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Abstract—Many metaheuristics attempt to “transition” a single
algorithm from exploration to exploitation. Conversely, previous
research has shown that it can be better for the two distinct
tasks of exploration and exploitation to instead be performed
by two distinct algorithms/mechanisms. This has led to the de-
velopment of Exploration-only, Exploitation-only Hybrid search
techniques. This paper presents a Multi-Population Exploration-
only Exploitation-only Hybrid in which exploitation occurs in one
population while a global search strategy performs exploration
in another population. Unlike a sequential hybrid, this hybridiza-
tion allows the exploratory technique (in this case Unbiased
Exploratory Search) to delay convergence (up to indefinitely)
which allows the hybrid system to benefit from a large budget
of function evaluations. The new hybrid is evaluated on the
CEC2020 test suite in the special session and competition on
single objective bound constrained numerical optimization.

Index Terms—hybrid heuristic, exploration, exploitation

I. INTRODUCTION

Population-based metaheuristics maintain a set of solutions
which often serve two purposes: store the best-found solutions,
and keep track of promising areas of the search space for
further exploration. For example, the elistist selection in a
steady-state Genetic Algorithm [1], [2] means that the mating
population consists of only the best-found solutions, and the
generated offspring solutions will be in the neighbourhood
of these parent solutions. In Particle Swarm Optimization
(PSO) [3], the personal best (pbest) positions store the best-
found solutions (for each particle), and these positions also
act as attractors which draw the particles to conduct further
exploration and exploitation in their nearby neighbourhoods.

The use of one homogeneous population forces solutions
in this population to serve these two distinct purposes, and
this situation can be highly ineffective. In particular, the
first purpose of storing the best-found solutions is easily
accomplished by measuring and comparing the current/actual
fitness of the solutions. However, fitness-based selection and
the primacy of best-found solutions can interfere greatly with
the second purpose of identifying and targeting the most
promising regions of the search space. An example of this
interference is shown in Fig. 1.

(a) elitist selection (b) failed exploration

Fig. 1. An example of how elitist selection can lead to failed exploration in a
multi-modal search space. The star represent a reference solution (a solution
against which new solutions are compared) and the dot represents a newly
sampled solution. If elitist selection (a) is applied then the star will be selected,
despite being located on a worse attraction basin (b).

Selection errors can be avoided in memetic algorithms
(MA) [4] by having all of the initial solutions become local
optima before they are compared with existing reference
solutions (which in MA are also all local optima). Locally op-
timizing all of the initial solutions can be highly inefficient, so
the implicit goal of metaheuristics such as PSO is to filter out
less promising search solutions and to only optimize/perform
exploitation on the most promising exploratory solutions.
However, this filtering process can become susceptible to the
error of failed exploration shown in Fig. 1.

The accuracy of fitness-based selection for exploratory
search solutions is greatly reduced by exploitation/local op-
timization of the reference solution [5]. For two random solu-
tions (e.g. from the initial population), there can be a greater
than 50% chance that the fitter solution will also be from the
more promising region of the search space. Conversely, the
comparison of a random solution (e.g. an exploratory search
solution) with a partially optimized solution (e.g. a reference
solution that has moved towards its local optimum under the
effects of exploitation) can lead to rates of failed exploration
that approach 100%.

Two attempts to reduce the effects of failed exploration
include “Thresheld Convergence” (TC) [6] and the two-
population mechanism of Leaders and Followers (LaF) [5].
In Thresheld Convergence, convergence is “held” back by a
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threshold function which specifies a minimum distance (in
continuous domain search spaces) between search solutions
and reference solutions. This minimum distance helps to pre-
vent early exploitation in attraction basins already represented
by the stored population for a metaheuristic. Comparisons
between new exploratory search solutions and stored refer-
ence solutions which have not been improved by exploitation
can more accurate identify the most promising regions of
the search space and lead to the improved performance of
metaheuristics in multi-modal search spaces [6].

Another way to reduce failed exploration is to store refer-
ence solutions that can be local optima, but to avoid the direct
comparison of new exploratory search solutions with them.
Leaders and Followers uses two populations. The population
of leaders stores the best-known solutions which guide the
search process, and the population of followers stores the new
search solutions. Search solutions are only compared amongst
themselves within the population of followers until they reach
a similar fitness (e.g. local optima) to the solutions in the
population of leaders. This delayed comparison with the highly
fit reference solutions leads to a reduction in the rate of failed
exploration [5].

The key features of TC and LaF have been combined into a
new metaheuristic called Unbiased Exploratory Search (UES).
Specifically, the TC-based movement operator from Minimum
Population Search (MPS) [7] is used to create the new search
solutions in the population of followers. The issue of when
to end this exploratory search (phase) is reduced by using
UES in a Multi-Population Exploration-only Exploitation-only
Hybrid (MP-EEH). Specifically, leaders can be optimized, and
their improved fitness has little effect on the exploratory search
being performed in the population of followers. This method
of hybridization is particularly useful for non-terminating
optimization processes and situations where a large number
of function evaluations are possible – such as the CEC-2020
contest on Single Objective Bound Constrained Problems [8].

This paper begins with a background on exploration, MPS,
and LaF. The development of UES is then presented in Sec-
tion III. The Multi-Population Exploration-only Exploitation-
only Hybrid is presented next in Section IV. This section also
includes some comparative results of MP-EEH against some
related algorithms. The results for the contest are presented in
Section V, and a Discussion concludes the paper in Section VI.

II. BACKGROUND

The analysis in this paper depends on precise definitions
for exploration and exploitation [9]. We begin by defining a
multi-modal search space to consist of attraction basins, each
with a single local optimum. An attraction basin around an
optimum includes all the points in the search space that can
reach (only) that optimum by following a path on which every
point has a monotonically decreasing fitness (for minimization
problems). We further define that a search solution within the
attraction basin of one of its reference solution(s) (e.g. a pbest
position) represents exploitation, and that a search solution in
a different attraction basin represents exploration.

In a multi-modal search space, the comparison of a search
solution with a reference solution from a different attraction
basin can lead to four outcomes [9]. These outcomes are based
on the fitness of the reference solution, the fitness of the search
solution, and the fitness of the local optima of the attraction
basins containing these two solutions. For brevity, we will refer
to the fitness of the local optimum of an attraction basin as
the fitness of that attraction basin.

The cases of “successful exploration” and “successful re-
jection” are rather obvious, so it is the two error cases that
require the most attention. “Deceptive exploration” occurs
when a search solution representing a less fit attraction basin
is accepted because it is fitter than its reference solution which
represents a fitter attraction basin. “Failed exploration” occurs
when a search solution which represents a fitter attraction basin
is rejected because it is less fit than its reference solution which
represents a less fit attraction basin.

Within this context, the goal of Minimum Population Search
is to reduce failed exploration by altering the creation of
search solutions, and the goal of Leaders and Followers is
to reduce failed exploration by altering the comparison of
search solutions with reference solutions. These two methods
are orthogonal to each other, and they can be easily combined
in UES. A brief introduction to MPS and LaF is now provided.

A. Minimum Population Search

Failed exploration can be limited by reducing the number
of solutions sampled in the same attraction basin, i.e. by
avoiding the concurrence of exploration and exploitation.
Thresheld Convergence does this by modifying the sampling
strategy so that new solutions are created at least a ‘threshold’
distance away from the its reference solution(s). Managing
this step makes it possible to better control the transition from
exploration to exploitation, convergence is thus “held” back
until the last stages of the search process [6].

Initially the minimum step is set to a fraction of the main
diagonal of the search space (diagonal), and it is updated over
the execution of a metaheuristic by following the decay rule
shown in Equation 1. In this equation, totalFEs is the total
number of function evaluations, and FEs is the amount of
evaluations performed so far. The parameter α determines the
initial threshold and γ controls the decay rate.

minStep = α ∗ diagonal ∗
(
totalFEs− FEs

totalFEs

)γ
(1)

Thresheld Convergence has been successfully added to
many popular metaheuristics [6], but its most effective imple-
mentation is in MPS which has a search operator specifically
designed to use TC. This sampling strategy is the most distinct
feature of MPS [7]. A key feature of the search operator is the
use of an orthogonal step to guarantee full coverage of a d di-
mensional search space (when d ≥ n). This step is particularly
important in high dimensional search spaces (e.g. d = 1.000)
when the population size n is usually set to be smaller than
the dimensionality d in order to promote convergence when
using a restricted budget of function evaluations [10]. New



solutions in MPS are based upon the line segments formed
among the population members, and these solutions could
otherwise become “trapped” inside the hyperplane defined by
the n population members.

B. Leaders and Followers

A second approach to reduce failed exploration is to avoid
the bias towards solutions with high relative fitness (e.g.
reference solutions) when they are compared to solutions
with low relative fitness (e.g. new sampled solutions). The
metaheuristic Leaders and Followers (LaF) [5] was specifically
designed with this goal in mind. LaF is not metaphor based
because leaders and followers are labelled based on their
features within the metaheuristic as opposed to an attempt to
mimic some “real world” analog [11].

The leaders are reference solutions which guide the search,
and the followers are (new) search solutions. It is noted
that new followers (which are likely to have poor relative
fitness) should not be immediately compared against their
leaders (which can have very high relative fitness). This is
the inspiration for the two-population strategy which is the
most distinct feature of LaF. New followers are compared
against existing followers which are more likely to have
similar relative fitness, and this leads to lower rates of failed
exploration. It is only when the followers have reached a
similar fitness to the leaders (e.g. the median fitness of
the followers population has surpassed that of the leaders
population) that comparisons between leaders and followers
are made. The resulting reduction in failed exploration allows
LaF to outperform popular metaheuristics such as PSO and
DE despite a simplistic method for solution generation [5].

III. UNBIASED EXPLORATORY SEARCH

A key weakness of TC in single-population metaheuristics
(e.g. PSO, DE, MPS, etc) is that stored reference solutions in-
variably become closer to their local optima even without any
exploitation. Unbiased Exploratory Search (UES) addresses
this issue by using both TC during the generation of new
search solutions and the two-population scheme of LaF to
avoid comparing reference solutions (leaders) against newly
sampled solutions (followers).

The algorithm starts by randomly initializing the popula-
tions of leaders and followers. At each iteration new trial so-
lutions are generated using information from both populations.
Between the set of new solutions and current followers, trun-
cation selection is performed to produce the next population
of followers. At the end of each iteration the median fitness
of the population of followers is compared against the median
fitness of the leaders. If the median of the followers is better,
then a restart is performed. In a restart the two populations
are merged and the best solutions become the new leaders,
and the followers are randomly initialized.

New search solutions in the followers population are created
by using a method similar to the one developed for MPS.
Starting with a minimum step size established by the threshold
function in Equation 1, a maximum search step is set as

maxStep = 2∗minStep. New solutions are generated starting
from each leader with an initial movement that is at least
the minStep distance away from the leader but no further
away than maxStep. In this way, the leaders population will
guide the search by determining the regions around which
exploration/exploitation is performed.

Solution generation consists of two steps. First a step
is taken away from the leader towards the centroid of the
population of followers; this allows the followers to direct
the exploration process. Second, an orthogonal step is taken
away from the (vector of the) first step. This is done by
randomly generating a vector and then making it orthogonal
to the difference vector between the leader and the centroid.
Equation 2 shows this two-step process for generating the new
trial solutions (trial), where x is the parent (the leader), xc
is the centroid (of the followers) and orth corresponds to
the orthogonal vector. The f factor is drawn with a uniform
distribution from [−maxStep;maxStep].

trial = x+ f · x− xc
‖x− xc‖

+ fo · orth

‖orth‖
(2)

To ensure that the distance from the new trial solution
trial to its parent solution x stays within the acceptable
[minStep,maxStep] range, the fo factor is selected with a
uniform distribution from the [minOrth,maxOrth] interval
(note: the x − xc and orth vectors are normalized before
scaling). The minOrth and maxOrth values are calculated
by Equations 3 and 4, respectively. Once the new solutions
are created, clamping is performed if necessary. Truncation
selection means the best n solutions among the trial solutions
and the followers will form the next generation of followers.
The α and γ parameters for Thresheld Convergence and the
maximum number of function evaluations are parameters of
the algorithm presented in Algorithm 1.

minOrth =
√
max(minStep2 − f2; 0) (3)

maxOrth =
√
max(maxStep2 − f2; 0) (4)

IV. A MULTI-POPULATION EXPLORATION-ONLY
EXPLOITATION-ONLY HYBRID

The exploration-only exploitation-only model for the opti-
mization of multi-modal problems involves two distinct tasks:
identifying promising attraction basins and finding the local
optima in these basins. Assigning these tasks to special-
ized algorithms makes sense since some metaheuristics (e.g.
population-based) are more efficient in terms of exploration
but not well suited to fine-tune the search [12]. The first
task should be performed by a purely exploratory algorithm
while the second task should be assigned to a purely ex-
ploitative (local search) method. Recent results have shown the
effectiveness of this approach in continuous [13] and discrete
optimization problems [14].

These hybrids follow a high-level relay hybridization strat-
egy [12], i.e. they rely on a strong exploration method to



Algorithm 1 UES (α, γ, popSize,maxFEs)
leaders← randomPopulation(popSize)
followers← randomPopulation(popSize)

while FEs ≤ maxFEs do
minStep← α · d ·

(
maxFEs−FEs

maxFEs

)γ
maxStep← 2 ·minStep
xc ← centroid(followers)
for i = 1 : n do

xi ← leadersi
fi ← unifRandom(−maxStep,maxStep)
foi ← unifRandom(minOrth,maxOrth)
orthi ← orthV ector(xi − xc)
triali ← xi + fi · xi−xc

‖xi−xc‖
+ foi · orthi

‖orthi‖
end for
followers← bestSolutions(followers, trial)
if mean(followers) < mean(leaders) then

leaders← selectBest(followers, leaders)
followers← randomPopulation()

end if
end while
return ~xk ∈ leaders ∪ followers with minimum yk

detect the best attraction basins before using a local search
strategy to achieve a fast convergence to the corresponding
(local) optima. However, when a large budget of function
evaluations is available, a low-level teamwork hybrid becomes
a more effective hybridization strategy. As described in [12],
these hybrids use a local search metaheuristic that is embedded
into an (exploratory) population-based metaheuristic. Individ-
ual solutions are optimized locally as the population-based
metaheuristic continues to optimize globally.

A potential risk of a low-level teamwork hybrid is that
the locally optimized reference solutions may lead to an
increase in failed exploration, hindering the effectiveness of
further exploration. This is the motivation behind the Multi-
Population approach to an Exploration-only Exploitation-only
Hybrid. Local optimization occurs only in the population of
leaders which has no effect on the process of selection in the
population of followers (and thus cannot affect its rates of
failed exploration).

The pseudocode presents a high level description of what
we call a Multi-Population Exploration-only Exploitaton-only
Hybrid (MP-EEH). This framework doesn’t explicitly refer to
the exploration and exploitation methods used. In theory, any
existing metaheuristic could be used for these two processes,
and we in fact use CMA-ES as the method for exploitation
due to its strong overall performance on unimodal optimization
problems [15]. For the exploration method, we note that most
existing metaheuristics are designed to converge which is a
redundant feature in a MP-EEH. Our MP-EEH thus uses
Unbiased Exploratory Search which is specifically designed
for use in EEH systems.

The Multi-Population configuration of an EEH has several
advantages over the more common sequential configuration.
The first advantage is that there is no transition point between
exploration and exploitation. This reduces the need for param-
eter tuning which can be time consuming, ineffective, and/or

problem specific. Another advantage is that local optimization
can be the best way to move quickly towards the most
promising regions of a search space (e.g. those with large
attraction basins and/or broad plateau-like features). A key
advantage for the current contest is that a MP-EEH can
easily benefit from a large (up to infinite) budget of function
evaluations. Without convergence, both processes can operate
in a practical “steady-state” with a result produced at any time
by taking the best solution from the population of leaders.

The specific coordination of the two populations in the the
current MP-EEH is that the population of leaders is updated
and the population of followers is restarted once the followers
have reached a similar fitness to the leaders (e.g. median
fitness of the followers population has surpassed that of the
leaders population). The hybrid component of exploitation also
happens during each of these merge points, and a random
number of leaders are selected to have CMA-ES applied
to them. The number of solutions to be locally optimized
(localSol) and the budget of function evaluations allotted for
this purpose (localFEs) are parameters of the MP-EEH.

Algorithm 2 MP-EEH (localSol, localFEs,maxFEs)

leaders← randomPopulation(popSize)
followers← randomPopulation(popSize)

while FEs ≤ maxFEs do
trials← createTrialSolutions()
followers← bestSolutions(followers, trial)
if mean(followers) < mean(leaders) then

leaders← selectBest(followers, leaders)
for i = 1 : localSol do

leaderi ← selectLeaderRandomly()
leaderi ← locallyOptimize(leaderi, localFEs)
followers← randomPopulation()

end for
end if

end while
return best found solution

A. Parameters

The proposed MP-EEH framework contains three sets of
parameters corresponding to UES, CMA-ES and the hybridiza-
tion strategy. For CMA-ES the standard set of parameters
suggested in [15] were used; except for the σ value which
is selected much smaller to achieve a local search behavior.

The UES and MP-EEH components are recent algorithms
for which no recommended parameter suggestions exist. A
coarse parameter tuning was performed on the benchmark
functions using a grid search algorithm. Table I shows the
three set of parameters that were tuned for the competition, a
brief description, and the best found values.

B. Exploration Analysis

A common weakness in many metaheuristics is the lack
of verification that a solution intended to be exploratory is



TABLE I
PARAMETERS FOR THE MP-EEH METAHEURISTIC.

Parameters

Name Description Value

MP-EEH
maxFEs Number of function evaluations for the entire optimization 1.0e+7 (d = 20)

localFEs Number of function evaluations allotted to each local optimization process 3000 +maxFEs/500

optSol Number of solutions to be locally optimized on each restart popSize/50

UES
popSize The size of the populations of Leaders and the population of Followers 100 +MaxFEs/50000

α determines the initial threshold respect to the search space diagonal 0.05

γ controls the decay of the threshold 2.5

CMA-ES
σ coordinate wise standard deviation (step size) (upBound− lowBound)/30

Fig. 2. Convergence curve in Rastrigin function for 20 dimensions and 1.00E + 07 function evaluations. Average over 30 runs.

indeed in a different attraction basin. Without this verifica-
tion, search solutions created with mechanisms that have the
“potential for exploration” could instead lead to the creation
of search solutions that our definitions would classify as
“exploitation”. The negative effects of exploitation in known
attraction basins are presented through a detailed study on the
Rastrigin function in [5]. One possible effect is “premature
convergence” as reference solutions with high relative fitness
cause increasing rates of failed exploration. Metaheuristics
which suffer from premature convergence are unable to benefit
from large budgets of function evaluations.

f(x) = 10n+

n∑
i=1

(
x2i − 10 cos(2πxi)

)
(5)

This section presents an experiment intended to measure
exploration and the convergence curves of several metaheuris-
tics. The Rastrigin function shown in Equation 5 is used for
these experiments because it has a regular fitness landscape in
which every point with integer values in all dimensions is a
local optimum, and every other point belongs to the attraction
basin of the local optimum that is determined by rounding
each solution term to its nearest integer value. These features



make it possible to quickly and easily determine the attraction
basin of a search point and the fitness of the local optimum
of this attraction basin. For brevity, we will use “the fitness of
an attraction basin” to mean the fitness of the (local) optimum
of an attraction basin.

This experiment uses a standard implementation of MPS
with α = 0.3, γ = 3 and population size of p = dim as
described in [16]. In the case of LaF the same implementation
is used as described in [5], with a population size of p = 50.
For PSO a standard version [17] with a ring topology is used.
Additional implementation details are the use of p = 50
particles [17], zero initial velocities [18] and “Reflect-Z”
for particles that exceed the boundaries of the search space
(i.e. reflecting the position back into the search space and
setting the velocity to zero) [19]. Differential Evolution is an
implementation of DE/rand/1/bin with typical parameters of
population size p = 50, crossover Cr = 0.9, and scale factor
F = 0.8 [20], [21]. For UES and MP-EEH the parameters
described in the previous section are used.

The experiment involves 30 independent trials in d = 20
dimensions using a fixed limit of 10, 000, 000 total function
evaluations. Fig. 2 shows averages for the fitness of the best
overall solution, the fitness of its attraction basin, and the
fittest attraction basin represented by any reference solution.
Six different plots are presented for DE, PSO, MPS, LaF, UES
and MP-EEH. Reference solutions are the current population
in DE and MPS, the population of pbest positions in PSO,
and the population of leaders in LaF, UES, and MP-EEH.

A feature to observe is the premature convergence of PSO,
DE and LaF, which don’t improve much further after reaching
around 10% of the budget of function evaluations. In the
case of PSO it can be noticed that better attraction basins are
continuously found but rejected, leading to little improvement.
DE and LaF converge even earlier than PSO but achieve better
results. LaF performance is only surpassed by UES and MP-
EEH, which reflects the effectiveness of its exploration thanks
to the two-population selection scheme.

On the other hand, MPS and UES show a controlled
convergence that stretches through most of the optimization
process. This is a direct consequence of using Thresheld Con-
vergence in the sampling strategy, which controls the tranistion
between exploration and exploitation based on the available
FEs. However, in the case of MPS, good attraction basins
are lost due to failed exploration resulting from comparisons
between reference solutions with high relative fitness against
new (random) exploratory solutions. The convergence plot of
UES reflects the combination of LaF’s and MPS’s exploratory
approaches: the use of TC avoids premature convergence while
the two-population selection scheme reduces the number of
good attraction basins that are lost due to failed exploration.
As a result, UES converges to the global optimum in each of
the 30 runs.

The last plot shows the convergence curve of MP-EEH.
The hybrid is governed by UES as its global search strategy,
therefore TC avoids a premature convergence of the global
search. However, the exploitaion with CMA-ES of some the

leaders quickly leads these reference solutions towards the
local optima of the best search regions. As a consequence, MP-
EEH arrives much faster at the global optimum in Rastrigin.

C. Comparing MP-EEH to related algorithms

The following experiment compares the performance of
MP-EEH against its sub-component algorithms, i.e. UES and
CMA-ES. The purpose of this comparison is to confirm that
the hybridization strategy leads to meaningful improvements
over the independent algorithms. Results are also compared
against a high-level relay hybrid of UES and CMA-ES de-
signed for large scale global optimization – which is essen-
tially a sequential Exploration-only, Exploitation-only Hybrid
(EEH).

The experiment involves 30 independent trials over the
10 contest functions in d = 20 dimensions with a limit
of 10, 000, 000 function evaluations. The MP-EEH and UES
use the same parameters as described in previous sections,
CMA-ES uses the parameters suggested in [15] and the EEH
algorithm is the same as in [13]. Table II reports the mean
errors achieved by each algorithm and the relative perfor-
mances 100(a− b)/max(a, b) achieved by MP-EEH versus
the other algorithms. These values indicate by what amount
(percent) MP-EEH (b) outperforms UES/CMA-ES/EEH (a)
—- positive values indicate that MP-EEH outperforms the
respective algorithm.

It can be noticed that MP-EEH achieves the best results
(bolded) in 8 out of the 10 functions with an overall im-
provement of 67.31% and 45.07% over CMA-ES and UES,
respectively. The Multi-Population EEH also outperforms the
sequential EEH by 37.25%. We believe this result is primarily
due to the ability of the Multi-Population hybrid to benefit
more fully from the large number of function evaluations
allowed for these contest function.

V. EVALUATING THE UES-CMAES MULTI-POPULATION
EXPLORATION-ONLY EXPLOITATION-ONLY HYBRID ON

THE CEC 2020 BENCHMARK SET

The complexity of the proposed hybrid is shown in
Table III. The simulation is executed on a personal computer
with an Intel CPU (3.80GHz) and 8GB RAM, under Matlab
2019a programming environment. T0 denotes the execution
time of the following program:

x = 0.55;
for i = 1:1,000,000

x=x+x; x=x/2; x=x *x; x=sqrt(x);
x=log(x); x=exp(x); x=x/(x+2);

end

T1 denotes the execution time of Function 7 for 200,000
evaluations of a certain dimension. T2 is the running time of
the proposed algorithm on Function 7 for 200,000 evaluations.
T2 is calculated five times, and T̂2 is the mean value. Finally,
the algorithm complexity is estimated by (T̂2− T1)/T0.

The results of MP-EEH are shown in Tables IV-VII. With
the rules of CEC 2020 benchmark competition, the search



TABLE II
COMPARISON OF OF MP-EEH AGAINST UES, CMA-ES AND EEH .

MP-EHH CMA-ES UES EEH
No. Mean Mean %-diff Mean %-diff Mean %-diff

1 0.00E+00 0.00E+00 0.00% 4.81E+01 100.0% 0.00E+00 0.00%
2 1.70E+02 2.16E+03 92.12% 7.23E+02 76.46% 5.87E+02 71.04%
3 2.33E+01 5.42E+01 57.06% 7.91E+00 -65.99% 2.04E+01 -12.09%
4 4.25E-01 2.31E+00 81.58% 1.66E+00 74.44% 1.27E+00 66.46%
5 2.36E+02 1.22E+03 80.62% 8.79E+02 73.11% 6.40E+02 63.07%
6 4.27E+01 4.90E+02 91.30% 2.74E+01 -35.72% 5.74E+01 25.59%
7 7.77E+01 7.17E+02 89.17% 5.26E+02 85.21% 1.92E+02 59.49%
8 8.00E+01 2.48E+03 96.78% 2.25E+02 64.46% 1.00E+02 20.00%
9 9.67E+01 4.31E+02 77.59% 4.01E+02 75.87% 4.00E+02 75.84%

10 4.01E+02 4.30E+02 6.90% 4.12E+02 2.81% 4.14E+02 3.15%

Overall 67.31% 45.07% 37.25%

space is set to [–100, 100] for each variable. If the solution
error is smaller than 10e–08, the error is set to 0. The
maximum number of function evaluations 50, 000, 100, 000,
3, 000, 000 and 10, 000, 000 respectively for dimensions 5, 10,
15 and 20. The number of runs for each function is 30, and
the best, worst, median, mean, and standard deviation of the
solution error are recorded.

Results show the algorithm has no difficulty finding the
global optimum in the unimodal Function 1, in any dimension.
In 5D the algorithm manages to find the global optimum
at least once in 6 out of the 10 functions. But as expected,
performance deteriorates with increasing dimensions. In 20D
a solution with an error lower than 1.00 is found in 4 functions.
The proposed algorithm also obtains a median or mean error
value less than 100 in 7 of the functions. We believe these
results are quite strong, and we look forward to comparing
these results against other state-of-the-art methods entered into
the competition.

TABLE III
COMPUTATIONAL COMPLEXITY

T0 T1 T̂2 (T̂2− T1)/T0

D=5 0.031 0.391 11.065 344.322
D=10 0.031 0.391 9.837 304.709
D=15 0.031 0.453 9.875 303.935

VI. DISCUSSION

The motivation behind an exploration-only exploitation-
only hybrid comes from acknowledging that exploration and
exploitation are different search objectives which can benefit
from different search strategies. Further, the concurrence of
both processes can interfere with the ability to perform explo-
ration. It has been shown that a bias arises to favour (locally
optimized) reference solutions when they are compared against
(non-locally optimized) search solutions. These biased com-
parisons can be limited by separating the locally optimized
solutions from those that are not (as in LaF [5]) or locally

TABLE IV
RESULTS FOR 5D

Func. Best Worst Median Mean Std.Dev.

1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 1.25E-01 1.32E+02 1.34E+01 2.46E+01 3.92E+01
3 0.00E+00 6.95E+00 3.48E+00 3.43E+00 2.13E+00
4 0.00E+00 2.25E-01 1.03E-01 1.02E-01 8.06E-02
5 0.00E+00 4.25E+01 7.09E+00 1.03E+01 9.90E+00
6 6.64E-03 5.11E-01 1.55E-01 2.38E-01 1.77E-01
7 1.93E-04 1.19E+02 9.00E-03 2.01E+01 4.48E+01
8 0.00E+00 2.67E-08 1.65E-08 1.68E-08 5.30E-09
9 1.00E+02 2.00E+02 1.00E+02 1.03E+02 1.83E+01
10 2.00E+02 3.47E+02 3.47E+02 3.10E+02 5.42E+01

TABLE V
RESULTS FOR 10D

Func. Best Worst Median Mean Std.Dev.

1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 6.25E-02 1.45E+02 1.59E+01 3.48E+01 4.61E+01
3 2.77E+00 1.34E+01 1.23E+01 1.06E+01 3.62E+00
4 0.00E+00 2.86E-01 6.93E-02 8.67E-02 7.24E-02
5 2.41E+00 8.70E+01 2.64E+01 3.07E+01 2.09E+01
6 3.67E-01 1.22E+01 9.38E-01 1.23E+00 2.08E+00
7 4.54E-01 1.05E+01 1.11E+00 1.57E+00 1.86E+00
8 3.55E-08 1.00E+02 4.57E-08 4.67E+01 5.07E+01
9 1.00E+02 2.00E+02 1.00E+02 1.03E+02 1.83E+01
10 1.00E+02 3.98E+02 3.98E+02 3.38E+02 1.06E+02

optimizing every solution prior to the comparison as a means
to eliminate selection error (as in memetic algorithms [4]).

From a design perspective the Multi-Population EEH pro-
vides a combination of both approaches. Reference solutions
are kept separated as in LaF, and they can also be locally
optimized. Further, this local optimization is done explicitly
by using a dedicated local search algorithm as opposed to acci-
dentally by the same mechanism that was designed to perform



TABLE VI
RESULTS FOR 15D

Func. Best Worst Median Mean Std.Dev.

1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 4.64E+00 3.71E+02 1.29E+02 1.15E+02 8.46E+01
3 5.97E+00 2.15E+01 1.96E+01 1.71E+01 5.03E+00
4 8.89E-02 5.18E-01 2.62E-01 2.89E-01 1.31E-01
5 1.44E+01 1.96E+02 8.72E+01 9.16E+01 4.80E+01
6 9.90E-01 3.12E+01 1.88E+00 4.07E+00 5.90E+00
7 1.03E+00 1.35E+02 4.45E+00 2.15E+01 3.89E+01
8 6.48E-08 1.00E+02 1.00E+02 6.00E+01 4.98E+01
9 1.00E+02 1.00E+02 1.00E+02 1.00E+02 2.19E-08
10 2.00E+02 4.00E+02 4.00E+02 3.90E+02 4.03E+01

TABLE VII
RESULTS FOR 20D

Func. Best Worst Median Mean Std.Dev.

1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 1.02E+01 3.62E+02 1.40E+02 1.70E+02 9.42E+01
3 9.56E+00 2.98E+01 2.63E+01 2.33E+01 6.13E+00
4 1.19E-01 6.96E-01 4.35E-01 4.25E-01 1.41E-01
5 7.69E+01 4.00E+02 2.35E+02 2.36E+02 7.80E+01
6 1.95E+00 1.22E+02 1.33E+01 4.27E+01 5.23E+01
7 2.42E+00 2.28E+02 6.42E+01 7.77E+01 6.52E+01
8 1.24E-07 1.00E+02 1.00E+02 8.00E+01 4.07E+01
9 1.01E-06 1.00E+02 1.00E+02 9.67E+01 1.83E+01
10 3.99E+02 4.10E+02 3.99E+02 4.01E+02 3.78E+00

exploration. An advantage of this framework is that reference
solutions can move more quickly towards the best regions
without having to rely on successive restarts to reach local
optima. This contrasts with many metaheuristics that aim to
simultaneously perform both exploration and exploitation, so
local optimization generally requires the overall convergence
of the algorithm.

Convergence is a natural enemy of exploration as it localizes
the search to a very narrow region. A version of MP-EEH with
unlimited (a priori) function evaluations is thus a promising
future line of research. In such a hybrid, UES could be
executed with parameters designed to never converge. The
advantage of this type of optimization system is the ability to
tackle extremely difficult problems where improved solutions
can be used at any time. The extraction of a solution does
not interfere with the on-going optimization (e.g. by requiring
convergence), and the existence of optimized solutions can
guide future exploration (e.g. in globally convex search spaces)
without undue biasing of the search behaviour (e.g. through
increased failed exploration or restriction to the neighbourhood
around the known local optima). As a comparison, it is noted
that Tabu Search can operate in an “infinite mode”, but it is
less able to use a set of known local optima to improve search
directions [22].
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