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Abstract—An optimized supply chain is essential for the success
of large-scale industries. In order to meet the high availability
level requirements, an efficient inventory system is crucial to
reduce downtime when a failure event occurs. In a multi-echelon
spare parts inventory system, each warehouse within the system
may operate as a hub or a spoke. A hub is a warehouse that
fulfills the demands of other warehouses, while a spoke is a
warehouse that fulfills the demands of final customers. When
the inventory system deals with multiple items, a fixed role (hub
or spoke) is commonly assigned to each warehouse. However, this
limitation may lead to sub-optimal solutions. If the optimization
model allows each warehouse to have a different role for different
items, a new degree of freedom is included and more efficient
solutions can be found. In this paper, we propose a simulation-
based optimization model to define the configuration of a multi-
echelon spare parts inventory system of multiple items. The
goal is to minimize total inventory costs, subject to a fill rate
constraint. We relax the assumption that warehouses have a fixed
role for all the items. Two algorithms are used to evaluate the
model: the Teaching-Learning Based Optimization (TLBO) and
the Simulated Annealing (SA) algorithms. A case study based
on a spare parts inventory system of an aircraft manufacturer
is used to compare the performance of the proposed model with
the performance obtained considered fixed warehouse roles. The
results showed that the proposed model provided a reduction of
6.8% in total cost, without violating the fill rate constraint.

Index Terms—Optimization, Multi-Echelon Inventory System,
Simulation-Based Optimization, Simulated Annealing, Meta-
heuristics, Teaching-Learning Based Optimization.

I. INTRODUCTION

At the beginning of the 20th century, solving an integrated
logistic problem was mainly considered in the military sector
[1]. In contrast, companies used to have fragmented logistics
activities in different departments, which resulted in sub-
optimal solutions. This field of study has evolved over the
years and researchers have developed several works with
practical applications. An example of an inventory system
optimization model is presented in [2].

An efficient supply chain strategy is crucial for the success
of big companies. However, supply chain optimization is a
challenging task. Inventory systems represent an important
segment of supply chain management. An inventory system

comprises a set of warehouses and their logistical relation-
ships. The definition of these relationships has a major effect
on system performance. An inventory optimization problem
consists of defining the role and the optimum stock level of
each warehouse within the system.

A multi-echelon inventory system is composed of cen-
tral warehouses (hubs) that receive parts from suppliers and
distribute them to regional warehouses (spokes). Regional
warehouses send the parts to final customers [3]. In general,
hubs can also send parts directly to customers. Fig. 1 shows
an example of a multi-echelon inventory system.

A performance indicator commonly used to assess the
performance of an inventory system is the Fill Rate (FR),
which is the percentage of demand that is met at the time
that the order is placed [4]. Commonly, there is an agreement
between the logistic service provider and the customers that
establishes the minimum acceptable performance, denoted by
Service Level Agreement (SLA) [5].

Fig. 1. An example of a multi-echelon inventory system

A seminal work for the inventory optimization research field
was presented in [4]. The author proposed the Multi-Echelon
Technique for Recoverable Item Control (METRIC), which
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defines the stock level in each base for repairable items. The
model aims at reducing the sum of backorders across all the
bases, creating an availability-cost curve. The METRIC model
served as a base for many other models such as the MOD-
METRIC model [6] and the VARI-METRIC model [7].

A different approach consists of optimizing the inventory
system using a simulation-based model. In [8], the authors
modeled a supply chain to minimize the inventory cost with a
response time constraint. Later, the authors in [9] developed a
simulation-based model applied to a multi-objective optimiza-
tion considering inventory cost, inventory level, and frequency
of inventory shortage as objective functions. They used the
reorder point and the order quantities as parameters for the
optimization algorithm. Another simulation-based inventory
model combined with an optimization tool is presented in [10].

In this paper, we propose a simulation-based optimization
model to define the configuration of a multi-echelon spare
parts inventory system for multiple consumable items. The
objective function is to minimize the inventory cost, subject
to a fill rate constraint. The proposed model relaxes the fixed
role assumption and allows each warehouse within the system
to play a different role for each part. We evaluate this model
using two metaheuristic algorithms: Teaching-Learning Based
Optimization (TLBO) and Simulated Annealing (SA).

The remaining sections of this paper are organized as
follows. Section II presents a brief overview of TLBO and
Simulated Annealing. Section III describes the optimization
problem under consideration. Section IV introduces the pro-
posed solution. Section V presents the results obtained in a
case study used to illustrate the application of the proposed
model. Concluding remarks are given in Section VI.

II. THEORETICAL BACKGROUND

A. Simulated Annealing

The Simulated Annealing (SA) algorithm was introduced in
[11]. It is inspired by the statistical mechanics of annealing in
solids, which is the metallurgical process of heating a material
to a high-temperature and then cooling it slowly to increase
the size of internal crystals and improve its mechanical and
structural properties [12].

The idea of mechanical annealing is to have a controlled
cooling to transform the material from a disorganized state
into a material with ordered and defect-free crystals. The
analogy made for the Simulated Annealing algorithm is to
use a controlled “cooling” to transform a bad and disorganized
candidate solution into an optimized and proper solution [12].
The cooling process in the SA algorithm is done by reducing
the degree of randomness during the optimization process.

The first step of the algorithm is to generate randomly a
valid candidate solution. From this solution, new candidate
solutions are generated in the neighborhood to possibly replace
the current solution. As explained in [12], the algorithm always
accepts better solutions. However, with a high-temperature, it
is more likely that the algorithm also accepts a solution that
is worse than the current one. In this way, the algorithm can
explore the problem in different basins of attraction. After

some iterations at the same temperature, the temperature value
is reduced and a new cycle begins. This is considered the inner
loop in the optimization process [13]. At each cycle, the tem-
perature is reduced and the probability of accepting a worse
solution decreases. The acceptance criterion is implemented
with a Boltzmann distribution.

A worse solution is accepted if a generated random number
(between 0 and 1) is less than the Boltzmann factor, e−∆E/T ,
where ∆E is the difference in fitness between the current
and the new candidate solutions and T is the current tem-
perature [12]. When the temperature is less than a predefined
temperature or a maximum number of iterations is completed,
the algorithm stops and the last accepted solution is the final
output of the optimization process [13]. Fig. 2 shows a flow
chart of the SA algorithm.

The key of the SA algorithm is that it escapes from local
optima by allowing “hill-climbing” moves during the opti-
mization procedure. But it also refines the candidate solutions
by reducing the probability of “hill-climbing” while it reduces
the temperature parameter [14]. In [15], the authors presented
a study showing the efficiency of SA in the solution of several
optimization problems.

Fig. 2. Simulated annealing flow chart (adapted from [13])

B. Teaching-Learning Based Optimization

The Teaching-Learning Based Optimization (TLBO) algo-
rithm is a population-based metaheuristic algorithm inspired
by the teaching-learning process observed in a classroom [16].



This algorithm simulates the influence of a teacher on the
output of a group of students in a class. The algorithm has two
main phases: the Teacher Phase and the Student Phase [17].
During the Teacher Phase, students learn from the teacher,
while in the Student Phase students learn through interactions
among themselves. As presented in [18], TLBO shows good
potential for combinatorial optimization problems.

Consider a group of N students. Each student X has an
associated solution that corresponds to a candidate solution
for the optimization problem. The quality of each solution
is quantified by a fitness value f(X) that is computed by
evaluating the solution X using the objective function.

The student with the best solution in each iteration is called
the Teacher. Fig. 3 shows the flowchart for implementing the
TLBO algorithm [16]. The Teacher Phase and the Student
Phase are described in the next sections.

Fig. 3. TLBO flowchart (adapted from [16]

1) Teacher Phase: During the Teacher Phase, the algorithm
simulates the learning of the students from the teacher (best
solution). During this phase, the teacher makes an effort to
increase the mean result of the class. Let Mi be the mean
solution of all the students and Ti be the teacher in the i-
th iteration. The teacher Ti will try to move Mi to its level.
Knowledge is obtained based on the quality of the teacher

and the quality of the students. The difference Di between
the solution of the teacher, denoted by XTi, and the mean
solution of the students, Mi, is expressed according to (1).

Di = ri(XTi − TF ·Mi) (1)

where ri is a random number chosen from a standard uniform
distribution, and TF is the teaching factor for iteration i, which
is randomly set to either 1 or 2 according to (2).

TF = round(1 + rand(0, 1)) (2)

Based on the difference Di, the current solution associated
with each student n in iteration i, denoted by Xni, with n ∈
{1, 2, . . . , N}, is updated during the teacher phase according
to (3).

X?
ni = Xni +Di (3)

where X?
ni is the updated value of Xni.

If f(X?
ni) is better than f(Xni), then X?

ni is accepted
and replaces Xni for the next iteration. Otherwise, X?

ni is
discarded.

2) Student Phase: During the Student Phase, TLBO sim-
ulates the learning of the students through interactions among
themselves. During this phase, students gain knowledge by
discussing with other students who have more knowledge [17].

Consider a pair of students y and z. Let Xyi and Xzi be
the solutions of students y and z in iteration i, respectively.
If f(Xyi) is better than f(Xzi), the solution of student z is
updated according to (4). If f(X?

zi) is better than f(Xzi), X?
zi

is accepted and replaces Xzi for the next iteration. Otherwise,
X?

zi is discarded. Similarly, if f(Xzi) is better than f(Xyi),
the solution of student y is updated according to (5). If f(X?

yi)
is better than f(Xyi), X?

yi is accepted and replaces Xyi for
the next iteration. Otherwise, X?

yi is discarded.

X?
zi = Xzi + ri(Xyi −Xzi) (4)

X?
yi = Xyi + ri(Xzi −Xyi) (5)

At the end of each iteration, the stop criteria are checked.
Different stop criteria may be adopted. Some commonly
used stop criteria are the maximum number of iterations, the
maximum number of successive iterations without any im-
provement, the maximum simulation time, and the maximum
number of objective function evaluations.

III. PROBLEM DEFINITION

The optimization problem addressed in this paper consists
of finding a configuration for a multi-item multi-echelon spare
parts inventory system that minimizes total annual inventory
cost, subject to a fill rate constraint. There is one supplier
that provides parts for the system, which is composed of W
warehouses. The inventory system serves a set of customers
located in R different regions. The total annual inventory cost
for each item, denoted by CT , is computed according to (6).



CT = CS + CH + CP + CN + CM (6)

where CS is the shipping cost, CH is the holding cost, CP

is picking cost, CN is the income tax cost, and CM is
the importation cost. These cost components are computed
according to the expressions in (7) to (11).

CS =

W∑
w=1

(Dw · ssw) +

W∑
i=1

W∑
j=1

(Dij · sij) +

+

W∑
w=1

R∑
r=1

(Dwr · swr) (7)

CH =

W∑
w=1

(SLw · P · hw) (8)

CP =

W∑
w=1

(Ow · P · ρw) (9)

CN =

W∑
w=1

(Dw · P · nw) (10)

CM =

W∑
w=1

(Dw ·msw) +

W∑
i=1

W∑
j=1

(Dij ·mij) +

+

W∑
w=1

R∑
r=1

(Dwr ·mwr) (11)

where P is the part unit price, Dw is the annual demand
generated by warehouse w to the supplier, Dij is the annual
demand generated by warehouse i to warehouse j, Dwr is the
annual demand generated by clients in region r to warehouse
w, sij is the unit shipping cost from warehouse i to warehouse
j, ssw is the unit shipping cost from the supplier to warehouse
w, swr is the unit shipping cost from warehouse w to region
r, SLw is the average stock level in warehouse w, Ow is the
annual number of orders placed in warehouse w, hw is the
annual holding tax for warehouse w, ρw is the picking tax for
warehouse w, nw is the income tax for warehouse w, msw

is the importation tax from the supplier to warehouse w, mij

is the importation tax from warehouse i to warehouse j, and
mwr is the importation tax from warehouse w to region r.

Finding a solution for the problem consists of defining the
role (hub or spoke) of each warehouse in the system, the
hub responsible for meeting the demand generated by each
spoke, and the warehouse responsible for meeting the demand
generated by each region. Also, a solution must define the
stock level for each warehouse.

The role of each warehouse w is represented by a binary
variable isHubw that assumes value 1 if the warehouse acts
as a hub and zero otherwise. The hub responsible for each
spoke s is represented by an integer variable Hs, and the
warehouse responsible for each region r is represented by an
integer variable Rr. The number of spare parts to be allocated
at each warehouse is represented by an integer variable ROP ,
with ROP ∈ N. In an inventory policy, the reorder point

(ROP) is the stock level that, whenever reached, triggers the
need for placing an order for new parts.

We assume that the Economic Order Quantity (EOQ) is one.
Each spoke is served by only one hub. However, a hub may
be responsible for multiple spokes and regions. Each customer
region is served by only one warehouse.

As mentioned earlier, the goal is to find a solution that
minimizes total annual inventory cost CT subject to a fill rate
(FR) constraint. Fill rate is the percentage of demand met at
the time the customer places an order, as defined in (12)

FR =
MD

TD
(12)

where MD is the demand met at the time the order is placed,
and TD is the total demand.

The proposed model considers multiple items, and the ware-
houses may have different roles (hub or spoke) for each item.
The motivation for proposing this approach is that relaxing
the fixed warehouse role assumption provides the opportunity
for improving the overall economic efficiency of the entire
inventory system.

IV. PROPOSED APPROACH

Due to the high complexity level of the inventory problem
under consideration, in this paper we use a discrete-event
simulation model to evaluate the quality of candidate solutions.
The proposed model is based on daily events. During each day
in the simulation environment, the costs associated with each
cost component presented in (6) are computed. Total demand
and the demand met at the time that the customer placed an
order are also computed, so the fill rate can be calculated at
the end of the simulation.

A metaheuristic approach is used for the optimization
process. As mentioned earlier, two metaheuristic algorithms
are considered in this paper: Teaching-Learning Based Opti-
mization (TLBO), which is a population-based metaheuristic,
and Simulated Annealing (SA), which is a single solution
algorithm.

The fitness function associated with each candidate solution
is obtained through a discrete-event simulation. Some adap-
tations are implemented in the metaheuristics to deal with
the inventory optimization problem. These adaptations are
discussed in the next sections.

A. Modifications in Simulated Annealing

In order to use SA with the developed model, some adapta-
tions are implemented. The first modification is related to the
inclusion of the fill rate (FR) constraint. After computing the
fitness value for a candidate solution, the FR is checked. If the
FR constraint is violated, the candidate solution is discarded
regardless of the total inventory cost. Also, a valid solution
must be used to initialize the algorithm.

The process of randomly generating new candidate solutions
in the neighborhood is also modified. Since there are interde-
pendent variables in the model, the random change should



follow some rules. The list of rules considered in this paper
is as follows.

• If a variable isHubw associated with a warehouse w
changes from 1 to 0 (i.e. the warehouse role changes
from hub to spoke), the spokes that were served by
that warehouse must be reassigned to another hub or
transformed into a hub themselves.

• If a variable isHubw associated with a warehouse w
changes from 0 to 1 (i.e. the warehouse role changes
from a spoke to a hub), a check must be performed to
assure that the new solution has at least one hub.

• If the current solution has only one hub, then variable Hs

that defines which hub is responsible for spoke s cannot
be changed.

• The maximum allowed variation in the stock levels
between two consecutive steps of the algorithm varies
according to the algorithm temperature. High tempera-
tures allow higher variations in stock levels, while low
temperatures allow small changes.

• Besides the maximum number of iterations per tempera-
ture, the model also considers the maximum number of
attempts without success. If the optimization process fails
to improve the solution a certain number of attempts, then
the temperature decreases and a new cycle begins.

B. Modifications in Teaching-Learning Based Optimization

The first modification in TLBO is implemented to adapt
the algorithm to deal with discrete variables. The use of
TLBO with discrete variables has already been proposed [19],
[20], [21]. We use continuous variables to define the solution
associated with each student, and use a conversion step that
consists of rounding the values to map the real numbers to
integer values before running the discrete event simulation.

Another modification is performed to deal with the binary
variable isHubw. We adopted the same approach used in [22],
which consists of replacing (3) with (13), and replacing (4) and
(5) with (14).

Xb =

{
0 , if Xi + ri · (XTi − TF ·Mi) < 0.5

1 , if Xi + ri · (XTi − TF ·Mi) ≥ 0.5
(13)

Xb =

{
0 , if Xzi + ri · (Xyi −Xzj) < 0.5

1 , if Xzi + ri · (Xyi −Xzj) ≥ 0.5
(14)

where Xb is the converted binary variable.
During the teacher phase, if the warehouse is a spoke in the

student solution and a hub in the teacher solution, then the
teacher solution does not have a responsible hub. In this case,
if the student has a valid hub responsible for it, this variable is
not modified. Otherwise, a random valid hub is chosen for the
warehouse. The same procedure is adopted during the student
phase for each pair of students.

The last consideration is about the inclusion of the fill
rate constraint. In this paper, we use a tournament selection
operator similar to the one used in [23]. The tournament

selection operator considers that a feasible solution is always
better than an unfeasible solution. When two feasible solutions
are compared, the one with the best fitness value (lower total
inventory cost in the inventory problem under consideration)
is preferred. When two unfeasible solutions are compared, the
one with the smaller constraint violation is preferred.

V. CASE STUDY

This section presents a case study to illustrate the appli-
cation of the proposed model in a multi-item multi-echelon
spare parts inventory optimization problem. The case study is
based on an aircraft manufacturer global inventory system for
multiple consumable items. Ten items were used in the simu-
lations. The inventory system is composed of five warehouses
and eight customer regions around the globe. Warehouses W1

to W5 are located at regions R1 to R5, respectively. There is
one supplier for each item. A minimum acceptable fill rate of
90% is considered.

Table I shows the simulation parameters used for each item.
Table II shows the picking and the holding rates for each
warehouse, as a percentage of the item unit price. Table III
shows the importation tax for each region and the income tax
for each region containing a warehouse. Table IV shows the
shipping cost rate per weight between regions for each item.

TABLE I
ITEM PARAMETERS

Item Supplier Price Weight Item Supplier Price WeightLocation Location
P1 R4 700 4 P6 R3 500 4
P2 R3 450 3 P7 R4 100 3
P3 R4 350 5 P8 R3 900 5
P4 R2 100 3 P9 R3 950 5
P5 R3 150 3 P10 R4 100 2

TABLE II
PICKING AND HOLDING COSTS FOR EACH WAREHOUSE

Warehouse Picking Holding Warehouse Picking Holding
Cost Cost Cost Cost

W1 3% 4% W4 5% 7%
W2 3% 4% W5 4% 6%
W3 4% 6%

TABLE III
INCOME AND IMPORTATION AND TAXES FOR EACH REGION

Region Income Importation Region Income Importation
Tax Tax Tax Tax

R1 35% 14% R5 17% 0%
R2 20% 5% R6 - 15%
R3 25% 5% R7 - 5%
R4 25% 10% R8 - 4%

Based on experimental results, for the Simulated Annealing
algorithm we used a maximum of 20 modification attempts
in each temperature, a maximum number of 10 unsuccess-
fully modification attempts, a temperature reduction factor of



TABLE IV
SHIPPING COSTS BETWEEN REGIONS

Origin Destination
R1 R2 R3 R4 R5 R6 R7 R8

R1 2.5 5.0 2.5 4.0 5.0 4.0 4.0 2.5
R2 5.0 2.5 4.0 4.0 4.0 4.0 4.0 5.0
R3 2.5 4.0 2.5 2.5 5.0 4.0 4.0 2.5
R4 4.0 4.0 2.5 2.5 5.0 2.5 2.5 4.0
R5 5.0 4.0 5.0 5.0 2.5 5.0 5.0 5.0
R6 4.0 4.0 4.0 2.5 5.0 2.5 2.5 4.0
R7 4.0 4.0 4.0 2.5 5.0 2.5 2.5 4.0
R8 2.5 5.0 2.5 4.0 5.0 4.0 4.0 2.5

0.985, an initial temperature of 4500 degrees, and a minimum
temperature of 10 degrees. For the TLBO algorithm, we used
a population of 50 individuals, and a maximum number of 75
generations.

A. Simulation Results

This section presents and discusses the results observed in
the numerical experiments. Firstly, we compare the perfor-
mance of SA and TLBO considering a single item multi-
echelon inventory system. Then, we consider a system with
multiple items and compare the results obtained with the
proposed model (that allows warehouses to play different
roles for each item) with a traditional model that adopts the
assumption of fixed roles for each warehouse.

1) Performance Comparison in a Single Item Inventory
System: In this first experiment, we compare the performance
of SA and TLBO considering a single item inventory system.
Fig. 4 shows a comparison between the total inventory costs
computed with each algorithm for each item. Table V shows a
comparison between the fill rates obtained with each algorithm
for each item.

Fig. 4. Total inventory cost computed with each algorithm for each item in
a single item system

Based on the results, we can conclude that SA and TLBO
presented very similar performances. TLBO found better so-
lutions for four items (P3, P4, P5, and P8) while SA found
better solutions for the remaining items. As expected, both
SA and TLBO found solutions that were close to the fill rate
constraint of 90%.

TABLE V
FILL RATE COMPARISON IN A SINGLE ITEM INVENTORY SYSTEM

PN SA TLBO PN SA TLBO
P1 90.38% 91.21% P6 91.99% 92.70%
P2 90.06% 90.61% P7 91.45% 90.79%
P3 90.12% 90.12% P8 90.85% 90.54%
P4 90.38% 90.38% P9 91.53% 90.40%
P5 90.53% 90.53% P10 90.48% 90.48%

For illustration purposes, Figs. 5 and 6 show the inven-
tory system configurations obtained for item P2 with SA
and TLBO, respectively. The number in the circle in each
warehouse indicates the warehouse stock level.

Fig. 5. Inventory system configuration for item P2 obtained with SA

Fig. 6. Inventory system configuration for item P2 obtained with TLBO

In the configuration obtained with SA, warehouses W2 and
W3 act as hubs, receiving parts from the supplier, which is
located in region R3. Warehouse W5 is the only spoke in this
configuration, served by W2. Regions R2 and R5 are served
by warehouses W2 and W5, respectively. All other regions
are served by warehouse W3. Warehouses W1 and W4 are not
used in this solution. The solution obtained with TLBO does
not have any spokes. Warehouses W2 and W3 act as hubs,
similarly to the solution obtained with SA. Regions R3, R5,
and R8 are served by warehouse W3. The remaining regions
are served by warehouse W2. Warehouses W1, W4, and W5

are not used.



2) Impact of Considering Variable Warehouse Roles in a
Multi-Item System: Traditional inventory models for multiple
items assume a fixed role for each warehouse within the
system. As mentioned earlier, our goal is to investigate the
impact of relaxing the fixed warehouse role assumption. This
section presents a comparison between a fixed role model and
the proposed variable role model in terms of total inventory
cost.

In the first experiment, we observed that both TLBO and
SA presented good performances, with very similar responses.
In this second experiment, we present the results obtained
with the Simulated Annealing algorithm only. Fig. 7 shows
the inventory system configuration considering a multiple item
system with all the ten different items.

Fig. 7. Inventory system configuration for multiple items considering a fixed
role

The configuration obtained for multiple items with fixed
warehouse roles has three hubs: warehouses W2, W3, and
W4. Regions R1, R3, and R8 are served by warehouse W3.
Warehouse W4 serves region R4 only. The remaining regions
are served by warehouse W2. The total inventory cost and
the expected fill rate for this configuration are 454, 555 and
90.28%, respectively.

In the solution obtained using the proposed model, i.e.
when the fixed warehouse role is relaxed, the total inventory
cost and the expected fill rate are 441, 377 and 90.78%,
respectively. When compared with the solution that considers a
fixed warehouse role, this solution provides a slightly better fill
rate and also provides a reduction of 2.90% in total inventory
cost. Tables VI and VII describe the system configuration for
the variable role solution.

TABLE VI
WAREHOUSE ROLES FOR MULTIPLE ITEMS CONSIDERING VARIABLE

WAREHOUSE ROLES

Part W1 W2 W3 W4 W5

P1 - Hub - Hub Hub
P2 - Hub Hub - Spoke
P3 - Hub - Hub Hub
P4 - Hub Hub Hub Spoke
P5 - - Hub Hub Spoke
P6 Spoke Hub Hub - Hub
P7 - Hub Hub Hub -
P8 Hub Hub Hub - Hub
P9 - Hub Hub Hub Hub
P10 - Spoke Hub Hub -

TABLE VII
WAREHOUSE RESPONSIBLE FOR REGIONS FOR MULTIPLE ITEMS

CONSIDERING VARIABLE WAREHOUSE ROLES

Part R1 R2 R3 R4 R5 R6 R7 R8

P1 W4 W2 W2 W4 W5 W2 W4 W5

P2 W3 W2 W3 W3 W5 W3 W3 W3

P3 W4 W2 W2 W4 W5 W2 W4 W5

P4 W3 W4 W4 W2 W2 W2 W5 W3

P5 W3 W5 W3 W3 W4 W3 W3 W3

P6 W1 W2 W3 W5 W2 W2 W1 W5

P7 W3 W2 W4 W4 W3 W4 W3 W4

P8 W3 W5 W3 W3 W2 W3 W1 W3

P9 W5 W5 W3 W3 W2 W4 W4 W3

P10 W4 W3 W4 W4 W2 W4 W3 W4

The cost savings obtained by using variable warehouse roles
are highly dependent on items data such as price, demand
profile, and taxes. However, the use of variable warehouse
roles always provides better solutions in comparison with the
use of fixed roles. We conducted an additional simulation using
a different demand scenario and with some changes in the
shipping, holding, importation and income costs, as presented
in Tables VIII, IX and X. As a result of the second scenario, it
was observed a cost reduction of 6.79% in total inventory cost.
In all the cases, the fill rate obtained met the fill rate constraint.
Note that inventory systems commonly involve high amounts
of money, and a cost reduction of 3% up to 7%, as observed
in the simulations, may lead to significant cost savings.

TABLE VIII
PICKING AND HOLDING COSTS - 2ND SCENARIO

Warehouse Picking Holding Warehouse Picking Holding
Cost Cost Cost Cost

W1 3% 4% W4 5% 20%
W2 3% 30% W5 4% 6%
W3 4% 3%

TABLE IX
INCOME AND IMPORTATION AND TAXES - 2ND SCENARIO

Region Income Importation Region Income Importation
Tax Tax Tax Tax

R1 35% 14% R5 17% 10%
R2 15% 5% R6 - 15%
R3 25% 1% R7 - 5%
R4 25% 10% R8 - 4%

VI. CONCLUSIONS

In this paper, we present a simulation-based model to
minimize the total inventory cost in a multi-item multi-echelon
spare parts inventory system, subject to a fill rate constraint.
In the proposed model, we relax the fixed warehouse role as-
sumption and allow each warehouse within the system to have
a different role for each item. Two metaheuristic algorithms
were used in the optimization process: Simulated Annealing
(SA) and Teaching-Learning Based Optimization (TLBO).
Some adaptations were implemented in each metaheuristic



TABLE X
SHIPPING COSTS BETWEEN REGIONS - 2ND SCENARIO

Origin Destination
R1 R2 R3 R4 R5 R6 R7 R8

R1 2.5 5.0 2.5 4.0 5.0 4.0 4.0 2.5
R2 5.0 2.5 2.0 5.0 5.0 4.0 4.0 5.0
R3 2.5 2.0 2.5 2.0 7.0 4.0 4.0 2.5
R4 4.0 5.0 2.0 2.5 5.0 2.5 2.5 4.0
R5 5.0 5.0 7.0 5.0 2.5 5.0 5.0 5.0
R6 4.0 4.0 4.0 2.5 5.0 2.5 2.5 4.0
R7 4.0 4.0 4.0 2.5 5.0 2.5 2.5 4.0
R8 2.5 5.0 2.5 4.0 5.0 4.0 4.0 2.5

algorithm to deal with the interactions among the decision
variables of the problem.

A case study comprising ten different items was used to
evaluate the impact of relaxing the fixed warehouse role as-
sumption. The case study is based on an aircraft manufacturer
global inventory system. We compared the performance of SA
and TLBO in the solution of a single item multi-echelon spare
part inventory system. The results showed that both SA and
TLBO presented good results with similar performance. We
used SA to compare the solution obtained with a traditional
approach that considers a fixed role for each warehouse in the
system with the solution obtained with the proposed model.

The results show that allowing the warehouses to have
variable roles for different items increased the performance
of the inventory system. In the case study described in section
V, we observed a reduction of 2.90% in total inventory cost.
In the second scenario, the cost savings reached 6.79%. All
the solutions provided in the experiments met the fill rate
requirement.

By relaxing the fixed role assumption, the proposed model
provides cost savings without violating the fill rate constraint.
However, the cost savings depend on many variables such as
the number of different items, the demand profile for each
item, the relative taxes among regions, etc. Future research
may extend the scope of this paper by evaluating different
scenarios. Another opportunity for future research is related to
the use of other metaheuristics to solve the problem, including
hybrid algorithms, as discussed in [24], and the automated
design of metaheuristics algorithms, as discussed in [25].
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