Brain Storm Robotics:

An Automatic Design

Framework for Multi-Robot Systems

Jian Yang, Member, IEEE, Yang Shen
Dept. of Computer Science and Engineering
Southern University of Science and Technology (SUSTech)
Shenzhen, China
yangj38 @mail.sustech.edu.cn, sheny3 @mail.sustech.edu.cn

Abstract—Designing the collaborative mechanism is a funda-
mental problem for the multi-robot systems. It aims to determine
the perception, communication, and motion strategies for a
single robot to obtain the desired behavior at the system level.
Generally, we can use manual design and automatic design, or
the combination of the above two approaches for particular
system behavior. With the increasing of task complexity and
the uncertainty of surroundings, the adaptability and autonomy
are hard to achieve with manual design approaches. By using
the mechanism of learning or evolution, automatic design can
generate sensor configurations, communication parameters, as
well as control strategies automatically, which has been widely
concerned in recent years. In this paper, the brainstorming
method of collaborative problem-solving in human society is
introduced into the design of multi-robot systems. This paper
proposes an automatic design framework: Brain Storm Robotics
(BSR), in which the system architecture, the representation
of ideas, and the generation of new ideas are discussed. The
effectiveness of the proposed BSR framework is verified by an
example of designing an aggregation behavior for a swarm of
robots. The results show that the control strategy designed by this
framework is more efficient than that designed manually, which
has outstanding development prospects. The future researches for
the development of this potential framework are also discussed.

Index Terms—Multi-robot Systems, Swarm Robotics, Auto-
matic Design, Fuzzy Control, Brain Storm Optimization

I. INTRODUCTION

Multi-robot systems (MRS) have received much attention
due to its enormous potential for applications such as envi-
ronmental monitoring, collaborative exploration, search and
rescue, cooperative manipulation, as well as military defense
scenarios [1]. The motivations for developing the multi-
robot systems commonly lie in their advantages compared to
single-robot systems, including the parallelism for distributed
complex tasks, more simplicity of building several resource-
bounded robots than a single powerful robot, and also the
increasing of robustness through redundancy. There are mainly
two types of multi-robot systems: Intentionally Cooperative

This work is partially supported by National Key R&D Program of China
under the Grant No. 2017YFC0804003, National Science Foundation of China
under grant number 61761136008, Shenzhen Peacock Plan under Grant No.
KQTD2016112514355531, Program for Guangdong Introducing Innovative
and Entrepreneurial Teams under grant number 2017ZT07X386, and the
Science and Technology Innovation Committee Foundation of Shenzhen under
the Grant No. ZDSYS201703031748284, and SUSTech Attificial Intelligence
Institute (SAINT). Corresponding Author: Yuhui Shi.

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

Yuhui Shi”, Fellow, IEEE
Dept. of Computer Science and Engineering
Southern University of Science and Technology (SUSTech)
Shenzhen, China
shiyh@sustech.edu.cn

Systems (ICSs) and Swarm Robotics (SR) [2]. The ICSs gener-
ally have several heterogeneous agents with different functions
for particular tasks [3]. They interact intentionally to achieve
task requirements. While swarm robotics is a particular ap-
proach to multi-robot systems, and takes inspiration from the
behaviors of social animals or insects, which generally have
individuals with low-complexity [4]. SR systems typically
are composed of a large number of homogeneous individuals
with low complexity (may have a small number of different
roles) and finish the tasks through local sensing and limited
interactions. The main differences between ICSs and SRs are
summarized in Table 1.

TABLE I: Differences between ICSs and SRs

Swarm
Robotics

Intentionally
Cooperative Systems

Ranging from

No. of Robots a few to Thousands

Small Fixed Number

Control Architecture Decentralized Centrallzeq

or Decentralized
Heterogeneity Homogeneous Heterogeneous
Scalability High Low
Prior Information of Env. Unknown Known or Unknown

Designing a collaborative mechanism is one of the funda-
mental problems for multi-robot systems. It aims to determine
the individual behaviors and interactions with other members
or with the environments so that to achieve the global goal of
the system, i.e., to design rules at the individual level, which
correspond to a desired behavior at the system level. The
design may include aspects of perception, control, communica-
tion, computation, and heterogeneities, etc. [5]. Therefore, the
challenges for this problem come from the integration of dif-
ferent disciplines such as control theory, artificial intelligence,
robotics, optimization, as well as bionics. For ICSs, behavior-
based approaches are wildly used to solve the design problems
for a specific task. The main idea is to decompose a useful
behavior for a particular task into primitive control strategies
and interaction rules for individuals. For Swarm Robotics, a
common way is based on swarm intelligence, which takes
the inspiration from the macroscopic collective behaviors in
social animals or insects [6], [7], or inspired by multicellular
mechanisms such as morphogen diffusion, gene regulatory



networks, etc. [8].

Generally, the design problem has two main categories:
manual design and automatic design [9]. The behavior-based
and the direct imitations of swarm intelligence roughly belong
to the manual type. This design method usually uses a divide-
and-conquer mechanism, in which the global behavior of the
system for a particular task is decomposed into a set of
behaviors for individuals, and establish a finite state machine
(FSM) to determine which action an individual will perform
according to the sensor inputs [10]. The techniques which
adopt the reinforcement learning strategy [11] or evolutionary
robotics approaches can be seen as the automatic design
category [12]. Those methods typically use the trial and error
mechanism to train or evolve a neural network (NN) controller
[13] or a fuzzy controller [14] for each member in a team.
There does not exist a straight separation line between these
two approaches. Other optimization-based approaches use a
developed model as a source of inspiration for the designer.
Those models sometimes are derived out from the observations
from natural processes, such as the virtual physics models [15],
or sometimes comes from other disciplines such as control
system models [16]. Then the parameters of the model are
refined by different optimization algorithms [17]-[19]. Those
types of methods are at the intersection of manually and
automatic design, as shown in Fig.1.

Task Oriented
Behavior Based

Manual Design

Reinforcement
Learning
Neural Networks
Fuzzy Logics
Evolutionary
Robotics

Automatic Design

Optimization
Algorithms

Optimization Based

Fig. 1: Catagories of Multi-robot Systems Design

Swarm intelligence algorithms, which are inspired by so-
cial animals, were successfully applied in many optimization
problems in recent years. Furthermore, due to their capacity
for both learning and evolution, they can also be developed as
automatic design methods for the multi-robot systems. In this
paper, we will propose an automatic design framework, i.e.,
brain storm robotics (BSR), for multi-robot systems, which is
motivated by the problem-solving means of a group of human
beings, and is also the basis of Brain Storm Optimization
algorithm (BSO) [20], a relatively new algorithm in the
field of swarm intelligence. The basic idea of the proposed
framework is to let the robots in a team generate “ideas”
for control or interaction rules, then to evaluate the results at

the system level. A relatively optimal “idea” will be obtained
after iterations of generating and evaluating new “ideas”.This
framework has the characteristics of both optimization and
evolution, and is able to increase the capacity of members to
generate better new “ideas” by adding learning mechanisms
for individuals.

The rest of the paper is organized as follows: Section 2
presents the BSR auto-design framework, including the archi-
tecture, the mechanism of idea representation and generation,
and the auto-design procedure. Section 3 and Section 4 give a
BSR based auto-design example and the results for aggregation
behavior of a team of homogeneous robots. Section 5 discusses
the potential of the proposed framework and future works. The
conclusion is reached in Section 6.

II. BRAIN STORM ROBOTICS FRAMEWORK

A brainstorming process generally follows the following
steps [20]: 1) get together a group of people with diverse
background; 2) generate many ideas; 3) evaluate and pick up
better ideas; 4) generate more ideas; 5) pick up better ideas
and hopefully a good enough solution can be obtained. In
addition, in order to generate ideas with sufficient diversity,
four rules of Osborne brainstorming must be considered [21].
By regarding robots as people in the brainstorming process,
and the corresponding aspects of being designed as ideas,
we will map this procedure to the multi-robot system design
problems in the following.

A. Architecture

The proposed architecture is shown in Fig.2, in which each
robot is equipped with sensors, actuators, a communicator, a
controller, and a planner. The sensors collect the inputs from
the surroundings, and the actuators are responsible for the
execution of corresponding actions. The controller provides
the commands required by the actuators according to the
inputs of the sensors and the instructions from the planner.
In the proposed framework, the communicator and planner
work in two modes: designing mode and working mode.
In designing mode, the planner generates “ideas” according
to the sensor inputs and actuator outputs (can be based
on some learning mechanism). The communicator not only
broadcast and receive information from other members in
a certain range (which is the standard function in working
mode) but also transfer the “ideas” to the upper layer for
evaluation and selection. In working mode, the planner module
provides corresponding instructions to the controller according
to the specific task requirements and the information from
sensors, communicators, and actuators. The upper evaluation
and selection module only works in the designing mode.
According to a specific design objective, the module evaluates
the performance of the system based on the “ideas” reported
by each planner and generates new ‘“ideas” for the system
to execute iteratively, until a relatively optimized “idea” that
meets the design requirements is obtained.
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Fig. 2: The Architecture of Brain Storm Robotics

B. Ideas Representation

The representation of ideas may have varied forms ac-
cording to which design aspect being considered. It may
include the sensors configuration, communication range and
contents, the controller parameters, as well as the system
heterogeneities. The ideas for the controller part will also be
different depending on which type of intelligent controllers
the designer choose. If the controller is a fuzzy controller,
the corresponding ideas may include rule base, number of
rules, membership functions for corresponding variables or
fuzzification and defuzzification operations [22]. If the con-
troller is a neural network controller, the idea may include
the parameters for network structure, connection weights, and
activation functions, etc. [23]. The representation of an idea
can be visualized by Fig.3.
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Fig. 3: Idea Representation in BSR

C. New Ideas Generation

Ideas can be generated randomly by each member robot or
can be generated according to each one’s inputs, outputs, and
internal states with a learning strategy. Furthermore, according
to the principle of brainstorming, new ideas can not only be
proposed by robot members in a group but also be generated
from existing ideas by adding some disruption to an existing
idea or by combining some existing ideas. Under the consider-
ation of the balance of exploration and exploitation principle in

swarm intelligence, here we borrow two predefined probability
thresholds from the original BSO-OS algorithm [24], p, and
Pone in [0,1] for new idea generation. The procedure of the
generation of new ideas is given in Algorithm 1. rand; and
rands are random numbers generated in each iteration in
[0, 1], if rand; < p,, a new idea will be generated by robots
in the group, otherwise will be generated by archived ideas. If
rands < Pone, the new idea will be generated by one robot or
one archived idea. Otherwise, the new idea will be generated
by multiple randomly selected robots or existing ideas.

Algorithm 1 Procedure of Generate New Ideas

1: if rand, < p, then
2 Generate a new idea based on robots:
3: if rands < pone then
4 Generate a new idea from one randomly selected
robot;
else
6: Generate a new idea from multiple randomly se-
lected robots;
7: else
Generate a new idea based on archived ideas:
if rands < pone then
Generate a new idea based on one randomly se-
lected existing idea;
else
Generate a new idea based on multiple randomly
selected ideas;

wn

10:

11:

For new ideas generated by one robot, a randomly selected



robot will propose an idea randomly or based on some
generation rules, which can be learned from the historical data
of its inputs, outputs, and internal states, etc. For the operation
of generating a new idea from multiple robots (denotes the
total number of ideas as N), the new idea will be formed by
taking corresponding parts randomly from the proposed ideas.
A combining operation with N = 2 is shown in Fig.4. For the
situation of generating new ideas based on one archived idea,
some disruption will be added to one existing idea to get a new
one, as shown in Fig.5. The arrows in Fig.4 and Fig.5 indicate
to replace the corresponding randomly determined items in
an idea. Besides, if new ideas are generated from multiple
existing ideas, the corresponding operation is the same as the
mechanism of generating new solutions from multiple robots.
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Fig. 5: Generate a New Idea From One Existing Idea

D. Ideas Evaluation and Selection

As mentioned above, all ideas will be handled by the
evaluation and selection unit for next operations through
each one’s communicator. The generated ideas from member
robots or archived list of ideas will be evaluated and updated
iteratively until the relatively acceptable solutions achieved
or maximum iteration steps (G) reached. A list with top M
better ideas will be kept during the procedure of iterations.
For each evaluation, the evaluation and selection unit sends
the strategy contained in new ideas to the multi-robot system
in turn. Then according to the objective function related to
a particular task, with the observation of the whole multi-
robot system for a predefined time interval ('), the unit will
obtain the corresponding fitness value for each idea. Besides,
the evaluation and selection module will select and retain the
list of archived better ideas after each round of evaluation.

E. Automatic Design Procedure with BSR

The procedure for automatic design with BSR is given
in Algorithm 2. First, the parameters for designing will be
initialized. Then ideas will be gathered from each robot, after
the evaluation of each idea for time 7', the top M ideas will
be kept in a list according to their fitness values. Afterward,
the designing process will enter the iteration process. For each
iteration, a new idea will be generated according to Algorithm
1, and the new idea will be evaluated for time 7'. Then the

archived list of ideas will be updated. The iterative process
will continue until a good enough solution is obtained, or the
maximum number of iterations is reached.

Algorithm 2 Procedure of Auto-Design with BSR

. Initialize parameters of p,., Pone, N, M, G, T

: Gathering ideas from robots;

. Evaluate each idea for time 77

: Keep top M ideas;

: while not terminated do

Generate a new idea according to Algorithm 1;
Evaluate the generated idea for time 7;
Update the top M idea list;

: Output the best idea in the archived list;

R Y O N R

III. AN AUTOMATIC DESIGN EXAMPLE WITH BSR

For the sake of simplicity, here we give an example of using
the proposed BSR framework to design the aggregation be-
havior of swarm mobile robots automatically. Since the fuzzy
control system allows the designer to analyze and interpret
the resulting robotic behavior in the context of automatic
design techniques, here we assume that each member robot
will determine the controller outputs according to the sensor
inputs through a fuzzy controller. As mentioned earlier, when
using the proposed platform to design a fuzzy controller, the
idea may include the corresponding membership function, the
strategy of fuzzification and defuzzification, and the rule base
as well. As an example, here we only demonstrate how to use
the proposed framework to automatically design the fuzzy rule
base for the aggregation behavior of a swarm of robots. It can
be applied to other aspects of the automatic design mentioned
above.

A. Member Robot

The member robot configuration is shown in Fig.6, where
a differential-driven mobile robot is adopted. The kinematic
model of this kind of robot is given in Equation (1) [25].

x(t + At) x(t) cosf(t) 0 v
yt+ At | = |y(t)| + |sind(t) 0 L}} (1)
O(t + At) 0(t) 0 1

Where (x,y, 0) represent the Cartesian position and heading
of the robot, v and w are the linear and angular velocities in
each agent’s coordinates (the direction of v is the positive
direction of x-axis). Sensors equipped with robots can detect
the range and bearing angle of obstacles and other companions
in front of the robot within a certain range R.

Simply, the anti-collision and obstacle avoidance operations
will be determined according to the preset safety distance
ds. If the range and bearing angle of the nearest obstacle or
teammate are d. and a., respectively, the robot’s control inputs
can be determined by:

{w — 0 do<d, @)
v = aoi



Fig. 6: The Robot Configurations

Where the qg is a scale factor, and the v decreases with the
decrease of d., which avoids the risk of collision.

B. Fuzzy Controller for Self-Organized Aggregation

According to the task requirements, when a member robot is
not in the state of collision avoidance, the aggregation behavior
will be performed. The aggregation behavior requires the robot
to keep a short distance from the surrounding robots as much
as possible. Denote the range and bearing angle of all robots
around a robot are d; and a; respectively, the vector sum of
all detected teammates can be expressed as:

{|ﬁ| =1, dicosa;, Yy, disina;|| — ds

5 3
ZR = arctan(}, d; sina;, ), d; cosa;) ©)

Since the anti-collision operations are performed indepen-
dently, here the magnitude |R| and orientation /R constitute
the two input variables to the aggregation fuzzy controller that
regulates the output of the tuning speed w of the robot. As an
example, here we adopt fixed membership functions for the
input and output variables [26]. In this example, the proposed
BSR is only used to design the rule base of the fuzzy controller
automatically.

Suppose the sensor ranges for robot detection are [0
10]m for ranging and [-1.57 1.57]rad for bearing. The input
space is partitioned into four trapezoidal fuzzy sets labeled
{ZO, FR, MF,VF} for the magnitude and seven trapezoidal
fuzzy sets labeled {VL, ML, LT,ZO,RT, MR,V R} for the
orientation of the vector sum of detected teammates, as shown
in Fig.7.

The domain of the turning speed [-3 3]rad is par-
titioned into nine triangular output fuzzy sets labeled
{VR,MR,RT,ZR,Z0O,ZL, LT, ML,V L}, which is shown
in Fig.8. Here the VR and VL correspond to sharp
turns at near maximum speed of 3 rad/s. The terms
{RT,ZR,Z0O,ZL, LT} correspond to relatively smooth turns
with |w| < 0.5rad/s.

The aggregation behavior of a swarm of robots is realized by
a 2-inputs-1-output standard Mamdani fuzzy controller whose
rule base contains 28 rules. A manually designed decision
table is provided in Table II.
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C. Designing the Rule Base with BSR

Based on the statements and assumptions above, the idea for
this example will only encode the rule base with a fixed length,
ie., {r1,ra, -+ ,res}. The 28 items in the idea can be coded
as intgers, i.e., r; € {1,2,---,9} represents possible out-
put fuzzy label {VR, MR,RT,ZR,Z0O,ZL, LT, ML,V L}
correspondingly. According to the procedure described in
Algorithm 2, the rule base for aggregation behavior of a
swarm of robots can be obtained automatically. Since the
desired behavior requires all member robots to gather together
as much as possible, the objective function used for system
performance evaluation can be written as:

min Acp (R1, Ra, -+, Ri) )
Where the A, () is the area of the convex hull formed by

all the robots in the system, which is depicted in Fig.9.

TABLE II: Manually Designed Decision Table

/R
VL ML LT ZO RT




Fig. 9: Convex hull formed by all robots

IV. RESULTS

The simulation is implemented with Mobile Robotics Sim-
ulation Toolbox in Matlab 2019b on an iMac with 3.6 GHz
Intel Core 19, 8GB DDR4 memory. As depicted in Table III,
the number of robots is set to 20, p,. and p,,. are set to 0.2
and 0.8 respectively. The number of ideas for the operation
of generating new ideas based on multiple ideas is 2. The
maximum iteration time is 5000 rounds. The time for each
idea evaluation is 600 steps.

TABLE II: Simulation Configuratons

N M G T
5000 600

No. of Robots  p,

Pone

20 0.2 0.8 2 20

The sensor range of a single robot is set to 10m with the
nrad field-of-view in front, and the safe distance dy; =0.8m.
For each evaluation, the robots are distributed randomly in a
20x20m square area. In the beginning, each robot generates an
idea randomly. After the evaluation of the initially generated
idea, the new idea is generated and evaluated according to the
method introduced above. As an example, in this simulation,
when a robot generates a new idea, the learning operation of
the generation rules has not been added. One of the simulated
evaluation processes is visualized in Fig.10.

After 5000 iterations, a relatively optimal solution of the
archived ideas is outputed as the final solution, which is given
in Table IV. The comparison of control surfaces of the manual
and automatic solutions are shown in Fig.11. It can be seen
that the biggest difference between the two solutions is that
the automatically designed solution significantly reduces the
usage of ZO output, which shows that the robot in the solution
will be more active in finding the surrounding partners, so as
to keep gathering with them.

Furthermore, after another evaluation of these two solutions,
the average convex hull area of the manually designed solution
is 48.9550. In contrast, that of the automatic design solution
is 33.0082, which is significantly lower than the manually

Fig. 10: Visualization for one of the evaluations

TABLE IV: Automatically Designed Decision Table

/R
VL ML LT ZO RT MR VL

Z0 | VR RT ML MR VL LT

MR

VF | ZL ZL RT ZL MR VR VR

designed one. This result further shows that although the
solution of automatic design based on BSR framework does
not look as “reasonable” as that of manually designed, the
performance of task execution is better. Besides, we also
know from observation that the collision avoidance operation
of the controller designed automatically with the proposed
BSR framework is significantly less than that of the controller
designed manually. The results above show that the proposed
automatic design framework for the multi-robot system is
valuable for further development.

V. DISCUSSION AND FUTURE WORKS

Brainstorming, as a kind of collaborative problem-solving
method in human social life, has been widely used in solving
many kinds of practical problems. One of the characteristics of
robots is to substitute human beings to complete some heavy
or dangerous tasks. Improving the intelligence and autonomy
of robotic systems has always been the focus of academic
researches. Naturally, it is of great practical significance to
introduce the brainstorming process into the design of multi-
robot systems. By employing evolution, optimization, and
learning, the BSR framework can automatically determine the
decision-making rules of member robots, the interaction with
the environment, and other robots through the emergent swarm
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Fig. 11: Comparison of manually and automatically design

intelligence. The above design aspects can be represented
into corresponding ideas, and new ideas will be continually
generated during the iterative design process. Through the co-
operation among members, a final relatively optimal approach
will be finally determined. The effectiveness of this method is
demonstrated by an example of the aggregation behavior of a
swarm of robots.

Our next research will focus on the further development of
the framework. On the one hand, we will consider developing
the learning ability of individual members, so that when new
”ideas” are generated, they are more in line with the robot’s
state and “experience,” that is, the “individual cognition”
part of the robot. At the same time, we will also study the
mechanism of cooperative learning of multiple robots under
the condition of local communication, that is, to develop
”social cognition” among members of the framework, so that
when new “ideas” are generated, not only based on their
own experience but also considering the experience of other
members. The introduction of the above learning mechanism
will speed up the convergence of the design process and

improve the quality of the final solution. On the other hand,
we will develop the decentralized distributed structure of
the framework. It will make the proposed framework not
only be used as the automatic design method of multi-robot
systems but also be able to form consistent decision-making
through brainstorming mechanism when the actual system
is running, facing the complex environment and uncertainty,
further improve the ability to solve unknown problems. This
method will be developed into a framework that can work for
both offline design and online decision making for multi-robot
systems.

VI. CONCLUSION

This paper proposed an automatic design framework for
multi-robot systems based on the brainstorming process. This
framework aims to introduce the mechanism of human co-
operative problem solving into multi-robot cooperation. By
representing the different design aspects into some columns
of “ideas,” new ideas are constantly proposed by robots, or
generated by existing ideas. Through a certain number of
iterations, a relatively optimal design will be obtained. The
effectiveness of this method has been illustrated by an example
of automatic designing of the aggregation behavior of a swarm
of robots. Simulation results show that the framework can
achieve better results than manual design according to the
corresponding design objectives. The research of this paper
has shown that the proposed BSR framework has strong
development potential. On the one hand, we can shorten
the design process by adding the mechanism of individual
learning and collaborative learning. On the other hand, it can
design different aspects such as sensor configuration, commu-
nication parameters, and different kinds of controllers, such
as fuzzy logic controllers and/or neural network controllers.
Furthermore, brainstorming in multi-robot systems can not
only be used as an automatic design method but also be
used as a collaborative decision-making method for multi-
robot systems working in unknown environments by studying
its decentralized cooperation mechanism, which has a good
development prospect.
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