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Abstract—This paper proposes a novel adaptive multi-scale
quantum harmonic oscillator algorithm based on evolutionary
strategies (AMQHOA-ES) for global numerical optimization.
Since the original Multi-scale Quantum Harmonic Oscillator
Algorithm (MQHOA) utilizes a fixed contraction factor to nar-
row the search scale, the searching step decreases too fast at
the later stage of the evolution and is more likely to suffer
premature convergence and stagnation. To improve the con-
vergence performance, an adaptive attenuation mechanism of
scaling is proposed to dynamically adjust the exploration and
exploitation properties. Evolutionary strategies such as selection,
crossover and DE/rand/1 mutation are implemented in the
proposed algorithm to enhance the exploration and exploitation
abilities. Experimental results evaluated on several unimodal
and multimodal benchmark functions indicate the significant
improvement of the proposed algorithm to the original MQHOA.
Meanwhile, the experimental results compared with several state-
of-the-art optimizers show the superiority or competitiveness of
the proposed algorithm.

Index Terms—Evolutionary strategy, differential evolution,
adaptive mechanism, multi-scale quantum harmonic oscillator
algorithm, population-based optimization

I. INTRODUCTION

Evolutionary algorithms (EAs) have attracted extensive at-
tentions for many decades. Generally, EAs are inspired by
the biological evolution, utilizing some mechanisms from
natural world: selection, mutation, recombination (crossover)
and reproduction. EAs have been proved to be simple, but
powerful and robust in solving most of the global numerical
problems. EAs are stochastic algorithms, though they could
not guarantee a single accurate output with the same inputs,
they often perform well on approximating solutions to most
type of problems. Typically, EAs are including Genetic Al-
gorithm (GAs) [1], [2], Evolutionary Programming (EP) [3],
Evolutionary Strategy (ES) [4], Differential Evolution (DE)
[5], Particle Swarm Optimization (PSO) [6], Artificial Bee
Colony (ABC) [7], Grey Wolf Optimizer (GWO) [8] and etc.

Unfortunately, there is no single algorithm that is able to
perform well on all of the problems. Instead of improving
the algorithm itself, more researchers are making their efforts
to integrate different algorithms to enhance the adaptability
and performance. In general, researchers are prone to integrate

complementary characteristics from different algorithms into
a hybrid version [9]–[11]. Another feasible way is to adap-
tively select the appropriate parameters or algorithms for the
problems [12]–[14].

Multi-scale Quantum Harmonic Oscillator Algorithm
(MQHOA) [15] is a population-based metaheuristic algorithm
proposed recently. It utilizes overlapped quantum wavefunc-
tions to track the global optimum of an optimization problem
and has been proved to be effective and efficient to deal
with unimodal and multimodal problems [15]–[17]. However,
as MQHOA adopts a fixed contraction coefficient to narrow
the search scale, it slows down the convergence speed at
the later stage of iterations and easily falls into local opti-
ma. Inspired by the integration and adaptation mechanisms
broadly used in EAs [10]–[14], in this paper, we propose an
adaptive mechanism to improve the convergence performance
of MQHOA. Meanwhile, to further enhance the exploration
and exploitation abilities, ”DE/rand/1” mutation strategy
and selection are integrated into the original MQHOA. The
new version of MQHOA is named Adaptive Multi-scale Quan-
tum Harmonic Oscillator Algorithm based on Evolutionary
Strategy (AMQHOA-ES). The proposed algorithm is executed
on several well-defined benchmark functions. Experimental
results reveal that AMQHOA-ES significantly outperforms the
original MQHOA. The comparative results between the pro-
posed algorithm and some state-of-the-art optimizers indicate
the superiority or competitiveness of the proposed algorithm.

The remainder of this paper is organized as follows. Section
II briefly introduces the related works about the research work.
Followed by the demonstration of the proposed AMQHOA-
ES in Section III. Section IV elaborates the experiments
and compares the computational results with several popular
optimizers. Finally, the conclusion and our future work are
outlined in Section V.

II. RELATED WORK

To the best of our knowledge, there is no single algorithm
performs well on all function evaluations. In order to im-
prove the performance of an algorithm on its effectiveness
and efficiency, researchers have proposed a large number
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of improvement strategies. One of the popular strategies is
integration of different algorithms to enhance the adaptability
and convergence performance. Another notable effort is to
adaptively change the parameters in the course of evolution.

Differential evolution (DE) [5] is one of the most popular
and broadly used evolutionary algorithms. By utilizing the
differential mutation mechanism and crossover operations, DE
is able to solve many unimodal and multimodal problems
efficiently. The ”DE/rand/1” mutation which is broadly
utilized in literatures can be described as

Y = Xa + F (Xb −Xc) (1)

where Y = y1, y2, ..., yn is the new candidate solution, n is the
dimension size, Xa, Xb and Xc are three candidate solutions
randomly selected from the population. F is the amplification
factor of the differential vector. The differential mutation
and crossover mechanisms significantly help to diversify the
population and help the algorithm converge fast.

However, as DE utilizes the fixed amplification parameter F
and the crossover control factor CR, it is not flexible to avoid
premature convergence and getting trapped into local optima
in the later iterations. In order to prevent DE from slowing
down too much at the later evolution stage and getting stuck
at local optima, several efforts have been made in literatures.

In order to flexibly and properly set the control parameters
of DE, Janez Brest [12] proposed a self-adapting control
parameter based on DE (jDE). The jDE utilizes adaptive
parameters F and CR in the course of function evaluations.

Fi,g+1 =

{
Fl + rand1 ∗ Fu, if rand2 < τ1

Fi,g, otherwise
(2)

CRi,g+1 =

{
rand3, if rand4 < τ2

CRi,g, otherwise
(3)

where randi i=[1,2,3,4] are uniformed numbers from [0,1],
τ1 and τ2 are the probabilities to adjust factor F and CR,
respectively. Fl and Fu are the lower and upper values of
F. New mechanisms of F and CR make the algorithm take an
adaptive F from [0.1,1.0] and CR from [0,1]. The experimental
results indicate the competitiveness of jDE [12].

Another adaptive DE optimizer which is named JADE
implements the ”DE/current-to-pbest” mutation strategy was
proposed in [13]. The algorithm utilizes an optional archive
and adaptive mutation factor F and crossover rate CR. The CR
is adaptively generated by

CRi = randni(µCR, 0.1) (4)

where CRi is truncated to [0,1], µCR is updated by

µCR = (1− c)µCR+ cmeanA(SCR) (5)

where c is a positive constant within (0,1), and meanA is the
arithmetic mean. And the mutation factor F is set according
to a Cauchy distribution which helps to diversify the mutation

factors and avoid premature convergence. The two adaptive
parameters help the JADE perform more independently with
optimization problems.

In [10], an adaptive variable difference algorithm based
on particle swarm optimization algorithm (DEPSO) was pro-
posed. The algorithm adopts an improved ”DE/rand/1”
mutation strategy to achieve stronger global exploration ability.
Meanwhile, it utilizes PSO mutation strategy to obtain higher
convergence ability. As a result, the population diversity can
be maintained well at early stage of the evolution, and the
faster convergence speed can be obtained at later stage of the
evolution. DE mutation and PSO mutation mechanisms are
selected according to

SPg =
1

1 + e1−(gmax/g+1)τ
(6)

where τ is a positive constant, g is the generation number. If
rand < SPg , DE/rand/1 is selected; otherwise, PSO mutation
is chosen. In addition, an elite archive is used in DEPSO to
generate offsprings with XP

r2,g-XQ
r3,g , where P and Q are the

elite population and non-elite population respectively. These
operations help DEPSO to be a robust optimizer.

Inspired by the adaptivity and hybridization mechanisms in
literatures [10]–[13], an adaptive scaling mechanism and some
evolutionary strategies are applied in MQHOA to improve
the convergence performance. The principles of MQHOA are
detailed in [15]–[18], and this paper will not repeat them. The
main contribution of this paper can be summarized as follows:

First, a novel adaptive multi-scale quantum harmonic os-
cillator algorithm with evolutionary strategy (AMQHOA-ES)
is proposed. Second, an adaptive mechanism is proposed to
dynamically adjust the search scale in every generation of
iteration which helps enhance the exploration ability. Third,
selection and DE/rand/1 mutation mechanisms are adopted to
enhance the exploitation ability of the proposed algorithm.
Fourth, a feedback of searching space expansion mechanism
is proposed to strengthen the exploitation ability. Fifth, the
performance of the proposed AMQHOA-ES is validated to be
mostly superior to the original MQHOA and competitive to
several popular optimizers.

III. AMQHOA-ES

As MQHOA utilizes a fixed contraction factor λ to re-
duce the search radius [15]–[17], it is effective and efficient
in the evaluation of simple benchmark problems. However,
when solving complex problems, especially for multimodal
functions, MQHOA will easily fall into local optima. In order
to maintain the effectiveness and efficiency of the algorithm,
mechanisms for keeping the diversity of the particles and
jumping out of the local optima should be well considered.

A. Evolutionary strategy

Inspired by the outstanding convergence properties of DE,
the differential mutation mechanism is introduced and inte-
grated to the proposed algorithm. As the ”DE/rand/1” is
mostly used, it is applied in the QHO process in MQHOA.



Within one iteration cycle, if the particles do not improve the
fitness value, there is a chance (rand< Dr) to employ the
DE/rand/1 mutation to generate new candidate solutions. Dr

is defined as

Dr = 1− iterNO/maxFE (7)

where iterNO is the generation number, maxFE is the
maximal runs. A new candidate solution is generated by

Xi+1 = Xr1 + F (Xr2 −Xr3) (8)

where r1, r2 and r3 are randomly selected numbers within
[1,Np], Np is the number of the population. F is randomly
generated by rand(0, 1)D, where D is the dimension.

In addition, in case of premature convergence, a small
probability (rand < Cr) of selecting the reset mechanism is
applied to generate a new candidate solution.

Xi+1 = xl + (xu − xl)rand(D,Np) (9)

where Cr is a small positive constant, xu and xl are the upper
and lower bound of the search space.

B. Adaptive contraction factor
In general, at the beginning of function evaluation, the

algorithm needs to search for more landscapes as much as
possible. Therefore, at this stage the search radius should be
as large as possible. As the iteration proceeds, the particles
gradually assemble near the local optimal landscape. At this
moment, if the search radius is too large, it will be easy to
ignore the potential global optimum and increase the search
time. In this case, the search radius should be narrowed to
increase the possibility of finding the global optimum.

Moreover, when the standard deviation of the population in
every two successive iterations is large, it implies the search
radius should be long enough to help the particles to have more
chances to be close to the global optimum. Contrarily, if the
standard deviation of the two successive generation is small,
it means that the search step should be shorten to obtain more
opportunities to be close to the global optimum. Based on the
aforementioned analyses, the contractive factor is proposed as.

λ =
√
σold/σnew + rand(0, 1)/10 (10)

where σnew and σold are the standard deviation of current and
last generation respectively, rand(0, 1) is a random number
within (0,1) which is helpful to adjust the λ irregularly larger
than 1, and hence increases the diversity of the population.

In addition, in order to prevent long period of premature
convergence, a feedback mechanism is adopted with a selec-
tion mechanism. If the global fitness value does not be changed
within the successive iterations, the feedback mechanism will
be triggered. The current search scale will be redefined as

χi+1 = k1 · χi · λ (11)

where k1 is a constant (k1 > 1), χi is the current search scale.
It indicates that if the iteration stagnates for a long period, the
current search scale will be enlarged and help the particles to
jump out from local optima.

C. Framework of the proposed algorithm

In the proposed algorithm, the ”DE/rand/1” mutation
and selection mechanisms are applied in the QHO process
in MQHOA [15]. The feedback mechanism based on adaptive
search scale is adopted in the M process. The pseudocode of
the proposed algorithm is demonstrated in Algorithm 1.

Algorithm 1: AMQHOA-ES pseudocode
Input: k, Xi, ∈ [dl, du]

D , (i = 1, 2, ..., k), ε, λ, c
Output: the global optimum fbest, the optimal position Xbest

1 initialize k, ε, du, du, λ ;
2 randomly generate xdi, d = 1, 2, ..., D, i = 1, 2, ..., k in
[dl, du];

3 evaluate Fi = f(Xi), F opt=min(Fi), Xopt = Xi,σn;
4 while (iterNO < maxFE) ‖ (F opt < ε) do
5 while (σn < χ) do
6 generate xdj(j = 1, ..., k) from N(xd,i, χ

2);
7 if f(xdj) < Fmax then
8 Fmax = f(xdj), Xmax = xdj
9 else

10 else if rand < Dr then
11 generate a new candidate solution by (8)
12 else if rand < Cr then zij = xdj ;
13 zij = xdi ;
14 end
15 generate mean position Xm of the population ;
16 replace the worst individual with Xm ;
17 update standard deviation σn ;
18 if σnew < σold then
19 update λ by (10) ;
20 σold=σnew ;
21 end
22 if σnew < χ then
23 sNO=sNO+1;
24 else if sNO=20 then
25 χ = k1 ∗ χ ∗ λ
26 else if sNO=30 then χ = k2 ∗ χ ∗ λ, sNO=0 ;
27 end
28 end
29 χi+1 = χi/λ
30 end
31 Output F opt, Xopt ;

In Algorithm 1, k is the population size , ε is the calculation
precision, λ denotes the scale reduction factor, fbest is the best
fitness in current iteration cycle, Xbest is the best solution,
Xopt and F opt are the global optimal solution and fitness value
respectively. iterNO is the number of function evaluation,
σn is the current standard deviation of the population, χ is
the current search length. N(xdi, χ

2) is a normal distribution,
Fmax is the largest fitness value in the current iteration cycle.
Dr is defined in (7), Cr is a positive constant, F is adjusted
by (8), k1 and k2 are two positive amplification factors.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the effectiveness and efficiency of the
proposed algorithm are evaluated. Several well-defined bench-
mark functions are utilized to compare the performances
of AMQHOA-ES with the original MQHOA and MQHOA
with truncated mean stabilization strategy (TSMQHOA) [16].



Meanwhile, several popular methods such as Stud Genetic
Algorithm (StudGA) [19], Particle Swarm Optimization ver-
sion 2011 (SPSO2011) [20], Comprehensive Learning Particle
Swarm Optimization (CLPSO) [21], jDE [12], DEPSO [10],
Imperialist Competitive Algorithm (ICA) [22], [23], are ap-
plied to compete with AMQHOA-ES.

A. Benchmark functions and parameter settings

In order to validate the characteristics of the proposed
algorithm, several unimodal and multimodal benchmarks from
IEEE Congress on Evolutionary Computation [24], [25] are
executed under the same conditions. Function f1-f7 are uni-
modal benchmarks and f8-f12 are multimodal functions. The
test benchmark functions are listed in Table I.

Parameters used in every algorithm are set as same as
possible. The number of particles (population size) is defined
Np=20. The maximum function evaluation (run times) is set
according to the rule used in CEC2017 [25] and is defined
as maxFE=10000 ∗ dimension. The search space [dl, du]D

for each benchmark function is set according to Table I. The
calculation accuracy (error) is set ε = 0.000001. Special pa-
rameters used in the compared algorithms are set accordingly.

For StudGA [19], the crossover probability is defined 1.0,
the number of points in each crossover is 1, the mutation
rate is set 0.01, maintaining 2 best individuals from one
generation to the next. For SPSO2011 [20], the inertia weight
ω = 1/2log(2), the learning factor c1 = c2 = 0.5 + log(2) .
The parameters used in CLPSO [21] are the inertia weight
linearly declines from 0.9 to 0.2, the accelerate constant
c1 = c2 = 1.49445. For jDE [12], parameters in (2) and (3) are
Fl=0.1, Fu=0.9, τ1=τ2=0.1. For DEPSO [10], the maximum
of DE population and PSO population is 5. For ICA [23],
the number of Empires is 10, the selection pressure α=1,
the assimilation coefficient β=1.5, the revolution probability
is defined 0.5, the revolution rate µ= 0.1, the colonies mean
cost coefficient ζ=0.2. For TSMQHOA [16], the truncated
probability is 10%. The contraction coefficient in MQHOA
and TSMQHOA is set λ = 2.0. For AMQHOA-ES, Cr, k1 and
k2 are experimentally defined 0.05, 1.2 and 1.6, respectively.

Meanwhile, the stopping criteria for all of the algorithms are
uniformly defined as: the ε is less than 1e-6 or the maxFE is
larger than 10000*D. All of the algorithms are coded in Matlab
R2016a and executed on the same personal computer with an
Intel core(TM) i5-4200U 64 bit, 2.3 GHz and Windows 7
operation system.

B. Experimental results

1) Fitness computation: To estimate the effectiveness and
efficiency of the proposed algorithm, several items are consid-
ered such as Best, the best fitness; Mean, the average of the
fitness values obtained by the population; Std, the standard
deviation of the fitness values; Time, the CPU run time (time
from start to finish the function evaluation) and IterNO, the
function evaluation number (FE). Without losing of generality,
the experiments were executed on 100-dimensional function
evaluations. Meanwhile, to reveal the differences among the

AMQHOA-ES and some congeneric algorithms, the exper-
imental results are compared with MQHOA, TSMQHOA
[16] and several state-of-the-art optimizers. Parameters are set
according to Section IV-A. The experimental results are the
average of 50 independent trials and listed in Table II.

As seen in Table II, in the evaluation of function f1-
f5, the experimental results obtained by AMQHOA-ES are
much smaller than TSMQHOA and MQHOA, and outperform
several state-of-the-art optimizers. In the evaluation of function
f1, every algorithm is able to find the global optimum except
for CLPSO and DEPSO, but AMQHOA-ES requires the least
evaluation times (1.488E+04). The experimental results of
function f2 indicate that AMQHOA-ES obtains better records
than MQHOA and TSMQHOA on the best fitness, the mean
fitness, the standard deviation, the total evaluation number
and CPU run time. In the evaluation of function f3 and f4,
AMQHOA-ES obtains the best results of the mean fitness,
the iteration times and CPU run time. In the evaluation of
function f5, AMQHOA-ES is the only technique which is able
to find the global optimum. Although none of the algorithms
is capable of locating to the global optimal landscape in the
evaluation of function f6, AMQHOA-ES gains the best results
on the best fitness value and the mean fitness value. The
evaluation results on f7 indicate that jDE is the only technique
which is able to find the global optimum, and AMQHOA-ES
outperforms the rest of the algorithms.

The results in the evaluation of f8 indicate that ICA and
AMQHOA-ES are the only two algorithms which are capable
of finding the global minimum. AMQHOA-ES obtains smaller
fitness value and mean fitness value, and ICA requires smaller
iteration number. In the evaluation of function f9, AMQHOA-
ES is the only algorithm which is able to find the global
optimum before the stopping criteria are satisfied.

The results of function f10 show that jDE, ICA, TSMQHOA
and AMQHOA-ES are the four techniques which are able
to locate to the global optimal landscape. Meanwhile,
AMQHOA-ES obtains the smallest mean fitness and iteration
number, and TSMQHOA spends the least CPU run time.
None of the algorithms is able to find the global optimum
within the stopping criteria in the evaluation of function f11.
Comparatively, StudGA obtains better results with the best
fitness of 1.982E-02, but other algorithms gain their best
fitness values larger than that. In the evaluation of function
f12, most of the algorithms are able to find the global optimum
except for CLPSO and DEPSO. The iteration numbers gained
by AMQHOA-ES and TSMQHOA are much smaller than that
of MQHOA and other algorithms.

2) Fitness-iteration comparison: In Fig.1, the X-axis rep-
resents the number of evaluation, the Y-axis indicates the
fitness value (semilogy). As seen in Fig.1, overall, the fitness-
iteration curves of AMQHOA-ES are the lowest in the eval-
uation of the benchmark functions except for Fig.1(h) and
Fig.1(k), which indicates the superiority of AMQHOA-ES in
the evaluation of function f1-f7, f9-f10 and f12. However, the
curves of MQHOA are mostly on the top of other algorithms,
which implies its hardness of converging. Meanwhile, in Fig.1



Table I Benchmark functions.

Function Name Benchmark Function D Range Optimum
Sphere f1 =

∑n
i=1 x

2
i n [-5.12,5.12] f(0, ..., 0) = 0

Sum Squares f2 =
∑n−1
i=0 ix2

i n [-10,10] f(0, ..., 0) = 0

Rotated Hyper-Ellipsoid f3 =
∑n
i=1(

∑i
j=1 xi)

2 n [-65.54,65.54] f(0, ..., 0) = 0

Ellipsoidal f4 =
∑n
i=1(xi − i)

2 n [-100,100] f(1, 2, ...n) = 0

Zakharov f5 =
∑n
i=1 x

2
i + (

∑n
i=1 0.5ixi)

2 + (
∑n
i=1 0.5ixi)

4 n [-5,10] f(0, ..., 0) = 0

Rosenbrock f6 =
∑n−1
i=1 [100(xi+1 − x2

i )
2 + (1− xi)2] n [-5,10] f(1, ..., 1) = 0

Bent Cigar f7 = x2
i + 106

∑n
i=2 x

2
i n [-10,10] f(0, 0) = 0

Ackley f8 = −20exp(−0.2
√

1
n

∑n
i=1 x

2
i )− exp(

1
n

∑n
i=1 cos(2πxi)) + 20 + e n [−32.77, 32.77] f(0, ..., 0) = 0

Griewank f9 = 1
4000

∑n
i=1 x

2
i −

∏n
i=1 cos

( xi√
i

)
+ 1 n [-100,100] f(0, ..., 0) = 0

Levy
f10 = sin2(πω1) +

∑n−1
i=1 (ωi − 1)2[1 + 10sin2(πωi + 1)] + (ωn − 1)2[1 +

sin2(2πωn)],where ωi = 1 +
xi−1

4 ,for all i = 1, ..., n
n [-10,10] f(1, ..., 1) = 0

Rastrigin f11 = 10n+
∑n
i=1[x

2
i − 10 cos(2πxi)] n [-5.12,5.12] f(0, ..., 0) = 0

Modified Schwefel f12 = 418.9829×D −
∑n
i=1 g(zi) zi = xi + 420.9687462275036, where n [-5.12,5.12] f(0, ..., 0)

g(zi) =


zisin(|zi|1/2) if |zi| ≤ 500

(500−mod(zi, 500))sin(
√

(|500−mod(zi, 500)|)−
(zi−500)2

10000n if zi > 500

(mod(|zi|, 500)− 500)sin
√

(|mod(|zi|, 500)− 500|)− (zi+500)2

10000n if zi < −500

=0.000012727*D

(a), (c), (d), (i), (j) and (l), the fitness-iteration lines of
AMQHOA-ES are much lower than other techniques, followed
by TSMQHOA, which indicates the better convergence perfor-
mance of AMQHOA-ES compared with that of TSMQHOA
and other algorithms in the evaluation of function f1, f3, f4,
f9, f10 and f12.

The curves of AMQHOA-ES and TSMQHOA in Fig.1(b)
are much lower than other algorithms within the first 3.0×104

iterations. However, after that, both AMQHOA-ES and ICA
outperform TSMQHOA and other methods. In the evaluation
of function f5, AMQHOA-ES is the only method which is
able to converge to the global optimum within the stopping
criteria. The curves of ICA and SPSO2011 are much higher
than AMQHOA-ES but lower than MQHOA, jDE, CLPSO,
TSMQHOA and DEPSO in Fig.1(e). As seen in Fig.1(f),
none of the algorithms is able to find the global minimum
before the stopping criteria are met. Comparatively, the fitness-
iteration lines of AMQHOA-ES and TSMQHOA outperform
other methods. The fitness-iteration line of AMQHOA-ES in
Fig.1(g) remains the lowest from the beginning to the end.
Although the curve of jDE is higher than TSMQHOA, jDE
and SPSO2011, it gradually goes down to be lower than
TSMQHOA, jDE and SPSO2011 after 2.2× 105 iterations.

The iteration curves of AMQHOA-ES in the evaluation of
function f8 and f11 are not the lowest but still competitive. In
Fig.1(h), most algorithms are not able to find the global opti-
mum before meeting the stopping criteria, except for ICA and
AMQHOA-ES. The curve of ICA is declining smoothly in the
first 1.6×105 runs, but after that, it goes down rapidly. Similar
situation happens to AMQHOA-ES which drops slowly in the
first 2.5 × 105 iterations, but declines sharply after that. In
the evaluation of function f11 in Fig.1(k), though AMQHOA-
ES and TSMQHOA outperform other algorithms in the first
5.0×104 iterations, their priorities do not persist for long. The
curves of StudGA, jDE and SPSO2011 drop quickly while that
of AMQHOA-ES and TSMQHOA decline smoothly.

3) Wilcoxon rank-sum test: Further, we apply two-tail
Wilcoxon rank-sum tests to calculate p-values of AMQHOA-
ES and other algorithms (significant level α=0.05) to evaluate
the distributional differences between each other. The com-
pared values of each algorithm are the best fitness obtained
from 50 independent trials. The null hypothesis is that H0: the
observations come from differently distributed populations.

The experimental results in Table III reveal that the p-
values of AMQHOA-ES and other algorithms are mostly less
than 0.05, which indicates rejecting the null hypotheses that
the paired samples are not distributed significantly different.
Conversely, the p-values of AMQHOA-ES v.s MQHOA in
f1 (6.763E-02), f2 (1.670E-01), f5 (5.771E-01), f9 (5.808E-
01) and f10 (5.390E-01) are larger than 0.05 which indicate
accepting the null hypotheses that the paired samples are
distributed significantly different.

C. Brief discussion

Based on the experimental results in Table II, Fig.1 and
Table III, we can draw the conclusion that AMQHOA-ES
outperforms MQHOA and TSMQHOA in the trialed bench-
mark function evaluations. The results in Table II show that
AMQHOA-ES is effective and efficient in most cases. The
fitness-iteration curves in Fig.1 indicate that AMQHOA-ES
is superior or at least competitive in the evaluation of most
applied benchmark functions. Further, the results in Table
III validate the significant improvements of the proposed
algorithm compared with MQHOA and TSMQHOA.

V. CONCLUSION

This paper proposes an adaptive multi-scale quantum har-
monic oscillator algorithm based on evolutionary strategies.
The evolutionary strategies such as selection and DE/rand/1
help to diversify the population and enhance the exploration
ability of the proposed algorithm. The adaptive scaling mech-
anism improves the exploitation ability of AMQHOA-ES. The
experimental results are compared with the original MQHOA



Table II Detailed computational results obtained by StudGA, SPSO2011, CLPSO, jDE, DEPSO, ICA, MQHOA, TSMQHOA
and AMQHOA-ES. The records are the average from 50 independent trials.

Func. Item StudGA SPSO2011 CLPSO jDE DEPSO ICA MQHOA TSMQHOA AMQHOA-ES
Best 0.000E+00 9.798E-07 9.226E-01 9.348E-07 1.650E-03 9.475E-07 9.759E-07 9.653E-07 9.360E-07
Mean 1.247E+01 1.204E-06 2.993E+01 1.079E-06 1.650E-03 4.488E-01 1.101E-06 1.091E-06 9.724E-07

f1 Std 1.183E+01 1.091E-07 3.244E+01 6.438E-08 0.000E+00 1.391E+00 5.103E-08 4.502E-08 2.510E-08
IterNO 2.892E+05 7.298E+04 1.000E+06 1.985E+05 1.000E+06 5.600E+04 8.958E+04 1.668E+04 1.488E+04
Time 2.629E+02 2.033E+01 5.670E+01 3.828E+00 2.645E+01 5.493E+00 2.927E+00 5.747E-01 9.855E-01
Best 0.000E+00 3.355E+00 7.052E+01 9.437E-07 1.534E-01 9.220E-07 1.047E-06 3.641E+00 1.000E-06
Mean 2.394E+03 3.416E+00 3.539E+03 1.572E-06 1.534E-01 9.655E+01 1.060E-06 3.641E+00 1.001E-06

f2 Std 2.625E+03 2.596E-02 4.253E+03 4.318E-07 2.776E-17 3.008E+02 6.932E-09 8.657E-16 1.116E-09
IterNO 3.936E+05 1.000E+06 1.000E+06 2.900E+05 1.000E+06 1.025E+05 8.596E+05 1.000E+06 3.977E+05
Time 3.226E+03 2.038E+03 1.336E+02 6.366E+00 3.170E+01 1.180E+01 7.113E+01 3.867E+01 2.836E+01
Best 5.452E+02 1.236E-03 6.958E+05 9.993E-07 1.731E+01 9.497E-07 9.796E-07 9.632E-07 9.985E-07
Mean 8.314E+06 1.560E-03 2.549E+07 1.042E-06 1.731E+01 3.466E+05 1.133E-06 1.152E-06 1.024E-06

f3 Std 8.547E+06 1.391E-04 2.883E+07 2.812E-08 3.553E-15 1.153E+06 8.813E-08 7.191E-08 1.913E-08
IterNO 1.000E+06 1.000E+06 1.000E+06 3.769E+05 1.000E+06 1.180E+05 1.494E+05 2.932E+04 2.336E+04
Time 8.080E+03 2.089E+03 2.532E+02 4.718E+01 1.341E+02 7.419E+01 3.086E+01 4.138E+00 3.994E+00
Best 8.326E-01 1.154E-05 5.257E-03 9.999E-07 1.148E+03 7.983E-07 9.775E-07 9.892E-07 9.592E-07
Mean 8.834E+03 1.434E-05 5.101E-01 1.009E-06 1.148E+03 1.768E+02 1.092E-06 1.088E-06 9.970E-07

f4 Std 1.032E+04 1.240E-06 1.180E+00 3.215E-09 4.548E-13 5.722E+02 4.525E-08 4.960E-08 2.076E-08
IterNO 1.000E+06 1.000E+06 1.000E+06 3.840E+05 1.000E+06 1.571E+05 1.160E+05 2.542E+04 1.964E+04
Time 7.461E+03 6.969E+02 1.426E+02 8.101E+00 3.009E+01 1.399E+01 8.326E+00 1.389E+00 1.306E+00
Best 1.036E+02 2.478E+02 8.292E+04 4.698E+01 9.238E+02 2.987E-02 1.429E-04 2.077E+02 9.989E-07
Mean 6.334E+09 8.737E+08 1.309E+10 4.705E+01 9.238E+02 2.957E+07 1.448E-04 2.077E+02 1.010E-06

f5 Std 1.975E+10 5.249E+09 4.226E+10 5.234E-02 4.548E-13 1.254E+08 9.321E-07 3.363E-14 7.521E-09
IterNO 1.000E+06 1.000E+06 1.000E+06 1.000E+06 1.000E+06 1.000E+06 8.776E+05 1.000E+06 6.249E+05
Time 1.002E+03 1.646E+03 8.409E+01 2.003E+01 3.010E+01 8.888E+01 3.204E+01 3.822E+01 4.450E+01
Best 3.302E+02 6.810E+01 1.123E+03 8.480E+01 6.320E+02 1.560E+02 9.871E+01 1.850E+02 7.912E-01
Mean 1.709E+05 6.810E+01 6.977E+04 8.480E+01 6.320E+02 3.056E+02 9.871E+01 1.850E+02 1.202E+01

f6 Std 2.984E+05 6.762E-05 8.609E+04 9.263E-04 1.137E-13 4.715E+02 7.058E-04 3.048E-14 4.896E+01
IterNO 1.000E+06 1.000E+06 1.000E+06 1.000E+06 1.000E+06 1.000E+06 1.000E+06 1.000E+06 1.000E+06
Time 8.307E+02 3.695E+02 1.357E+02 9.323E+01 1.032E+02 1.709E+02 1.094E+02 1.168E+02 1.587E+02
Best 8.000E+04 9.199E+00 1.927E+08 9.858E-07 2.387E+03 9.841E+01 1.100E+04 3.510E+02 1.919E-05
Mean 3.656E+09 9.199E+00 8.600E+09 1.288E-06 2.387E+03 9.440E+07 1.110E+04 3.510E+02 4.472E+06

f7 Std 4.208E+09 9.245E-07 9.364E+09 1.702E-07 4.548E-13 2.819E+08 3.427E-03 1.219E-13 1.949E+07
IterNO 1.000E+06 1.000E+06 1.000E+06 4.553E+05 1.000E+06 1.000E+06 1.000E+06 1.000E+06 1.000E+06
Time 7.680E+02 2.881E+02 5.054E+01 9.645E+00 3.164E+01 9.070E+01 3.180E+01 3.919E+01 7.791E+01
Best 3.463E-01 2.479E+00 4.784E+00 4.436E+00 3.007E+00 9.924E-07 1.094E-02 2.426E+00 9.845E-07
Mean 5.926E+00 2.479E+00 9.778E+00 4.436E+00 3.007E+00 6.403E-01 1.140E-02 2.426E+00 1.007E-06

f8 Std 3.756E+00 4.567E-15 4.182E+00 8.882E-16 8.882E-16 1.773E+00 1.495E-03 8.189E-16 5.498E-09
IterNO 1.000E+06 1.000E+06 1.000E+06 1.000E+06 1.000E+06 2.946E+05 1.000E+06 1.000E+06 3.718E+05
Time 2.091E+03 2.306E+02 9.461E+01 9.780E+01 9.840E+01 1.235E+02 6.640E+01 9.991E+01 1.278E+02
Best 1.332E-01 4.089E-03 3.661E+00 1.601E-01 2.092E-04 4.188E-02 4.534E-03 1.124E-02 9.984E-07
Mean 3.803E+01 4.220E-03 1.051E+02 1.601E-01 2.092E-04 4.673E+00 4.535E-03 1.124E-02 1.017E-06

f9 Std 3.838E+01 6.476E-05 1.147E+02 8.327E-17 1.314E+01 4.823E+00 2.800E-08 2.420E-17 5.421E-09
IterNO 1.000E+06 1.000E+06 1.000E+06 1.000E+06 1.000E+06 1.000E+06 1.000E+06 1.000E+06 3.332E+04
Time 7.786E+03 2.024E+03 2.638E+02 2.663E+01 3.996E+01 9.335E+01 9.743E+01 4.681E+01 3.932E+00
Best 6.250E-04 2.716E+00 4.942E+00 8.746E-07 3.631E-04 9.441E-07 4.527E+00 9.980E-07 9.748E-07
Mean 9.728E+01 2.716E+00 2.107E+02 1.285E-06 3.631E-04 1.050E-01 4.527E+00 1.063E-06 1.002E-06

f10 Std 9.501E+01 2.809E-06 2.338E+02 1.794E-07 1.084E-19 3.360E-01 1.576E-06 2.658E-08 1.183E-08
IterNO 1.598E+07 4.946E+06 1.000E+06 1.746E+05 1.000E+06 5.174E+04 7.101E+06 1.630E+04 1.284E+04
Time 1.367E+05 9.506E+03 1.135E+04 1.053E+01 6.865E+01 3.764E+01 2.245E+03 1.306E+00 1.478E+00
Best 1.982E-02 1.095E+02 4.191E+02 9.081E+01 2.533E+02 2.627E+02 7.677E+02 7.263E+01 1.538E+02
Mean 3.051E+01 2.570E+02 8.345E+02 9.081E+01 2.533E+02 2.660E+02 7.677E+02 7.263E+01 1.573E+02

f11 Std 2.468E+01 1.968E+02 3.003E+02 0.000E+00 2.842E-14 8.377E+00 1.716E-13 0.000E+00 1.372E+01
IterNO 4.141E+05 1.000E+06 1.000E+06 1.000E+06 1.000E+06 1.000E+06 1.000E+06 1.000E+06 1.000E+06
Time 3.510E+02 1.492E+03 7.154E+01 2.374E+01 3.519E+01 9.603E+01 3.871E+01 4.363E+01 7.968E+01
Best 1.273E-03 1.273E-03 1.066E-01 1.273E-03 1.570E-03 1.273E-03 1.273E-03 1.273E-03 1.273E-03
Mean 1.544E+00 1.273E-03 3.751E+00 1.273E-03 1.570E-03 1.514E-01 1.273E-03 1.273E-03 1.273E-03

f12 Std 1.468E+00 2.588E-08 4.118E+00 6.333E-09 0.000E+00 6.499E-01 1.941E-08 2.308E-09 1.064E-09
IterNO 3.031E+05 7.090E+04 1.000E+06 1.933E+05 1.000E+06 6.134E+04 8.613E+04 2.192E+00 2.273E+00
Time 2.452E+03 8.698E+01 6.464E+02 2.004E+01 1.106E+02 8.225E+00 5.128E+01 1.804E+04 1.462E+04

The bold mark indicates that they are the best results among the algorithms.
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Fig. 1: Fitness-iteration evaluation on 100-dimensional benchmark functions. The maximal iteration in the horizontal axis is
defined as the minimal iterations obtained by any algorithm when it finds the global optimum.

and TSMQHOA, showing the superiority of the proposed
algorithm in most cases. Several well-known numerical global

optimizers such as the StudGA, SPSO2011, CLPSO, jDE,
DEPSO and ICA are compared with AMQHOA-ES. The



Table III Wilcoxon rank-sum test on benchmark functions among StudGA, SPSO2011, CLPSO, jDE, DEPSO, ICA,
MQHOA, TSMQHOA and AMQHOA-ES. Stopping criteria: σs 6 0.000001 or the generation count > maxFE. The
sample values for each of the compared algorithm are from 50 independent trials.

Func. StudGA SPSO2011 CLPSO jDE DEPSO ICA MQHOA TSMQHOA
f1 3.284E-20 5.785E-03 6.990E-18 3.360E-01 7.022E-18 3.257E-01 6.763E-02 4.780E-02
f2 1.071E-20 2.981E-18 2.973E-18 9.293E-15 2.981E-18 4.890E-11 1.670E-01 2.981E-18
f3 6.742E-18 7.030E-18 6.988E-18 3.501E-01 7.030E-18 5.035E-01 1.292E-01 3.378E-01
f4 7.012E-18 7.041E-18 7.023E-18 3.766E-03 7.049E-18 4.704E-02 2.568E-02 2.977E-01
f5 6.683E-18 6.683E-18 6.642E-18 7.097E-18 6.683E-18 5.449E-10 5.771E-02 6.683E-18
f6 7.491E-18 6.428E-12 7.041E-18 1.272E-12 7.055E-18 3.772E-10 9.895E-13 1.425E-16
f7 1.967E-16 4.793E-05 1.429E-14 7.781E-13 1.435E-14 5.586E-10 1.432E-14 6.619E-12
f8 4.291E-19 7.055E-18 7.049E-18 7.449E-09 7.066E-18 6.863E-18 5.553E-12 7.057E-18
f9 6.988E-18 1.042E-02 6.966E-18 4.571E-10 2.352E-02 8.334E-01 5.808E-01 1.319E-02
f10 4.521E-11 7.505E-01 2.971E-11 7.115E-01 2.995E-11 4.915E-01 5.390E-01 7.448E-01
f11 4.732E-20 1.959E-09 6.999E-18 8.406E-07 7.064E-18 7.947E-18 7.042E-18 2.321E-17
f12 NAN∗ 2.628E-23 3.296E-20 NAN 3.310E-20 2.628E-23 2.628E-23 NAN

*NAN indicates the p-value is too small and out of calculation precision.

comparative results reveal the superiority or competitiveness
of the proposed algorithm. In the near future, more com-
plementary techniques will be considered to improve the
performance of AMQHOA-ES. Meanwhile, the application of
the proposed algorithm to real-world optimization problems is
on our schedule.
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