
Coevolutive clustering algorithm for large datasets
Fábio Fabris

Computer Science Department
Federal University of Espirito Santo

Vitoria, Brazil
fabiofabris@gmail.com

Diego Luchi
Computer Science Department

Federal University of Espirito Santo
Vitoria, Brazil

diego.lucchi@gmail.com

Flávio Miguel Varejão
Computer Science Department

Federal University of Espirito Santo
Vitoria, Brazil

fvarejao@inf.ufes.br

Abstract—Clustering is a recurrent task in machine learning.
The application of traditional heuristics techniques in large sets of
data is not easy. They tend to have at least quadratic complexity
with respect to the number of points, yielding prohibitive run
times or low quality solutions. The most common approach to
tackle this problem is to use weaker, more randomized algorithms
with lower complexities to solve the clustering problem. This
work proposes a novel approach for performing this task,
allowing traditional, stronger algorithms to work on a sample
of the data, chosen in such a way that the overall clustering is
considered good. Preliminary experimental results indicate that
the proposed approach is competitive to classical algorithms in
large datasets with the advantage of automatically adapting to
many different datasets.

Index Terms—clustering, co-evolution, large datasets

I. INTRODUCTION

Data Clustering is the task of assigning data to groups
(called clusters) so that similar objects belong to the same
group given a similarity metric. Grouping similar objects is a
recurrent problem when dealing with analysis of large datasets.

This work focuses on tackling the hard clustering problem
in metric spaces using the Sum of Squared Errors (SSE) as
the error function, mostly known as the k-means problem [1].
There are many algorithms proposed in the literature to tackle
this problem. They are divided in exact [2] and are NP-Hard;
approximate guarantee an (1 − ε) approximation where ε is
coupled to the complexity of the underlying algorithm [3];
and heuristic algorithms [4].

Given these facts, the most common way to solve the k-
means problem on medium-sized datasets is by using heuristic
algorithms. This kind of algorithm guarantees neither optimal
nor approximate solutions, but usually has polynomial com-
plexity.

The use of co-evolutionary algorithms for solving opti-
mization problems is ubiquitous [5]–[8]. The co-evolutionary
approach is based on the natural behaviour of species in nature
and employs the use of two or more populations competing
or collaborating towards a common goal. This work focuses
on the application of a novel co-evolutionary algorithm to the
clustering problem and performs a comparison with classical
algorithms.

The remainder of this paper is organized as follows: Sec-
tion II contains the formal definition of the clustering problem
and a revision of related work regarding clustering of large
datasets. Section III describes the novel approach. Section IV

exposes the set up of the experiments, special considerations
and results and finally, in Section V the conclusions are drawn.

II. RELATED WORK

In this work, clustering is the restricted discret optimization
problem of dividing n spatial points x̄i ∈ <d, i ∈ {1, . . . , n}
of a set X , in k complete and disjoint sets (clusters) Ci, i ∈
{1, . . . , k}. This division must minimize the Sum of the
Squared Errors (SSE) of all points with respect to the cluster
centroid. The centroid of a cluster i, c̄i is the mean of all
points of cluster i.

More formally, if X = {x̄1, x̄2, x̄3, . . . , x̄n} is a set of
points, X ⊂ <d, then the clustering result must adhere to
the following restrictions:

i≤k⋃
i=1

Ci ≡ X (1)

i≤k⋂
i=1

Ci ≡ ∅ (2)

And minimize the following expression:

SSE(c) =

i≤k∑
i=1

j≤Si∑
j=1

(||Ci,j − c̄i||2) (3)

Where Ci,j is the j-th point of the i-th cluster and Si is the
size of cluster j. In addition, ||t̄||2 represents the euclidean
norm of the vector t̄ ∈ <d.

This work also focuses on algorithms for large datasets. This
kind of algorithm must be efficient, i.e., avoid the need of scan-
ning the whole data set multiple times. Complexities greater
than quadratic time on the size of the input must be avoided.
Exponential complexities are almost always prohibitive.

A. Classical algorithms for solving the k-means problem in
large datasets

The most famous algorithm for dealing with the k-means
problem is called the Loyd Algorithm [1] (or simply the k-
means algorithm, due to its ubiquity). The k-means algorithm
is widely used in the literature with very good results, how-
ever, has particularities that restrict its use for large datasets.
Although fast in small datasets, the algorithm does not scale
well when the number of points increase. With large datasets
the use of this algorithm is unfeasible due to its complexity

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

O(nkdi) in most cases – where n is the number of d-
dimensional points, k the number of clusters and i the number
of iterations needed until convergence – and super-polynomial
in the worst case [9], [10].

The first attempts to elucidate the problem of clustering
large datasets was solving the k-medoids problem. The k-
medoids problem sets the centroids of the clusters to actual
points of the data set, not arbitrary ones, like the k-means
algorithm. One of the first k-medoids clustering algorithms
proposed for large data sets was the CLARANS (Clustering
Large Applications Based on Randomized Search) algorithm
[11]. This algorithm was inspired by the PAM (Partitioning
Around Medoids) and CLARA (Clustering Large Applications)
algorithms [12]. It performs a very simple random search in
a graph, randomly selecting neighbors of a given solution and
checking if the new solution is better than the old one, with the
possibility of accepting few worst solutions before falling back
to the previous best solution found. This simple idea turned
out to be both fast and effective, and it is one of the major
algorithms for solving the problem of clustering large datasets
until today, being widely used as a validation algorithm in
benchmarks of the literature [13].

BIRCH (Balanced Iterative Reducing and Clustering using
Hierarchies) [14] is an algorithm used to perform hierarchical
clustering over large datasets. The advantage of BIRCH is
its ability to incrementally and dynamically cluster incoming,
multi-dimensional metric data points in an attempt to produce
the best quality clustering for a given set of resources (memory
and time constraints). In most cases, BIRCH only requires a
single scan of the database.

CURE [15] (Clustering Using REpresentatives) is an ef-
ficient data clustering algorithm for large datasets. CURE
represents each cluster by a fixed number of points generated
by selecting well scattered points from the cluster and then
shrinking them toward the center of the cluster by a specified
fraction. To handle large datasets, CURE employs a combina-
tion of random sampling and partitioning.

DBSCAN [16] is also an algorithm for clustering large
spatial datasets, even though it is not intended for solving
the k-means problem. DBSCAN does not try to optimize the
SSE, but is included here for being a traditional clustering
algorithm for large datasets. The idea of DBSCAN is that
isolated, high density regions, must belong to the same cluster.
This implies that it is not possible to choose the number of
clusters directly. This may be useful in applications where the
number of clusters is unknown but it is not advantageous if
the number k of cluster is known a priori.

B. Co-evolution algorithms and clustering

This work uses a co-evolutive algorithm for solving the
clustering problem. This kind of algorithm is inspired in the
field of game theory, where two agents compete until they find
the Nash Equilibrium of the game.

The use of co-evolutive algorithms is common when one
needs to optimize two distinct sets of parameters with a

coupled fitness function. The sets of parameters may be com-
peting, i.e., while one set tries to minimize the objective func-
tion, the other tries to maximize it (competitive co-evolution);
or cooperating, i.e., both populations try to optimize the
same objective function. Much work has been published with
this approach, in particular in function optimization with
restrictions, e.g. [17], [18]. The most common approach is
to encode the decision variables of the problem as individuals
of one population, that tries to optimize the objective function,
and the other population as the lagrangian multipliers of the
restrictions, encoded in the objective function. Many works
use this approach to solve complex design problems with
restrictions [17], [18].

This idea coupled with Genetic Algorithms for solving many
restricted optimization benchmark functions with great success
[8]. Also, another work developed a competitive co-evolution
algorithm that iteratively selects the most difficult instances
to classify using supervised algorithms and the most efficient
algorithms, each taken from specific populations [7].

Since co-evolution is designed for solving the generic
optimization problem with dual objective functions, this work
applies an idea based on the work of [7], creating a population
for choosing “hard” points for the clustering process and
another population of classical algorithms for solving the
clustering process. The goal is to find the set of points that
are most relevant for the final clustering process and the best
possible solution for this set of points.

There are some works in the literature that couple co-
evolution and clustering, for instance, [19] uses a co-evolution
clustering algorithm for minimizing both the clustering error
and the result quality of the algorithm. In [20] the author
uses co-evolution for selecting a good set of attributes for the
clustering algorithm using co-evolution. In [21] the author uses
cooperative clustering for grouping documents and the words
that form them in a cooperative and simultaneous manner.
[22] proposes a co-evolutionary algorithm for the dynamic
adjustment of feature weights during data clustering. Two
populations are simultaneously evolved for the optimization
of both the clusters and their associated feature weights. A
novel hierarchical co-evolutionary clustering tree-based rough
feature game equilibrium selection algorithm is presented in
[23]. It aims to select out the high-quality feature subsets,
which can enrich the research of feature selection and classi-
fication in the heterogeneous big data. These approaches differ
greatly from the one exposed in this work.

III. CO-EVOLUTIONARY CLUSTERING

Co-evolutionary algorithms differ from traditional evolu-
tionary algorithms by maintaining two or more populations at
the same time for optimizing different, but coupled, objective
functions. The mechanics of co-evolutionary algorithms is
simple. Both populations try to maximize their profit in respect
to the decision of the other population until neither one
can improve their solution independently. The configuration
that does not allow for any individual in both population
to improve their fitness without changing individuals of the

other population is called a Nash Equilibrium. In this state,
no population can improve their quality individually.

This section presents the contribution of this work: the
development of a co-evolutionary algorithm for clustering
large datasets called COCLU. Co-evolution is employed in
this work for choosing the most difficult points to cluster in
one population and the best algorithms to cluster those points,
in another population. The subset of points that are the hardest
to cluster contributes the most to the SSE of a given clustering
solution. Similarly, a good set of algorithms for hard points
consists in algorithms capable of clustering well those points,
reducing the overall SSE.

A. Co-evolutionary Algorithms

Co-evolutionary algorithms try to mimic the idea of preda-
tory or symbiotic behavior that regulates populations in nature.
Symbiotic approaches enforce cooperation of populations for
achieving a common goal, while predatory behavior introduces
competition: if the prey population wishes to survive, it has
to adapt itself to its predators. The opposite is also true,
i.e., the predator must react to changes in prey configuration
if it wishes to maintain its existence. In nature, this arms
race constitutes an important evolutionary force that leads to
very complex evolution patterns. This work uses the predatory
interactions between two populations as an inspiration for the
proposed algorithm.

1) Using co-evolution for clustering large data sets: This
approach relies on the fact that not all points are equally
important for the clustering process. It is possible to select
a subset of the original dataset without changing the final
clustering result. Figure 1 presents this idea: if the clustering
algorithm is run in a subset of good, selected points, it is
expected that the final clustering result will be the same.
However, not every subset is a good one. Also, random
selection of points tends to leave important points out of the
clustering procedure, resulting in poor results.

From this point forward, “selected points” will denote a sub-
set of points of the original data set D that is being considered
for the clustering algorithms. Similarly, “non-selected points”
will denote the set of points that is not being considered in
the clustering algorithms.

It is clear that the selection of hard points to cluster
(those farthest from the centroids) generates poor SSE results,
specially when the underlying clustering solution is bad.
Therefore, to find good overall solutions, it is required to find
hard points to cluster, i.e., a set of points that are the hardest to
cluster for every possible centroid distribution. A good solution
for those points should yield also a good overall clustering
result.

This work develops a way for iteratively building a hard set
of selected points to cluster given a current centroid solution.
To select these hard points, the first step is to formalize the
notion of “easy” selected points in relation to a clustering
solution. These easy points need to be exchanged with harder
points to improve the representativity of the selected point.
The easiness criterion considers how much a selected point

(a) Original data set - All points will be used as input for
the clustering algorithm. The “x” marks the calculated
centroids

(b) A good point selection - The clustering result in the
sampled (selected points) set is the same as the original
dataset

(c) A bad point selection - The clustering result in the
sampled set (selected points) is worse than the original
dataset

Figure 1. Example to demonstrate that some subsampling choices result in a
far worse clustering result. Here, the doted grey circles represent points being
discarded (non-selected points) and solid black circles points being considered
(selected points). Figure (c) displays a clustering result that yields a poor SSE
result in the original data set.

influences a fixed clustering solution, i.e., how the point
contributes to the overall clustering result given a centroid
solution. The smaller the contribution (the closer they are from
the closest centroid) the more probable must be the swapping
of that point to a random, non-selected point.

After some points swapping, the algorithm performs the
adaptation of the centroids to the newly selected points by
updating the position of the centroid. In this step the selected
points are fixed and the clustering algorithms try to find a good
solution for the new set of selected points.

The observed dynamic here is that centroids will migrate
to the region that has the hardest points, making the other-
wise hard selected points easier. The centroids tend to chase
regions of selected points, while selected points flee from the
centroids.

Once the new clustering solution is found, the algorithm
loops to the first step and repeats the point selection procedure.
This two-step co-evolutionary procedure is repeated until a
given number of iterations is passed or convergence is reached.

The population of selected points subsets is called Popu-
lation A. As previously stated, it encodes which points of
the original data set will be used for clustering the data, i.e.,
a small set of representative points that contains sufficient
information for minimizing the SSE of the whole population.
The goal of the individuals in population A is to maximize
the cost of the clustering solutions generated by individuals
of population B. The Population A also maintains the best
clustering solution for each individual, i.e., the clustering
solution that minimizes the SSE of the selected points.

Individuals in population A suffer two modification opera-
tions: crossover and mutation. Crossover works by randomly
exchanging selected points of two individuals sampled from
the population A and generating one new individual. Mutation
works by randomly picking a point ~a of population A, and
randomly exchanging the value of one of its values.

Population B encodes a set of traditional clustering algo-
rithms that aims to minimize the clustering cost (SSE) given
all individuals of population A. While population A evolves
towards the set of difficult points to cluster in the SSE sense,
population B evolves towards selecting the most efficient
algorithms for clustering the points of population A. A small
number of algorithms is maintained in the algorithm pool
and in each evaluation cycle of population B, one randomly
selected inactive algorithm and one randomly selected active
algorithm are tested against one randomly selected individual
of population A, if the inactive algorithm has a smaller SSE
result, it becomes active, entering population B while the old
active algorithm leaves population B.

For choosing both the best points and clustering algorithms,
the fitness function for a given individual must be defined.
The fitness of a given individual x of population A, fp(~x),
is calculated via the min-max method: the fitness of ~x is
the best clustering result (the minimum SSE) considering all
algorithms in population B. The fitness of a individual y in
the population B is the worst result (the largest SSE) resulting
in running algorithm y in all individuals of population A.

For population A, the bigger the value of the fitness
function, the better the individual is. Thus, after generating
some new individuals via crossover and mutation, population
is trimmed to its original size SApop, keeping only the
individuals with biggest fitness. Population A evolves towards
a sample of difficult points to cluster. If the sample size is
big enough to represent the whole population, the result of
the clustering in the sample will converge to the result in the
whole data set.

Figure 2 shows a representation of the procedure where
the individual xk is being evaluated against all individuals of
population B in order to calculate its fitness. In other words,
the clustering cost of the selected points in xk is evaluated
against all clustering algorithms existing in population B in
the SSE sense. The fitness of individual xk is the smallest
SSE considering all solutions in population B. The bigger the
value of the fitness of xk, the better the individual. In other
words, the most difficult set of points to group in the SSE
sense is the one with greatest fitness.

Figure 3 illustrates how selecting points that worsen the
current solution found by algorithms in population B improve
the overall clustering result.

After the co-evolutionary procedure has finished, the best
algorithm of Population B is applied on the best individual
set of points on population A. Then, the k formed clusters are
used for defining to which cluster the remaining points of the
dataset are included. These points belong to the cluster with
closest centroid. Finally, the overall SSE is computed.

Figure 2. Min-max representation

(a) Initial set of points - Bad point choices leading to
poor clustering results

d
d'

(b) Random swapping of points - Exchanging the near
point (with distance d′ to a distant point in relation to
the closest centroid, with distance d).

dd'

(c) After the swap, the clustering algorithm is run again
and the centroids walk towards a better configuration.
The resulting swapping improved the clustering result
slightly - Another swapping selection is displayed, the
point with distance d′ will be replaced by the point with
distance d in the next iteration.

(d) The result of the previous point swapping yields a
much better overall clustering. The generated clusters
in the whole population would generate the optimum
solution in this example.

Figure 3. The Figures 3(a)-3(d) illustrate how the swapping procedure of
points iteratively constructs a better solution on the original data set by
choosing data points that worsen the solution found in the selected set.

The next subsection describes the details of the COCLU
approach.

B. The COCLU Algorithm

The COCLU algorithm uses the basic framework of the
general co-evolutionary algorithm for solving constrained op-
timization problems. Two populations A and B, with a coupled
objective function f(~x, y) (~x coming from population A and
y coming from population B), compete towards opposite

goals, an individual ~x, of population A, tries to maximize the
function f(~x,B), defined as follows:

f(~x,B) = min(f(~x, y),∀y ∈ B) (4)

While an individual y, of population B, tries to minimize
the function f(A, y), defined as follows:

f(A, y) = max(f(~x, y),∀x ∈ A) (5)

Both populations will go through the process of finding
new solutions until they converge, i.e., no improvement is
possible in either one of them. This point is called the saddle
point of the min-max problem [24]. The generic classical co-
evolutionary algorithm for finding the saddle point of the min-
max problem is described in Algorithm 1.

Algorithm 1 The generic co-evolutionary algorithm for solv-
ing a min-max problem

procedure COEVO(Number of Cycles (MaxCycles) ,
Number of Iterations on Population A (MaxGenA),
Number of Iterations on Population B (MaxGenB))

Initialize Population A
Initialize Population B
for each k = 1 to MaxCycles do

5: for each j = 1 to MaxGenA do
Evaluate new Population A
Generate new Population A

end for
for each j = 1 to MaxGenB do

10: Evaluate new Population B
Generate new Population B

end for
end for
Return the best individual of population A given some

quality metric.
15: end procedure

The encoding of the individuals in the population and the
details of procedures of initialization, generation and evolution
of populations A and B will be described in the following
subsections.

1) Encoding of the Individuals: Each individual in popula-
tion A corresponds to a s-sized subset of distinct point indexes
of the original data set. The encoding of these individuals
is a vector of size s containing in each position a unique
data point index of the original data set. This representation
is convenient for both performance and operation definition
reasons. The parameter s regulates the summarization ratio
of the co-evolutionary algorithm. If s is too big, there is no
performance gain in executing the co-evolutionary algorithm.

The definition of population A is formalized below.

~xi ∈ A, i > 0, i ≤ SApop (6)
~xi ∈ Ns, s ≤ n (7)

~xi,j 6= ~xi,k∀i, j, k, (j 6= k) (8)

Individuals in population B, on the other hand, are simply
a fixed-sized set of clustering algorithms extracted from a pre-
defined algorithm pool.

2) Initialization of the Populations:
a) Population A: Initialization of population A is a

simple random uniform sub-sample of size s of the data set
D, performed multiple times. The only caveat is to remove
repetitions from the generated sub-sample.

b) Population B: The initialization of the population is
simple: one needs only to sample sb algorithms from the
algorithm pool to initialize the B population and randomly
select an individual of population A for solving the reduced
clustering problem using the selected clustering algorithms.

3) Fitness Evaluation: Evaluation of the fitness of the
individuals in both populations is similar; one has to select
an individual in one population and iterate over the other
population looking for the minimum (for an individual of
population A) or the maximum (for an individual of population
B).

4) Generation of Population: The generation of the new
individuals of population A consists of simply applying mu-
tation and crossover, and then selecting the best individuals to
keep in the population. These operations are described below.

a) Mutation of individuals in population A: A number
of Nmut individuals of the population A (of selected points)
is picked at random and a point of the individual is randomly
picked as a pivot. After that, another point is picked from the
non-selected set of points to exchange the first selected point.
If the replacing procedure yields a smaller SSE, the mutation
is accepted. This process is repeated ntries times. The new
individual is appended to the end of the current population.

b) Crossover of individuals in population A: Crossover
is implemented by randomly choosing two individuals using
roulette wheel selection and building one new individual by
randomly picking the attributes of both individuals, always
verifying if the resulting individual is valid, i.e., has no
selected point appearing twice.

c) Selection of individuals in population A: After muta-
tion and crossover, the selection of individuals is performed.
This selection is merely the elimination of the most unfit
individuals so that the population returns to its original size.

Population B evolves through replacement of algorithms
in it. In every iteration of the co-evolutionary algorithm on
population B, the Nunfit most unfit clustering algorithms are
replaced by Nunfit clustering algorithms of the algorithm pool,
selected at random. This approach has two important charac-
teristics: it automatically chooses the more efficient algorithms
to the data and avoids local minima by always trying new
solutions for the existent individuals. Once a new algorithm is
selected, it randomly chooses one individual of population A,
proportional to its fitness for finding a solution for the reduced
clustering problem. Once a solution for the reduced clustering
problem is found, it replaces the old clustering solution if its
SSE is smaller than one of the current clustering algorithm
present in the population.

C. Clustering algorithms used for population B

In theory, any clustering algorithm could be used as the
co-clustering engine, however, it is suggested to select a set
of widely spread algorithms in the literature, having attested
performance in small data sets and fast response times.

IV. CLUSTERING RESULTS

Preliminary experiments for comparing the COCLU ap-
proach with some traditional clustering algorithms are de-
scribed in this section. Before presenting the results, the
benchmark datasets are described, with the original source and
some considerations. Also, the parameters values used by the
algorithms are shown.

A. Benchmark data sets

Four benchmark datasets extracted from the literature were
used. Since there is no dataset that contains the number of
clusters to be formed, the number of clusters varies in the
interval between 2 and 29 for evaluating the algorithms. Table I
presents the details of the chosen benchmark data sets used in
this work.

Each algorithm was run 10 times for each test to measure the
median and variance of their SSE value (when there is some
stochastic behavior in the algorithm). Some tests could not be
run due to the impossibility of setting up important algorithm
parameters or because of the excessive running times.

B. Setup of algorithms

The default set of parameter values used for all data sets is
shown below. These values are the recommended set up found
in the literature.

1) CLARANS: The parameters maxNeighbors and
numLocals follow the recommendation of the seminal paper
of CLARANS [12] which suggests using 2 for numLocals
and the following expression for maxNeighbors:

maxNeighbor = k · (|D| − k) · 0.0125 (9)

2) BIRCH: The BIRCH algorithm’s most important param-
eters (the closeness parameter and the compactness parame-
ters) are also the most sensitive and hard to estimate, since
they have direct relation to the nature of the dataset. Several
experiments were performed to find the values described in
Table II. The same value was used for both parameters,
since it was observed no performance gain in selecting them
independently.

3) CURE: The CURE algorithm has only one relevant
parameter, the size of the representative set. According to the
literature, a good value for this parameter is 10.

4) DBSCAN: The similarity factor controls indirectly how
many clusters the algorithm will form. This value had to be
indirectly set up with a local search algorithm.The value for
MinPts was set up based on suggestions taken from the
literature and experimentation on the available datasets. A
good value for this parameter was found to be 2 [11].

5) COCLU: All test runs used the parameters values pre-
sented in Table III. These values were estimated in preliminary
runs of the algorithm on the datasets. The algorithm pool was
compound by k-means [1], CURE, CLARANS and Spectral
[27] clustering algorithms.

C. Results

This section presents the results of algorithms for all
datasets. The DBSCAN algorithm could only partially run on
the BRD14051 dataset. In the others datasets, the algorithm
failed to find the proper value for the similarity factor,
generating different values of k in every occasion. Therefore,
its results on these datasets were omitted.

Figures 4 and 6 shows similar results of the algorithms
on the BRD14051 and PLA85900, respectively. Both COCLU
and CLARANS algorithms achieved the best SSE values. The
BIRCH algorithm was the third best algorithm, achieving very
close results. The CURE algorithm had the worst results with
an erratic behavior, probably due to poor summarization of
the data.

0 5 10 15 20 25 30
Number of Clusters

0.5

1.0

1.5

2.0

2.5

3.0

3.5

SS
E

1e7 SSE comparison - Base BRD14051

CLARANS
BIRCH
COCLU
CURE
DBSCAN

Figure 4. The SSE of all tested algorithms on dataset BRD14051

Figure 5 presents the results without the CURE algorithm
since it could not perform well on the Shuttle dataset. From
these results it is clear that the COCLU algorithm had a better
clustering result the most part of the experiment, only being
slightly worse in the beginning of the experiments.

In the MiniBooNE dataset the only algorithms that were
capable of successfully returning valid results in reasonable
running times were the CLARANS and COCLU algorithms.
The results observed on Figure 7 are different from those
observed in the previous tests. CLARANS and COCLU had
similar results but both present a linear behavior.

V. CONCLUSION AND FUTURE WORK

This work proposes a novel clustering algorithm for large
datasets, called COCLU, for dealing with the problem of
clustering large datasets of continuous points in metric spaces.
The idea is to apply classical algorithms that perform well in

Table I
DATASET FEATURES - THE NUMBER OS CLUSTERS VARY BETWEEN 2 AND 29 FOR TESTING.

ONLY THE TRAINNING DATASETS WERE USED IN THE ALGORITHM’S EVALUATION

Base name Size Dimensions Original source
BRD14051 14051 2 [25]

Shuttle 43500 9 [26]
PLA85900 85900 2 [25]

MiniBooNE_PID 130065 50 [26]

Table II
VALUES OF THE MOST IMPORTANT PARAMETERS OF THE BIRCH

ALGORITHM FOR ALL DATA SETS

Dataset Closeness and compactness parameter
BRD14051 9,000
PLA33810 4 · 107

Shuttle 86
PLA85900 700,000

MiniBooNE 9 · 1028

Table III
PARAMETER VALUES OF THE COCLU ALGORITHM FOR ALL DATA SETS

Parameter Value Description
MaxCycles 50 Number of outer iterations of the min-

max algorithm (Algorithm 1)
MaxGensA 10 Number of iterations over the popula-

tion A while population B is frozen.
(Algorithm 1)

MaxGenB 1 Number of iterations over the popula-
tion B while population A is frozen.
(Algorithm 1)

SApop 4 Size of the population A
ncross 1 Number of crossovers on each iteration

of the outer loop
nmut 1 Number of mutations on each iteration

of the outer loop
s 0.05 · |D| The number of points that need to be

considered by a given individual of the
population

SBpop 1 Size of the population B of clustering
algorithms

small datasets on a subset of the original data. The problem
of choosing a good, representative subset of points is solved
by applying a co-evolutive min-max approach for the problem
of selecting representative points.

Preliminary experiments performed in this work indicate
that CLARANS and COCLU algorithms were always among
the best algorithms in regard to solution quality. In addition,
both CLARANS and COCLU algorithms had very competitive
running times (not presented in this paper due to space
restrictions). The COCLU algorithm had longer running times
in the smaller datasets than in the larger ones. The relative
running times of the COCLU algorithm compared to the
CLARANS algorithm decreased as the size of the data sets
increased, i.e., the bigger the dataset, the less advantageous is
to use the CLARANS algorithm.

Given that COCLU performed very similarly to its con-
stituent algorithm CLARANS in the experiments, it is im-
portant to understand how often CLARANS is selected by
the co-evolution framework. The risk is COCLU be basically

0 5 10 15 20 25 30
Number of Clusters

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

SS
E

SSE comparison - Base Shuttle

CLARANS
BIRCH
COCLU

Figure 5. The SSE of all tested algorithms, with the exception of the
DBSCAN and CURE algorithms (for a better visualization), on data set Shuttle

0 5 10 15 20 25 30
Number of Clusters

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

SS
E

1e10 SSE comparison - Base PLA85900

CLARANS
BIRCH
COCLU
CURE

Figure 6. The SSE of all tested algorithms, with the exception of the
DBSCAN algorithm, on data set PLA85900

CLARANS, which would falsify the usefulness of the new co-
evolution framework.

Nevertheless, the premise that no single clustering algorithm
is better for every base is widely known. Thus, an algorithm
capable of unifying the decisions of many different heuristics
is relevant. The COCLU algorithm may fill the gap between
clustering techniques and datasets by using co-evolution for
selecting both points and algorithms to consider in the overall

115

120

125

130

135

140

145

150

155

160

 0 5 10 15 20 25 30

1e8

S
S

E

Number of Clusters

SSE comparison - Base MiniBooNE

CLARANS
COCLU

Figure 7. The SSE of CLARANS and COCLU, on data set MiniBooNE

clustering process. This automatic selection yields a robust
algorithm for clustering many different types of datasets,
given that the adequate clustering algorithm is present in the
population pool.

Future works should perform a wider and more ro-
bust experimental investigation including larger and synthetic
datasets, other clustering algorithms such as improved versions
of k-means and different evaluation measures, other than SSE.
In particular, it must investigate what extent a co-evolutionary
framework is strictly adding value here and whether the same
could be achieved through use of a single clustering algorithm.

The use of the min-max approach for solving complex
problems often leads to algorithms with poor scalability capa-
bilities. Fixing one individual of population A, all the fitness
calculations on the opposite population may be done at the
same time, reducing the runtime of the algorithm greatly. With
this enhancement, more tests can be executed with even bigger
datasets with different characteristics to verify if the observed
behaviour is maintained.

More investigation should also be done on selecting cluster-
ing algorithms for the core of the COCLU algorithm. Changing
the current set of algorithms (k-means, CURE, CLARANS
and Spectral clustering) may improve the final result of the
algorithm.

REFERENCES

[1] J. B. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proc. of the fifth Berkeley Symposium on
Mathematical Statistics and Probability (L. M. L. Cam and J. Neyman,
eds.), vol. 1, pp. 281–297, University of California Press, 1967.

[2] P. Franti, O. Virmajoki, and T. Kaukoranta, “Branch-and-bound tech-
nique for solving optimal clustering,” in Proceedings of the 16th
International Conference on Pattern Recognition, 2002, vol. 2, pp. 233–
235, IEEE, 2002.

[3] R. Ostrovsky and Y. Rabani, “Polynomial time approximation schemes
for geometric k-clustering,” in Proceedings of the 41st Annual Sym-
posium on Foundations of Computer Science, (New York, NY, USA),
pp. 349–358, ACM, 2000.

[4] S. Das, A. Abraham, and A. Konar, Metaheuristic clustering, vol. 178.
Springer, 2009.

[5] Z. Michalewicz, “Evolutionary computation techniques for nonlinear
programming problems,” in International Transactions in Operational
Research, vol. 1, (University of North Carolina, USA), pp. 223–240,
Elsevier Science, 1994.

[6] F. van den Bergh and A. Engelbrecht, “A cooperative approach to particle
swarm optimization,” IEEE Transactions on Evolutionary Computation,
vol. 8, pp. 225–239, june 2004.

[7] D. A. Augusto, H. J. Barbosa, and N. F. Ebecken, “Coevolution of
data samples and classifiers integrated with grammatically-based genetic
programming for data classification,” in Proceedings of the 10th annual
conference on Genetic and evolutionary computation, GECCO ’08,
(New York, NY, USA), pp. 1171–1178, ACM, 2008.

[8] H. J. C. Barbosa, “A genetic algorithm for min-max problems,” Procced-
ings of the First International Conference on Evolutionary Computation
and its Applications, pp. 99–109, 1996.

[9] K. Alsabti, S. Ranka, and V. Singh, “An efficient k-means clustering
algorithm,” Electrical Engineering and Computer Science, no. 43, 1997.

[10] D. Arthur and S. Vassilvitskii, “How slow is the k-means method?,” in
Proceedings of the twenty-second annual symposium on Computational
geometry, SCG ’06, (New York, NY, USA), pp. 144–153, ACM, 2006.

[11] M. Ester, H. peter Kriegel, J. S, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” pp. 226–
231, AAAI Press, 1996.

[12] R. T. Ng and J. Han, “CLARANS: A Method for Clustering Objects for
Spatial Data Mining,” IEEE Trans. on Knowl. and Data Eng., vol. 14,
pp. 1003–1016, Sept. 2002.

[13] Y. Luo, A. Joshi, A. Phansalkar, L. John, and J. Ghosh, “Analyzing and
improving clustering based sampling for microprocessor simulation,”
2008.

[14] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient data
clustering method for very large databases,” in Proceedings of the
1996 ACM SIGMOD international conference on Management of data,
SIGMOD ’96, (New York, NY, USA), pp. 103–114, ACM, 1996.

[15] S. Guha, R. Rastogi, and K. Shim, “Cure: an efficient clustering algo-
rithm for large databases,” in Proceedings of the 1998 ACM SIGMOD
international conference on Management of data, SIGMOD ’98, (New
York, NY, USA), pp. 73–84, ACM, 1998.

[16] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, “Density-based clustering
in spatial databases: The algorithm gdbscan and its applications,” Data
Min. Knowl. Discov., vol. 2, pp. 169–194, June 1998.

[17] J. Poon and M. Maher, “Co-evolution and emergence in design,”
Artificial Intelligence in Engineering, vol. 11, no. 3, pp. 319 – 327,
1997.

[18] M. L. Maher, J. Poon, and S. Boulanger, “Formalising design exploration
as co-evolution: A combined gene approach,” 1996.

[19] D. Chakrabarti, R. Kumar, and A. Tomkins, “Evolutionary clustering,”
in Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’06, (New York, NY, USA),
pp. 554–560, ACM, 2006.

[20] Q. He and L. Wang, “An effective co-evolutionary particle swarm
optimization for constrained engineering design problems,” Engineering
Applications of Artificial Intelligence, vol. 20, no. 1, pp. 89–99, 2007.

[21] I. S. Dhillon, “Co-clustering documents and words using bipartite spec-
tral graph partitioning,” in Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD
’01, (New York, NY, USA), pp. 269–274, ACM, 2001.

[22] M. I. Hosny, L. AlHinti, and S. Al-Malak, “A co-evolutionary framework
for adaptive multidimensional data clustering,” Intelligent Data Analysis,
vol. 22, no. I, pp. 77–101, 2018.

[23] W. Ding, C.-T. Lin, and M. Prasad, “Hierarchical co-evolutionary
clustering tree-based rough feature game equilibrium selection and
its application in neonatal cerebral cortex mri,” Expert Systems with
Applications, vol. 101, no. 1, pp. 243–257, 2018.

[24] D.-Z. Du and P. M. Pardalos, Minimax and applications, vol. 4. Springer,
1995.

[25] G. Reinelt, “TSPLIB- a traveling salesman problem library,” ORSA
Journal of Computing, vol. 3, no. 4, pp. 376–384, 1991.

[26] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010.
[27] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Anal-

ysis and an algorithm,” in ADVANCES IN NEURAL INFORMATION
PROCESSING SYSTEMS, pp. 849–856, MIT Press, 2001.

