision applications,
such as image classification and object detection, and is used
as benchmark architecture in prior work [4], [8].

We use a template topi.nn.conv2d nchw1 with NCHW layout
on the aforementioned target CUDA. This template has 6
ordinal variables that relate to tiling, and 2 categorical variables
that relate to loop unrolling. We show the different tuning tasks
and the resulting size of the configuration space in the Table
II. For example, for task C1, the convolution layer has 3 input
feature maps of size 224× 224, and has 64 output channels.
For the given template, the associated search space C consists
of 3,763,200 configurations. All measurements are performed
on a single GPU.

1TVM commit 2005f85, topi/python/topi/nn/conv2d.py, L92.

TABLE I: Configuration types by error category as defined in TVM. Along
our experiments, only categories 0, 1, 4, and 6 are encountered.

ERROR CODE ERROR TYPE DETAILS

0 NO_ERROR No error, valid kernel.
1 INSTANTIATION_ERROR Actively detected error in instantiating

a template with a configuration.
2 COMPILE_HOST Error when compiling code on host

(e.g. tvm.build).
3 COMPILE_DEVICE Error when compiling code on device

(e.g. OpenCL JIT on the device).
4 RUNTIME_DEVICE Error when run program on device.
5 WRONG_ANSWER Answer is wrong when compared to a

golden output.
6 BUILD_TIMEOUT Timeout during compilation.
7 RUN_TIMEOUT Timeout during run.
8 UNKNOWN_ERROR An error of an unknown nature.

Count Time
Measure

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Error Type
0_NO_ERROR
1_INSTANTIATION_ERROR
4_RUNTIME_DEVICE
6_BUILD_TIMEOUT

Fig. 3: The distribution of error types and corresponding cumulative measure-
ment time for the C12 configuration space.

C. Experiment 1: Analysis of the C12 search space

The search space of the tuning task is characterized by valid
and invalid configurations. To evaluate a configuration, one
needs to compile the corresponding kernel, upload it to the
device and profile the runtime on device. If this compile-upload-
run measurement process is successful, the configuration is
valid and gets an associated performance in GFLOPS. If this
process fails at some stage, then the configuration is said to be
invalid and gets an associated performance 0 GFLOPS. Table I
provides a description of all types of configurations considered
in the analysis.

We carried out an exhaustive analysis on a single conv2D
task to get an in-depth understanding of the search space, the
effect of errors, and to find the optimum for the layer. As
the exhaustive exploration is expensive in terms of time and
compute resources, we carried out this analysis for the C12
task only. Fig. 3 shows the distribution of configurations for
each error types, as well as the cumulative walltime spent to
evaluate all configurations of each type.

For the chosen template and build configuration, over 75%
of all configurations are invalid (Count stacked bar in Fig. 3).
Additionally, we track the overall measurement time for each
configuration type (Time stacked bar in Figure 3). Interestingly,
not all configuration types are expensive to evaluate. The
most common error category, i.e., INSTANTIATION_ERROR,
amounts to less than 5% of the total walltime. This indicates
that if a tuner selects a configuration from this category for
evaluation, the measurement overhead is negligible because they
fail early in the compile-upload-run process. However, there
are two rare error categories, namely RUNTIME_DEVICE and
BUILD_TIMEOUT, that have a long measurement time and
thus should be avoided by tuners. Finally, valid configurations
(NO_ERROR) make up 70% of the total walltime and should
be where tuners focus their time measuring.

Figure 4 shows the distribution of operator performance
for valid configurations in GFLOPS. This resembles the
exponential distribution, because many operators have low
performance, and few of them have high performance that
results in a lighter tail. We expect the majority of walltime in
an autotuner to be spent in evaluating valid configurations, as

0 200 400 600 800 1000 1200 1400
Performance (GFLOPS)

0

20000

40000

60000

Fr
eq

ue
nc

y

Fig. 4: Distribution of configuration execution performance for the C12
configuration space.

the wall-clock time of valid points (NO_ERROR) is significantly
larger than the cost of all other error configurations.

These results indicate that the count of configurations
evaluated on the actual system by an autotuning framework
may be non-representative of the total wall-clock optimization
time, i.e., the actual time to solution. In fact, measurement time
is variable and depends on the configuration, knowing which
configurations are evaluated by the autotuner is more important
than knowing how many configurations are evaluated. In
particular, evaluating invalid but fast-to-measure configurations
is not expensive with respect to evaluating invalid but slow-
to-measure configurations. These reasons clarify that tuners
should be compared with respect to their total wall-clock
time, and that increasing the complexity of the surrogate
model (increasing algorithm overhead) in order to avoid non-
compilable configurations may be counter-productive. The
NoSE tuner is specifically meant to optimize the time-to-
solution metric by leveraging a low-overhead surrogate model.

D. Experiment 2: Autotuning conv2D layers

To validate the proposed NoSE approach, we perform
autotuning on all 12 unique conv2D layers of ResNet18. The
size of the search space and the topology varies among tasks
(see number of configurations in Table II). C1, C2, C11 and
C12 are used for hyperparameter selection and the remaining 8
tasks are used for testing. We compare NoSE to two state-of-the-
art tuners provided in AutoTVM: a Genetic Algorithm based
tuner (GA), and a tuner with Simulated Annealing optimizer

0 10 20 30 40 50 60
Walltime (min)

0

20

40

60

80

100
Pe

rfo
m

an
ce

 (%
)

A

exp
GA
NoSE (ours)
XGBoost

0 10 20 30 40 50 60
Walltime (min)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Pe
rfo

rm
an

ce
 sp

ee
du

p

B

exp
GA
NoSE (ours)
XGBoost

Fig. 5: Results for the experiment 2: (A) The performance of NoSE, GA
and XGBoost averaged over all 8 tuning tasks of the test set, relative to the
performance of the best found configuration. (B) The averaged performance
speedup of NoSE and the XGBoost tuner relative to the GA tuner, averaged
over all 8 tuning tasks of the test set. For both plots, the solid line indicates
the mean, transparent area indicates the standard error obtained over four runs.

and a XGBoost surrogate model [5] (XGBoost) using default
parameters of TVM v0.5.

For the XGBoost tuner, we use the default hyperparam-
eters of AutoTVM including its advanced transfer-learning
functionalities2 [3]. For the GA tuner, we use the default
hyperparameters of AutoTVM. For NoSE we set the number
of neighbors in k-NN to 9, the population size to N = 100, and
use mutation with probability pm = 0.3. At every generation,
we create M = 1.5 × N offspring and then select the best
E = 0.3×N “elite configurations” for actual measurement.

In Fig. 5 we present averaged performance across all tuning
tasks. Fig. 5A shows the performance of the best solution found
for each method as a function of the walltime. Additionally,
Fig. 5B shows the speedup of the best configuration found
by NoSE and XGBoost with respect to the best configuration
found with the GA tuner along the optimization process. All
optimizations are terminated after 60 minutes (wall-clock time).
The detailed results for each task are presented in Fig. 8.

In practice, tensor program optimization will be limited
by a total tuning time budget, which means that an anytime
improvement in performance is valuable. We notice that NoSE
outperforms XGBoost by a large margin, for the entire duration
of the optimization. NoSE also outperforms GA in the early
phase of the optimization, providing a speedup of up to 1.4×
within the first 10 minutes. Since evolutionary algorithms

2We transfer the surrogate-model learned during the tuning of task Ci

forward in the optimization of task Ci+1.

GA NoSE (ours) XGBoost
Algorithm

0

100

200

300

400

500

600

700

W
al

lti
m

e
(m

in
)

Timing
measure (valid)
measure (invalid)
algorithm (training)
algorithm (search)

Fig. 6: Optimization time distribution of NoSE, GA and XGBoost after 5000
iterations of tuning, averaged over all 8 tuning tasks of the test set.

GA NoSE (ours) XGBoost
Algorithm

0

20

40

60

80

100

Co
un

t (
%

)

A

GA NoSE (ours) XGBoost
Algorithm

0

20

40

60

80

100

Ti
m

e
(%

)

B

Error Type
0_NO_ERROR
1_INSTANTIATION_ERROR
4_RUNTIME_DEVICE
6_BUILD_TIMEOUT

Fig. 7: Error count distribution by type (A) and Error measurement time
distribution by type (B), for the NoSE, GA and XGBoost after 5000 iterations
of tuning, averaged over all 8 tuning tasks of the test set.

generally converge toward the actual optimum [23], both GA
and NoSE at convergence return high-quality solutions that are
similar in performance.

We further investigate these results by analysing how each
tuner spends its time on 5000 iterations of tuning using Fig. 6
and what type of configurations it selected using Fig. 7.

On one hand, compared to GA, NoSE has no noticeable
algorithm overhead (Fig. 6). Nevertheless, the NoSE surrogate
model search manages to avoid cheap errors of type 1 and
expensive errors of type 6 (Fig. 7A) resulting in significantly
more measuring time on valid configurations (Fig. 7B). Overall,
thanks to a single search step on its k-NN surrogate model,
NoSE delivers up to 1.4× anytime performance compared to
GA (Fig. 5B).

On the other hand, compared to XGBoost, NoSE has
significantly less algorithm overhead (Fig. 6). XGBoost spends
about 20% of its time searching for good configurations. While
it manages to avoid more cheap errors of type 1 than NoSE, this
is not true for expensive errors of type 6 (Fig. 7A), undermining
the cost/benefit tradeoff of the search. Overall, the quality of
the selected configurations does not compensate for the time-
consuming algorithm training and search of the XGBoost tuner,
and it underperforms compared to NoSE and its light surrogate
model search. These results indicate that the complexity of the
inner optimization loop should be taken into account when
designing autotuners.

TABLE II: Parameters for each unique Conv2D parametrization in a ResNet18, and resulting number of configurations for CUDA target using the scheduling
template topi nn conv2d, layout NCHW. H, W represent spatial dimensions of the input, Cin and Cout the number of input and output channels.

Task H W Cin Cout kernel stride padding dilation #configurations
C1 224 224 3 64 (7, 7) (2, 2) (3, 3) (1, 1) 3,763,200
C2 56 56 64 64 (3, 3) (1, 1) (1, 1) (1, 1) 90,316,800
C3 56 56 64 64 (1, 1) (1, 1) (1, 1) (1, 1) 903,168
C4 56 56 64 128 (3, 3) (2, 2) (1, 1) (1, 1) 22,579,200
C5 56 56 64 128 (1, 1) (2, 2) (1, 1) (1, 1) 56,448
C6 28 28 128 128 (3, 3) (1, 1) (1, 1) (1, 1) 36,864,000
C7 28 28 128 256 (3, 3) (2, 2) (1, 1) (1, 1) 5,898,240
C8 28 28 128 256 (1, 1) (2, 2) (1, 1) (1, 1) 1,474,560
C9 14 14 256 256 (3, 3) (1, 1) (1, 1) (1, 1) 9,123,840

C10 14 14 256 512 (3, 3) (2, 2) (1, 1) (1, 1) 570,240
C11 14 14 256 512 (1, 1) (2, 2) (1, 1) (1, 1) 3,564,000
C12 7 7 512 512 (3, 3) (1, 1) (1, 1) (1, 1) 844,800

0 10 20 30 40 50 60
Walltime (min)

5000

10000

15000

20000

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

C1A

GA
NoSE (ours)
XGBoost

0 10 20 30 40 50 60
Walltime (min)

1000

2000

3000

4000

5000

6000

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

C2B

GA
NoSE (ours)
XGBoost

0 10 20 30 40 50 60
Walltime (min)

500

1000

1500

2000

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

C3C

GA
NoSE (ours)
XGBoost

0 10 20 30 40 50 60
Walltime (min)

1000

2000

3000

4000

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

C4D

GA
NoSE (ours)
XGBoost

0 10 20 30 40 50 60
Walltime (min)

400

600

800

1000

1200

1400

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

C5E

GA
NoSE (ours)
XGBoost

0 10 20 30 40 50 60
Walltime (min)

1000

2000

3000

4000

5000

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

C6F

GA
NoSE (ours)
XGBoost

0 10 20 30 40 50 60
Walltime (min)

1000

2000

3000

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

C7G

GA
NoSE (ours)
XGBoost

0 10 20 30 40 50 60
Walltime (min)

400

600

800

1000

1200

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

C8H

GA
NoSE (ours)
XGBoost

0 10 20 30 40 50 60
Walltime (min)

1000

2000

3000

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

C9I

GA
NoSE (ours)
XGBoost

0 10 20 30 40 50 60
Walltime (min)

500

1000

1500

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

C10J

GA
NoSE (ours)
XGBoost

0 10 20 30 40 50 60
Walltime (min)

400

600

800

1000

1200

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

C11K

GA
NoSE (ours)
XGBoost

0 10 20 30 40 50 60
Walltime (min)

400

600

800

1000

1200

1400

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

C12L

GA
NoSE (ours)
XGBoost

Fig. 8: Performance (in GigaFLOPS) of the best found kernel relative to optimization walltime, for each conv2D tuning task. Solid line indicates the mean,
error bars indicate standard error over 4 runs. Dotted line indicates the best kernel found amongst all experiment runs. Higher is better.

VI. CONCLUSION

In this work, we introduce an algorithm for optimizing oper-
ators (or tuning) that we refer to as Non-parametric Surrogate
Evolutionary search (NoSE). It uses an evolutionary algorithm
to search the space of possible operator implementations, and
uses a simple yet effective k-Nearest Neighbor regression
model to navigate the optimizer towards fast compilation
configurations. The application of the surrogate model allows
to skip the expensive compilations and on-device performance
assessment for poor configuration candidates.

We first present an exhaustive analysis of the search space
of a chosen conv2d layer. This analysis allows to get an insight
into the autotuning process. We then present results for 8
conv2d tuning tasks collected using TVM, that demonstrate the
supremacy of NoSE over an XGBoost-based baseline tuner in
terms of quality of the proposed kernel configuration. Moreover,
the proposed approach surpasses the GA tuner with almost
negligible computation overhead. We believe that our work
opens new opportunities for research on automated tensor
program optimization.

REFERENCES

[1] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cudnn: Efficient primitives for deep learning.” CoRR,
vol. abs/1410.0759, 2014.

[2] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S.
Moses, S. Verdoolaege, A. Adams, and A. Cohen, “Tensor com-
prehensions: Framework-agnostic high-performance machine learning
abstractions,” arXiv preprint arXiv:1802.04730, 2018.

[3] T. Chen, L. Zheng, E. Yan, Z. Jiang, T. Moreau, L. Ceze, C. Guestrin, and
A. Krishnamurthy, “Learning to Optimize Tensor Programs,” in Advances
in Neural Information Processing Systems, 2018, pp. 3389–3400.

[4] T. Chen, T. Moreau, Z. Jiang, H. Shen, E. Q. Yan, L. Wang, Y. Hu,
L. Ceze, C. Guestrin, and A. Krishnamurthy, “TVM: end-to-end
optimization stack for deep learning,” vol. abs/1802.04799, 2018.

[5] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,”
in Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’16. New York, NY,
USA: ACM, 2016, pp. 785–794.

[6] G. Mariani, G. Palermo, V. Zaccaria, and C. Silvano, “Oscar: An
optimization methodology exploiting spatial correlation in multicore
design spaces,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 31, no. 5, pp. 740–753, May 2012.

[7] J. M. Tomczak, R. Lepert, and A. Wiggers, “Simulating Execution
Time of Tensor Programs using Graph Neural Networks,” arXiv preprint
arXiv:1904.11876, 2019.

[8] B. H. Ahn, P. Pilligundla, and H. Esmaeilzadeh, “Reinforcement learning
and adaptive sampling for optimized dnn compilation,” arXiv preprint
arXiv:1905.12799, 2019.

[9] N. S. Altman, “An introduction to kernel and nearest-neighbor nonpara-
metric regression,” The American Statistician, vol. 46, no. 3, pp. 175–185,
1992.

[10] T. M. Cover, P. Hart et al., “Nearest neighbor pattern classification,”
IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21–27,
1967.

[11] M. Bhattacharya, “Evolutionary Approaches to Expensive Optimisation,”
arXiv preprint arXiv:1303.2745, 2013.

[12] R. Piscitelli and A. D. Pimentel, “Interleaving methods for hybrid system-
level mpsoc design space exploration,” in 2012 International Conference
on Embedded Computer Systems (SAMOS), July 2012, pp. 7–14.

[13] G. Mariani, G. Palermo, C. Silvano, and V. Zaccaria, “Meta-model
assisted optimization for design space exploration of multi-processor
systems-on-chip,” in 2009 12th Euromicro Conference on Digital System
Design, Architectures, Methods and Tools, Aug 2009, pp. 383–389.

[14] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization
of expensive black-box functions,” Journal of Global Optimization,
vol. 13, no. 4, pp. 455–492, 1998.

[15] M. Syslo, N. Deo, and J. S. Kowalik, Discrete Optimization Algorithms
with Pascal Programs. Prentice Hall Professional Technical Reference,
1983.

[16] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization:
Overview and conceptual comparison,” ACM computing surveys (CSUR),
vol. 35, no. 3, pp. 268–308, 2003.

[17] T. Bäck, Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford
University Press, 1996.

[18] A. E. Eiben and J. E. Smith, Introduction to evolutionary computing.
Springer, 2003, vol. 53.

[19] A. E. Eiben and J. Smith, “From evolutionary computation to the
evolution of things,” Nature, vol. 521, no. 7553, p. 476, 2015.

[20] A. E. Eiben, E. H. L. Aarts, and K. M. Van Hee, “Global convergence
of genetic algorithms: A markov chain analysis,” in Parallel Problem
Solving from Nature, H.-P. Schwefel and R. Männer, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1991, pp. 3–12.

[21] G. N. Lance and W. T. Williams, “Computer programs for hierarchical
polythetic classification (similarity analyses),” The Computer Journal,
vol. 9, no. 1, pp. 60–64, 1966.

[22] G. Jurman, S. Riccadonna, R. Visintainer, and C. Furlanello, “Canberra
distance on ranked lists,” in Proceedings of Advances in Ranking NIPS
09 workshop. Citeseer, 2009, pp. 22–27.

[23] M. Gen and L. Lin, “Genetic algorithms,” Wiley Encyclopedia of
Computer Science and Engineering, pp. 1–15, 2007.

[24] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517,
1975.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning Research,
vol. 12, no. Oct, pp. 2825–2830, 2011.

[26] B. Pradelle, B. Meister, M. Baskaran, J. Springer, and R. Lethin, “Poly-
hedral optimization of tensorflow computation graphs,” in Programming
and Performance Visualization Tools. Springer, 2017, pp. 74–89.

[27] R. Baghdadi, J. Ray, M. B. Romdhane, E. Del Sozzo, A. Akkas, Y. Zhang,
P. Suriana, S. Kamil, and S. Amarasinghe, “Tiramisu: A polyhedral
compiler for expressing fast and portable code,” in Proceedings of the
2019 IEEE/ACM International Symposium on Code Generation and
Optimization, ser. CGO 2019. Piscataway, NJ, USA: IEEE Press, 2019,
pp. 193–205.

[28] J. Roesch, S. Lyubomirsky, L. Weber, J. Pollock, M. Kirisame, T. Chen,
and Z. Tatlock, “Relay: A new ir for machine learning frameworks,”
in Proceedings of the 2Nd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages, ser. MAPL 2018. New
York, NY, USA: ACM, 2018, pp. 58–68.

[29] K. Kennedy and J. R. Allen, Optimizing compilers for modern architec-
tures: a dependence-based approach. Morgan Kaufmann Publishers
Inc., 2001.

[30] G. Mariani, G. Palermo, V. Zaccaria, and C. Silvano, “Desperate++: An
enhanced design space exploration framework using predictive simulation
scheduling,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 34, no. 2, pp. 293–306, Feb 2015.

[31] A. H. Ashouri, A. Bignoli, G. Palermo, C. Silvano, S. Kulkarni, and
J. Cavazos, “Micomp: Mitigating the compiler phase-ordering problem
using optimization sub-sequences and machine learning,” ACM Trans.
Archit. Code Optim., vol. 14, no. 3, pp. 29:1–29:28, Sep. 2017.

[32] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic superoptimization,”
in ACM SIGPLAN Notices, vol. 48, no. 4. ACM, 2013, pp. 305–316.

[33] C. Oh, J. Tomczak, E. Gavves, and M. Welling, “Combinatorial Bayesian
Optimization using the Graph Cartesian Product,” in Advances in Neural
Information Processing Systems, 2019, pp. 2910–2920.

[34] Z. Wang and M. OBoyle, “Machine learning in compiler optimization,”
Proceedings of the IEEE, vol. 106, no. 11, pp. 1879–1901, Nov 2018.

[35] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano, “A
Survey on Compiler Autotuning Using Machine Learning,” ACM Comput.
Surv., vol. 51, no. 5, pp. 96:1–96:42, Sep. 2018.

[36] P. A. Ballal, H. Sarojadevi, and P. Harsha, “Compiler optimization:
A genetic algorithm approach,” International Journal of Computer
Applications, vol. 112, no. 10, 2015.

[37] Á. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag, “Analyzing bandit-
based adaptive operator selection mechanisms,” Annals of Mathematics
and Artificial Intelligence, vol. 60, no. 1-2, pp. 25–64, 2010.

[38] M. Pacula, J. Ansel, S. Amarasinghe, and U.-M. OReilly, “Hyperparam-
eter tuning in bandit-based adaptive operator selection,” in European
Conference on the Applications of Evolutionary Computation. Springer,
2012, pp. 73–82.

[39] Y. Jin, M. Olhofer, and B. Sendhoff, “On evolutionary optimization
with approximate fitness functions,” in Proceedings of the 2Nd Annual
Conference on Genetic and Evolutionary Computation, ser. GECCO’00.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000, pp.
786–793.

[40] M. H. Yar, V. Rahmati, H. Reza, and D. Oskouei, “A survey on
evolutionary computation: Methods and their applications in engineering,”
Mod. Appl. Sci, vol. 10, no. 11, p. 131139, 2016.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2015.

