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Abstract—One of the end goals of a Prognostic and Health
Monitoring (PHM) algorithm is to provide accurate Remaining
Useful Life (RUL) predictions for the monitored component or
system. Most of the PHM algorithms found in the literature are
based on the assumption that the degradation process is governed
by only one degradation factor. However, some components and
systems may be subject to multiple degradation factors. In
this paper, we propose a hybrid algorithm that incorporates a
Teaching-Learning Based Optimization (TLBO) step into a Par-
ticle Filter (PF) framework. PF is an algorithm that can handle
multiple degradation factors. However, it has some drawbacks
such as sample degeneracy and sample impoverishment. The
hybrid TLBO-PF algorithm proposed in this paper improves
the performance of the standard PF algorithm by reducing the
effects of sample degeneracy and sample impoverishment. A case
study is presented to evaluate the performance of the proposed
algorithm for estimating the degradation factors and predicting
the RUL of a Lithium-ion battery, which is affected by two degra-
dation factors. The results show that the proposed algorithm
presented a better performance for both the tasks (degradation
factor estimation and RUL prediction) when compared with the
standard Particle Filter algorithm.

Index Terms—Prognostics, health monitoring, remaining useful
life, particle filter, teaching-learning based optimization, Lithium-
ion battery.

I. INTRODUCTION

Due to the increasing competitiveness in many industry
sectors, high availability levels are expected from equipment
and systems. To meet the high availability requirements,
developing a robust maintenance plan that reduces the number
of unscheduled maintenance activities plays a crucial role. In
this scenario, the use of Prognostics and Health Monitoring
(PHM) techniques can be seen as a powerful tool to monitor
the health status of critical components and prevent unexpected
failure events from happening [1].

A PHM system uses operational data obtained from sen-
sors that provide information about the degradation level
of components and systems. These data are used to assess
the degradation level of the monitored system. Many PHM
approaches have been proposed in the literature to monitor
the degradation level of a wide range of components such as
batteries [2], servo valves [3], wind turbines [4], among others.

Most of the proposed PHM methods assume that the
monitored component operates under the influence of only
one degradation factor [5], [6]. However, modern systems are
often composed of many complex interacting components and,
in many cases, multiple degradation mechanisms are present
[7], [8]. In these situations, the mathematical techniques used
in PHM methods must be capable of dealing with multiple
degradation factors.

The Particle Filter (PF) algorithm can deal with multiple
degradation factors and has been used in many PHM solu-
tions [9]. However, PF suffers from sample impoverishment
and sample degeneracy. Sample impoverishment occurs when
distributions with wide variances are used. Sample degeneracy
occurs when the particles are too concentrated. These problems
reduce the accuracy of the solutions obtained with a PF [10].

Hybrid versions of PF have been proposed to overcome
sample impoverishment and sample degeneracy. In [11], the
authors proposed a hybrid method that uses a heuristic Kalman
Filter along with PF to identify the number of degradation
factors and predict the RUL (Remaining Useful Life) of a
monitored system. In [12], the authors integrated unscented
Kalman Filter and wavelet transform into the PF framework
to solve a GPS multipath mitigation problem. The use of
nature-inspired metaheuristics has also been investigated. In
[13], the authors presented a hybrid method using a PF and a
PSO (Particle Swarm Optimization) algorithm. They obtained
good results. However, parameter tuning in PSO can be a
challenging task.

In this paper, we propose a hybrid algorithm aiming at
reducing the effects of sample impoverishment and sample de-
generacy. We use the standard PF framework, and incorporate
a step based on the Teaching-Learning Based Optimization
(TLBO) algorithm. TLBO is a population-based metaheuristic
algorithm inspired by the teaching-learning process observed
in a classroom [14]. The two main phases of TLBO are the
Teacher Phase and the Student Phase, which are responsible
for the intensification and the diversification capabilities of
the algorithm, respectively. Also, TLBO does not require any
specific parameter to be defined.
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The main contribution of this paper is proposing a hybrid
method to reduce the effects of sample impoverishment and
sample degeneracy in a PF framework. The performance of
the proposed algorithm is illustrated in a case study that
consists in estimating the Remaining Useful Life (RUL) of a
Lithium-ion battery, which has a degradation process affected
by two degradation factors. The performance of the standard
PF is used as a reference baseline. The results show that the
proposed TLBO-PF algorithm provided better performance in
terms of degradation parameters estimation error and RUL
prediction accuracy when compared with the standard PF.

The remaining sections of this paper are organized as
follows. Section II presents a brief overview of Particle Filters,
the Teaching-Learning Based Optimization algorithm, and the
basic concepts of prognostic and health monitoring techniques
and RUL predictions. Section III introduces the proposed
hybrid TLBO-PF algorithm. Section IV presents the results
obtained in a case study used to illustrate the application of
the proposed algorithm to estimate the RUL of a lithium-ion
battery. Concluding remarks are presented in Section V.

II. THEORETICAL BACKGROUND

A. Particle Filter

A Particle Filter (PF) is a sequential Monte Carlo method
that uses a point mass representation of the probability density
function [8], [15]. A Particle Filter uses a Bayesian inference
approach, in which measurements are used to estimate the
values of unknown parameters as a probability density function
(PDF). Parameter predictions are updated in each step, when
new measurements become available. The process of a Particle
Filter algorithm is based on the state transition function
f(·) and the measurement function g(·). These functions are
presented in (1) and (2), respectively.

xk = f (xk−1, θk, υk) (1)
yk = g (xk, ηk) (2)

where f(·) is the nonlinear state transition function, k is the
time step index, xk is the state model at the k-th step, θk
is a vector of model parameters, υk is the i.i.d. (identical
independent distributed) process noise, yk is the measurement
observed at the k-th step, g(·) is the measurement function,
and ηk is the i.i.d. measurement noise. The standard deviation
of ηk is denoted by σ.

In PF, the initial distribution of the states, denoted by p(x0),
must be defined. A set of N particles is sampled from the
initial distribution and propagated through the state transition
function f . The distribution obtained from the particles at
this stage is known as the prior distribution. Then, a new
measurement yk becomes available and is used to compute
a likelihood value for each particle n, with n = {1, . . . , N},
according to (3).
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The likelihood value computed for each particle n represents
its relevance in the model and is used as a weight, w(n)

k ,
according to (4). The weights are then normalized according
to (5).
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In the sampling step of PF, the weight assigned to each
particle n is used as the probability of obtaining a sample with
an index n. A new set of N samples is drawn from the discrete
distribution, with replacement. Particles with high associated
weights are likely to be drawn multiple times while particles
with low associated weights are likely to be eliminated during
the resampling step. This new set of particles is known as the
posterior distribution and replaces the prior distribution. At
the end of the resampling step, all particles receive the same
weight, according to (6). The larger the number of particles N ,
the better the state estimation. However, more computational
power is required. Fig. 1 illustrates the overall process of the
PF algorithm.

w
(n)
k =

1

N
(6)

Fig. 1. PF algorithm process



B. Teaching-Learning Based Optimization

The Teaching-Learning Based Optimization (TLBO) algo-
rithm is a population-based metaheuristic algorithm inspired
by the teaching-learning process observed in a classroom [14].
This algorithm simulates the influence of a teacher on the
output of a group of students in a class. The algorithm has two
main phases: the Teacher Phase and the Student Phase [16].
During the Teacher Phase, students learn from the teacher,
while in the Student Phase students learn through interactions
among themselves.

Consider a group of N students. Each student X has an
associated solution that corresponds to a candidate solution
for the optimization problem. The quality of each solution
is quantified by a fitness value f(X) that is computed by
evaluating the solution X using the objective function.

The student with the best solution in each iteration is called
the Teacher. Fig. 2 shows the flowchart for implementing the
TLBO algorithm [14]. The Teacher Phase and the Student
Phase are described in the next sections.

Fig. 2. TLBO flowchart

1) Teacher Phase: During the Teacher Phase, the algorithm
simulates the learning of the students from the teacher (best
solution). During this phase, the teacher makes an effort to
increase the mean result of the class. Let Mi be the mean
solution of all the students and Ti be the teacher in the i-
th iteration. The teacher Ti will try to move Mi to its level.
Knowledge is obtained based on the quality of the teacher and
the quality of students. The difference Di between the solution
of the teacher, denoted by XTi, and the mean solution of the
students, Mi, is expressed according to (7).

Di = ri(XTi − TF ·Mi) (7)

where ri is a random number chosen from a standard uniform
distribution, and TF is the teaching factor for iteration i, which
is randomly set to either 1 or 2 according to (8).

TF = round(1 + rand(0, 1)) (8)

Based on the difference Di, the current solution associated
with each student n in iteration i, denoted by Xni, with n ∈
{1, 2, . . . , N}, is updated during the teacher phase according
to (9).

X?
ni = Xni +Di (9)

where X?
ni is the updated value of Xni.

If f(X?
ni) is better than f(Xni), then X?

ni is accepted
and replaces Xni for the next iteration. Otherwise, X?

ni is
discarded.

2) Student Phase: During the Student Phase, TLBO sim-
ulates the learning of the students through interactions among
themselves. During this phase, students gain knowledge by
discussing with other students who have more knowledge [16].

Consider a pair of students y and z. Let Xyi and Xzi be
the solutions of students y and z in iteration i, respectively.
If f(Xyi) is better than f(Xzi), the solution of student z is
updated according to (10). If f(X?

zi) is better than f(Xzi), X?
zi

is accepted and replaces Xzi for the next iteration. Otherwise,
X?

zi is discarded. Similarly, if f(Xzi) is better than f(Xyi), the
solution of student y is updated according to (11). If f(X?

yi)
is better than f(Xyi), X?

yi is accepted and replaces Xyi for
the next iteration. Otherwise, X?

yi is discarded.

X?
zi = Xzi + ri(Xyi −Xzi) (10)

X?
yi = Xyi + ri(Xzi −Xyi) (11)

At the end of each iteration, the stop criteria are checked.
Different stop criteria may be adopted. Some commonly
used stop criteria are the maximum number of iterations, the
maximum number of successive iterations without any im-
provement, the maximum simulation time, and the maximum
number of objective function evaluations.



C. PHM Systems and RUL Prediction

A Prognostics and Health Monitoring (PHM) system evalu-
ates operational data from components and systems to quantify
their degradation level and to predict when a failure event is
likely to occur. One way to estimate the degradation level of a
monitored component is by comparing its current performance
with the nominal performance. The RUL (Remaining Useful
Life) is estimated based on the expected evolution of the
degradation level and a failure threshold value, which is
assumed to be known.

RUL predictions are often represented in the form of a
probability distribution. Different parametric probability dis-
tributions such as Gaussian and Weibull can be used [17],
[18]. Non-parametric distributions can also be adopted [19].
Fig. 3 illustrates the degradation evolution and the RUL
prediction process [20]. Each symbol “+” in Fig. 3 represents
the degradation level measured (or computed) at a specific
time. During its operation, the component degradation level
increases due to the evolution of degradation factors such as
wear, slackness, corrosion, vibration, overheating, leakage, etc.
The time interval in which the degradation level reaches the
failure threshold defines the RUL.

Fig. 3. Degradation evolution and RUL prediction process

Most PHM models proposed in the literature consider the
existence of a single degradation factor in the component or
system under consideration. However, due to the increasing
complexity of modern systems, there are many cases in
which multiple degradation factors are present. In these cases,
PHM models that consider only one failure mechanism will
not provide accurate RUL predictions [11]. In the past few
years, some PHM models that consider multiple degradation
mechanisms have been proposed in the literature [21], [22],
[1].

The model proposed in this paper is a hybrid algorithm that
uses a PF framework with a TLBO step. In PF, a d-dimensional
state vector x can be used to estimate multiple degradation
factors. Similarly, a d-dimensional candidate solution can be
associated with each student in TLBO. Thus, the proposed

algorithm can handle problems in which multiple degradation
factors are present.

III. PROPOSED HYBRID TLBO-PF ALGORITHM

In this section, we present the proposed hybrid TLBO-PF
algorithm. As mentioned earlier, our goal is to use the TLBO
algorithm after the particle weight update step of PF aiming
at reducing the effects of sample degeneracy and sample
impoverishment, which are two well-known drawbacks of the
PF algorithm [23], [24].

In the original PF algorithm, sample impoverishment may
occur when the initial distributions with wide variance are
adopted. It may occur, for example, when there is no in-
formation on the degradation mechanism. Due to the wide
variance of initial distributions, the weights assigned to both
important and unimportant particles are similar, and important
particles can be removed while unimportant particles can be
drawn during the resampling step. Sample degeneracy may
occur when the particles are too concentrated. In this situation,
the number of particles with high weights can be small.
Consequently, the number of different particles selected to
form the posterior distribution will be small, leading to a
posterior distribution with small diversity. In both situations,
the Monte Carlo approximations of the posterior distributions
obtained with the PF tend to be inaccurate.

In the proposed TLBO-PF algorithm, we incorporate one
iteration of the TLBO algorithm before the resampling step
in each iteration of PF. A good balance between the diversi-
fication and the intensification capabilities is a desired char-
acteristic for metaheuristic algorithms [25], [26]. In TLBO,
the Teacher Phase and the Student Phase are responsible
for the intensification and the diversification capability of
the algorithm, respectively. Fig. 4 shows a flowchart of the
proposed TLBO-PF algorithm.

Fig. 4. Flowchart of proposed hybrid TLBO-PF algorithm



During the TLBO step of TLBO-PF, both the Teacher Phase
and the Student Phase are implemented. Each particle of PF
is considered as a student in TLBO-PF. Also, the weight wn

assigned to each particle n is considered as its fitness value.
In the Teacher Phase, particles that are far away from the
true value move towards the Teacher (the particle with the
highest weight) reducing the sample impoverishment problem.
In the Student Phase, if particles are too concentrated, they can
spread and reduce the sample degeneracy problem.

IV. NUMERICAL EXPERIMENTS

This section presents a case study conducted to evaluate the
performance of the proposed model. We consider a case study
that consists in predicting the RUL of a Lithium-ion battery. It
has been proven that the internal resistance of a battery is an
accurate parameter to predict its degradation level and, conse-
quently, its RUL [27], [28], [29]. Also, the Lithium-ion battery
internal resistance can be divided into two different parts: the
electrolyte resistance and the charge transfer resistance. Each
part may present a different degradation mechanism [2], [11].

In this case study, the electrolyte resistance and the charge
transfer resistance are denoted by RE and RC , respectively.
Also, we assume that only measurements of the total resistance
R = RE +RC are available. The initial value of RE and RC

are known. However, the degradation rates associated with RE

and RC , denoted by αE and αC , respectively, are unknown.
An exponential degradation model is assumed for both RE

and RC according to (12) and (13), respectively.

RE(k) = RE0 · exp(αEk) (12)
RC(k) = RC0 · exp(αCk) (13)

Table I shows the numerical values used in the simulations.
Resistance RF defines the failure threshold, i.e. the battery
fails whenever the total internal resistance R = RE + RC

reaches RF .

TABLE I
BATTERY SIMULATION DATA

parameter value unit
RE0 0.10 Ω
RC0 0.03 Ω
RF 1.0 Ω
αE 0.012 N/A
αC 0.026 N/A

Fig. 5 shows the evolution of the total internal resistance
over the operation cycles. A Gaussian measurement noise v
with zero mean and standard deviation σ = 0.06 is considered.
The battery fails in k = 116, when total internal resistance R
is higher than RF .

To predict the battery failure instant, two algorithms are
used: the standard Particle Filter (PF) and the proposed hybrid
TLBO Particle Filter algorithm (TLBO-PF). Table II presents
the parameters used in the simulations.

Fig. 5. Evolution of total internal resistance

TABLE II
PARAMETER VALUES

parameter description value
N number of particles 3, 000
K maximum number of iterations 150
pop population size (TLBO) 3, 000
αE(0) initial distribution of αE U [0.002; 0.040]
αC(0) initial distribution of αC U [0.005; 0.090]
σ(0) initial distribution of σ U [0.02; 0.10]

A. Simulation Results

This section presents the results obtained during the simula-
tions. A Monte Carlo simulation approach with 200 repetitions
for each algorithm was adopted. Our goal is to compare the
performances of PF and TLBO-PF in terms of degradation rate
estimation and RUL prediction accuracy. All the experiments
reported in this paper were carried out on a personal computer
with Intel® CoreTM i3, 1.9 GHz processor and 4GB RAM. The
algorithm was coded in Matlab®.

1) Degradation Rate Prediction: Figs. 6 and 7 illustrate
the degradation rate predictions obtained in one Monte Carlo
repetition with PF and TLBO-PF, respectively. It can be seen
from Figs. 6 and 7 that the proposed algorithm provided a
better prediction error. To conduct a quantitative comparison,
the root mean square error (RMSE) is computed for each
algorithm. RMSE is computed according to (14). The RMSE
values computed for the PF and TLBO-PF algorithms were
0.0114 and 0.0069, respectively. It shows that the proposed
algorithm provided better performance in terms of prediction
accuracy. We also computed the simulation time for each
algorithm. The average simulation time, in seconds, for each
repetition of PF and TLBO-PF were 1.837 and 2.299, re-
spectively. It shows that the TLBO step incorporated into the
PF framework reduces the estimation error but increases the
required computational power by about 25%.



RMSE =

√√√√ 1

MC

MC∑
j=1

[(
α
(j)
E − αE

)2
+
(
α
(j)
C − αC

)2]
(14)

where α
(j)
E and α

(j)
C are the degradation rate predictions

obtained in the j-th Monte Carlo repetition, and MC is the
number of Monte Carlo repetitions.

Fig. 6. Degradation rate predictions using the Particle Filter algorithm

Fig. 7. Degradation rate predictions using the proposed hybrid TLBO-PF
algorithm

2) RUL Prediction: The ultimate goal of a prognostic
algorithm is to predict when a failure event of the system under
consideration is likely to occur. In [30], the authors proposed
some performance metrics to quantify the performance of
prognostics algorithms. In this paper, we compare the perfor-
mance of the algorithms in terms of RUL prediction accuracy
using a modified Prognostics Horizon (MPH) indicator. The
Modified Prognostic Horizon (MPH) used in this paper is
computed according to (15).

MPH = tEoL − tEB (15)

where tEoL is the time index in which a failure event of the
system under consideration occurs and represents its End of
Life (EoL), and tEB is the time index in which the RUL
prediction meets the performance requirements and continues
to meet them until the End of Life of the system. Higher values
of MPH are associated with better prognostic performances.

In this paper, the performance requirement for RUL pre-
diction purposes is defined as the maximum admissible error
bound around the true RUL. The evolution of RUL predictions
for the same system obtained from two different algorithms
are presented in Fig. 8 to illustrate the MPH concept. The
End of Life is the same for the two algorithms since there
is only one system. The black continuous line represents the
true RUL and the gray area represents the admissible Error
Bound (EB). For algorithm 1 (yellow squares), the first RUL
prediction inside the gray area occurs when k = 3. All RUL
predictions obtained from algorithm 1 for k ≥ 3 are inside the
gray area. So, tEB = 3 for algorithm 1. Considering algorithm
2 (red circles), although the first RUL prediction inside the
gray area occurs when k = 2, for k = 3 the RUL prediction
is outside the gray area. When k = 4, the prediction is inside
the gray area and all RUL predictions for k ≥ 4 are also
inside the gray area. So, tEB = 4 for algorithm 2. Based on
the MPH indicators, in this example, algorithm 1 presented a
better performance.

Fig. 8. Modified prognostics horizon for two different algorithms.

Figs. 9 and 10 show the evolution of RUL predictions in
one Monte Carlo repetition for PF and TLBO-PF, respectively.
The End of Life for this case study occurs for k = 116.
A maximum admissible error bound of 10 is adopted. The
values of tEB for PF and TLBO-PF in Figs. 9 and 10 are
95 and 72, respectively. The MPH values for PF and TLBO-
PF for the repetitions presented in Figs. 9 and 10 are 21 and
44, respectively. Considered all Monte Carlo repetitions, the
MPH computed for the standard PF was 15.922±6.502, while
the MPH computed for TLBO-PF was 25.465± 5.398. It can
be seen that the proposed TLBO-PF presented a better per-



formance in comparison with PF in terms of RUL prediction
accuracy.

Fig. 9. RUL predictions using the Particle Filter algorithm

Fig. 10. RUL predictions using the proposed hybrid TLBO-PF algorithm

V. CONCLUSIONS

In this paper, we proposed a hybrid TLBO-PF metaheuristic
algorithm. The main idea behind the proposed algorithm is
to use the TLBO (Teaching-Learning Based Optimization)
algorithm after the particle weight update step in the Particle
Filter framework to reduce the effects of sample degeneracy
and sample impoverishment, which are two known drawbacks
of the original PF algorithm.

We compared the performance of the proposed algorithm
with the performance of the original Particle Filter algorithm
for estimating the degradation factors and predicting the Re-
maining Useful Life of a Lithium-ion battery. The degradation
level of this battery type is affected by two degradation factors,
related to the electrolyte resistance and the charge transfer
resistance.

The root mean square error (RMSE) indicator was used
to evaluate the performance of the algorithms for estimating
the battery degradation level. To evaluate the performance
for predicting the battery RUL, we used a modified prog-
nostic horizon (MPH), which is a modified version of a
prognostic-related performance indicator. The results show
that the proposed algorithm presented a better performance for
both tasks (degradation factor estimation and RUL prediction).
However, the proposed TLBO-PF algorithm required a higher
computational power in comparison with the standard PF
algorithm. It is worth pointing out that the MPH indicator
is sensitive to the error bound.

Future research may extend the scope of this paper by
investigating new methods to incorporate the TLBO step into
PF. For instance, an adaptive approach could be used to define,
in each iteration of PF, which phases of TLBO should be used
based on the position of particles.
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