
Evolutionary algorithms for the Traveling Car
Renter with Passengers

Gustavo de Araujo Sabry∗, Marco Cesar Goldbarg†, Elizabeth Ferreira Gouvêa Goldbarg‡,
Matheus da Silva Menezes§ and José Gomes Lopes Filho¶
∗†‡¶Departamento de Informática e Matemática Aplicada

Universidade Federal do Rio Grande do Norte
Natal, Brazil

Email: guga sabry@hotmail.com∗, gold@dimap.ufrn.br†, beth@dimap.ufrn.br‡, zefilho@msn.com¶
§Departamento de Ciências Naturais, Matemática e Estatı́stica

Universidade Federal Rural do Semi-Árido
Mossoró, Brazil

Email: matheus@ufersa.edu.br§

Abstract—The Traveling Car Renter with Passengers (CaRSP)
is a generalization of the Traveling Salesman Problem (TSP)
where the tour can be decomposed into contiguous paths that are
travelled by different rented cars and allows the vehicles to be
shared with other passengers to reduce expenses. The definition of
the proposed problem involves the combination of two important
concepts that are currently being widely used in the field of
transportation: car rental and ride-sharing. This paper defines
the CaRSP and presents four evolutionary algorithms to solve
it: a genetic algorithm, a memetic algorithm and hybridizations
of both using transgenetic vectors (transposons and recombinant
plasmids). The metaheuristics are tested in a set of 30 Euclidean,
non-Euclidean, symmetric and asymmetric instances. We use a
framework to define the best parameter settings for each algo-
rithm. Computational experiments are performed in two stages
to ensure the algorithms are compared properly. The obtained
results are submitted to statistical analysis. An algorithmic study
is reported presenting the first heuristic results for CaRSP.

Index Terms—Traveling Car Renter with Passengers, Evolu-
tionary Computation, Memetic Algorithm, Genetic Algorithm

I. INTRODUCTION

The Traveling Car Renter with Passengers (CaRSP) is a
variant of the Traveling Salesman Problem (TSP). It allows
the salesman to rent and drive different vehicles. Besides, the
salesman can give rides to passengers and share trip costs.
Nowadays, we observe an increment of services such as car
rental and ride-sharing in transportation. According to [17], the
global car rental market is expected to register a compound
annual growth rate (CAGR) of approximately 7.5% between
2019 and 2024. In this same period, the ride-sharing market
is expected to register a CAGR of 19.2% [18].

In 2017, the transportation sector was the largest source
(29%) of greenhouse gas emissions in the USA and most of
this air pollution was caused by passenger cars and light-duty

This research was supported by CNPq (Conselho Nacional de Desen-
volvimento Cientı́fico e Tecnológico), Brazil, under grants 302387/2016-1,
306702/2017-7, and 420999/2018-3 and by UFERSA (Universidade Federal
Rural do Semi-Árido). The computational experiments were supported by
NPAD (High Performance Computing Center) at UFRN (Universidade Federal
do Rio Grande do Norte).

trucks, leading to serious negative health effects [6]. Single-
occupant trips, which in 2019 corresponded to approximately
76.4% of the american people that drives to work [2], com-
bined with the high number of vehicles on the road increases
the traffic congestion, gas emissions, fuel consumption and
stress among people [26].

According to [25], these effects could be avoided by the
efficient use of rented vehicles combined with the practice of
ride-sharing. Some methodologies developed for the car rental
industry may be adapted to meet future needs of shared-use
vehicle systems [21].

In this paper, we investigate CaRSP, the ride-sharing version
of the Traveling Car Renter (CaRS). It combines characteristics
of both CaRS – classified as NP-hard [10]; and aspects of ride-
sharing problems that are equally NP-hard [1].

CaRS is a generalization of the TSP, proposed by [9], that
allows several cars with different costs to be available for
the salesman’s tour. An extra fee is charged when a car is
delivered to a city different from the one it was rented. The
objective is to find a route and a sequence of rented cars that
minimize the travel costs and extra fees paid by the salesman.
Heuristic approaches for CaRS include greedy randomized
adaptive search, evolutionary algorithms and local search [4],
[9], [10]. Mathematical formulations are proposed in [11].

In CaRSP, the salesman is allowed to share trip expenses
with passengers. There is a list of potential passengers de-
manding rides from different cities to several destinations.
Each one has a budget, i.e., a maximum fee that he/she
agrees to pay. The objective is to find a route, a sequence
of rented cars, and a set of passengers that minimize the
salesman’s travel costs. The problem investigated in this study
is deterministic and static, i.e., the problem parameters are
known with certainty and do not change.

An analysis about CaRSP and its subproblems is presented
in [23] and mathematical formulations are proposed in [22].

Evolutionary algorithms are commonly used and have
great performance solving combinatorial problems similar to
CaRSP, as shown in [4], [9], [10]. The transgenetic vec-

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

tors manipulate the chromosomes, modifying their codes and
promoting the random variation that is necessary for the
exploration and exploitation of the search space. They are
capable of performing a local search on chromosomes allowing
the overall search to become less stagnant over time and has
proven to be efficient operators as shows [10], [12].

This study introduces CaRSP and proposes four evolution-
ary algorithms: a genetic algorithm, a memetic algorithm,
and hybridizations of them with transgenetic vectors. The
experiments used a set of 30 instances containing from 14 to
100 cities, from 2 to 5 cars, and from 51 to 290 passengers.
We present the first heuristic results for CaRSP.

The problem is defined in Section II. Section III describes
the proposed metaheuristics. The results of the computational
experiments and the statistical analysis used to compare the
performance of the proposed algorithms are presented in
Section IV. Finally, some conclusions and future research
directions are addressed in Section V.

II. PROBLEM DESCRIPTION

We consider graph G = (N,M), where N is the set of
nodes (cities) and M is the set of arcs (roads). The salesman
drives rented cars along the tour. A set of cars, C, is available
to be rented and delivered in any city.

Specific operational attributes are associated with each car,
including fuel consumption, toll payment and other rental
costs. Whenever there is a vehicle exchange, an extra fee
must be paid, exclusively by the salesman, related to the
company cost of returning a car from the city it was delivered
back to the city it was rented. The vehicles have matrices of
operational costs and return rates with different costs. Each
car has its specific capacity, i.e., the number of passengers it
can transport. Each car can only be rented once.

There is a set of potential passengers, L, i.e., people
demanding rides. Each l ∈ L demands a ride from an origin
to a destination, and agrees to pay, at most, a pre-defined fee
for the trip. Once on board, the passenger can only leave the
vehicle at his/her destination.

The cost of traveling each arc is divided equally among the
occupants of the car traversing it, including the driver. The tour
begins and ends at city 1, the home-city of the salesman. The
objective is to find the minimum cost spanning cycle regarding
the viewpoint of the driver. CaRSP involves inter-connected
decisions about the sequence of the cities, the order of used
vehicles, the cities where the cars are rented/delivered and
the decision of which passengers must be transported. These
aspects must be considered to reach the best solution.

Figure 1 illustrates a solution for an instance with six
cities where the salesman drives two different cars along the
tour: cars 2 and 1. There is no need to use all available cars.
Every city is visited once and the tour’s initial vertex is city 1.
Initially, car 2 is rented and used to travel the following arcs:
(1,5), (5,6), (6,3), and (3,4). In city 4, there is a car exchange
and car 2 is returned to the city it was rented, i.e., city 1. Car
1 is rented and used to continue the tour through the following
arcs: (4,2) and (2,1). The tour ends in the initial vertex and

car 1 must be returned from city 1 to city 4.
Along the tour, the salesman must reduces his costs by

sharing the seats of the used vehicles. The total of passengers
on board at each arc must respect the used vehicle’s capacity.
A passenger on board must be picked-up at his/her origin and
dropped-off at his/her destination respecting his/her budget.
Some passengers are not able to travel since their destinations
are visited before their origins. Passenger 4 travels arcs (3,4),
(4,2), and (2,1). Passenger 6 travels arcs (5,6), (6,3), and (3,4).
Passenger 9 travels arcs (5,6) and (6,3). Passengers 11 and
13 travels arcs (5,6), (6,3), (3,4), and (4,2). Budget and car
capacity constraints must be satisfied.

The cost to travel each arc is calculated by dividing its
operational cost by the total of passengers on board traversing
it, including the salesman. The cost of the tour is the sum of
the cost of each traveled arc. The objective is to minimize the
cost of the solution, which is given by the sum of the cost of
the tour and the fees of all returned cars along the trip.

Since the TSP is NP-hard, as demonstrated by [8], and
is a special case of the CaRSP with only one car and no
passengers, the latter also belongs to NP-hard.

III. GENETIC AND MEMETIC ALGORITHMS

Genetic Algorithms (GA), proposed by [13], are inspired by
Darwinism. It is a metaheuristic that has biological inspiration,
emphasizing the simulation of evolutionary processes in artifi-
cial systems. It uses a population-based approach, considering
the aspects of reproduction, recombination, mutation, and
natural selection.

Memetic Algorithms (MA), proposed by [19], are inspired
by Lamarckism and can be defined as hybrid evolutionary
algorithms [24]. They incorporate local search strategies into
the GA to combine the advantages of efficient heuristics with
population-based evolution [5]. This concept states that the
memetic approach considers a non-genetic improvement in
the population with self-reproduction, inherited characteristics,
random changes in the genotype, and survival regulated by a
combination of abilities.

Transgenetic Algorithms (TA), proposed by [12], are in-
spired on the mutualistic intra-cellular endosymbiotic evolu-
tion. This type of biological evolution involves a host cell,
endosymbionts fixed in the host’s cytoplasm and vectors, or
mechanisms, that allow endosymbionts and host to exchange
genetic information. In the natural endosymbiotic evolution,
endosymbionts are finally absorbed by their hosts with the
formation of a new organism. In the computational metaphor
this event is characterized by the stagnation of the fitness or
the convergence of the population of chromosomes [10].

Transposons and recombinant plasmids are two operators
from the TAs whose purpose is to reduce stagnations. The
transposon is a transgenetic vector that identifies a region of
an endosymbiont and manipulates the latter by rearranging the
genes of the identified region [10]. The recombinant plasmid
combines information from the host within an endosymbiont.
It may partially or fully consist of a heuristic, such as a
constructive one. Transposons and recombinant plasmids are

Fig. 1. Example of solution for the CaRSP

operators used within the algorithms presented in this study.
The following sections describe the GAs and MAs proposed

in this study. Section III-A defines the proposed algorithms.
Section III-B presents the structure of a chromosome. The

method used to generate the initial population is reported
in Section III-C. Sections III-D, III-E and III-F describes,
respectively, crossover, mutation, and local search procedures.
Section III-G defines the approaches used for the transposon
and recombinant plasmid.

A. Proposed algorithms

We implemented four evolutionary algorithms: GA1, GA2,
MA1, and MA2. Their general features are defined as follows.
• GA1 – Traditional GA;
• GA2 – GA1 hybridized with transgenetic vectors;
• MA1 – Traditional GA hybridized with local search;
• MA2 – MA1 hybridized with transgenetic vectors.

The pseudocode of the proposed metaheuristics is presented
in Algorithm 1 and explained in the subsequent sections.
The procedure NaturalSelection (step 21) remove the worst
chromosomes in the population.

B. Chromosome

To represent a CaRSP solution, a chromosome must contain
information about the sequence of cities visited by the sales-
man, the cars used, and the passengers whose demands were
satisfied. Thus, two |N |-sized lists and a |L|-sized list repre-
sent each chromosome. Figure 2 illustrates the chromosome
that represents the solution shown in Figure 1.

Algorithm 1: CaRSP – Proposed algorithms
1 Input: instanceName, numInd, repRate, mutRate, lsRate
2 Output: bestIndividual
3 begin
4 readInstance (instanceName);
5 pop ← generateInitialPopulation (numInd);
6 while (numAvaliacoes < |N | × |C| × 500) do
7 for (i = 1, ..., repRate) do
8 father, mother ← selectParents (pop)
9 son1, son2, son3, son4 ← Crossover (father, mother);

10 pop ← insertOffspring (pop, son1, son2, son3, son4);

11 for (i = 1, ...,mutRate) do
12 ind ← selectIndividual (pop);
13 pop[ind] ← Mutation (pop[ind]);

14 for (i = 1, ..., lsRate) do
15

 Steps used in
MA1 and MA2ind ← selectIndividual (pop);

16 pop[ind] ← localSearch (pop[ind]);

17 if (Random(0, 1) = 0) then
18 pop ← Transposon (pop);

Steps used in
GA2 and MA2

19 else
20 pop ← RecombinantPlasmid (pop);

21 pop ← NaturalSelecion (pop, numInd);

22 bestIndividual ← returnBestIndividual (pop);

23 return (bestIndividual);
24 end

Fig. 2. Chromosome

The chromosome presented in Figure 2 is the same solution
explained in Section II. Associated with each potential passen-
ger, there is an origin, a destination and a budget, which in
turn are parameters of the problem.

Value 1 in position i of the Passengers list indicates that the
demand of the the i-th passenger was satisfied, i.e., he/she has
been boarded. The fitness is calculated by the sum of the costs
of each traversed arc divided by the occupants of the vehicle
and the fees of all returned cars along the trip.

C. Initial Population

Each individual of the initial population is generated ran-
domly following these three steps:
• Define sequence of cities – The sequence of visited cities

is generated randomly;
• Define order of cars – The order of used vehicles is gen-

erated randomly. The initial car, the number of vehicles
in the solution and the index of the next car exchange are
chosen at random. For all upcoming visits, there are two
possibilities: keep the same car or exchange the vehicle
for one that was not used yet;

• Passenger boarding – The passenger boarding scheme is
defined by a heuristic presented in Algorithm 2.

The passenger boarding procedure, shown in Algorithm 2,
analyzes passengers’ demand at each arc of the tour (steps 3–
9) and considers only passengers whose origin is before the
destination (step 11). Steps 12–23 calculates each passenger’s
cost to travel from his/her origin to his/her destination. The
cost of traveling each arc is calculated by dividing the cost
of the arc (step 14) by the passengers’ demand, including the
salesman (steps 18). If this demand is greater than the vehicle’s
limit (step 15), this cost is divided by its capacity (step 16). If
a passenger’s travel cost meets his budget, then he/she is added
to the list of potential passengers L∗ (steps 20–21). Otherwise
he/she is removed from the demand list (steps 22–23).

Heuristic boarding (step 24) consists of boarding each
passenger l ∈ L∗. For each visit with more boarded passengers
than the vehicle’s capacity, passengers are removed until the
vehicle’s limit is respected. Passengers with fewer arcs traveled
between his/her origin and destination are more likely to be
removed of the solution. The cost for each on board passenger
is calculated and those exceeding the financial limit are re-
moved. For each person removed, it is necessary to recalculate
the costs of the other passengers and repeat the procedure of
removing passengers until the cost of each on board passenger
respects his/her budget. This heuristic generates a feasible
solution that respects all restrictions of the problem.

D. Crossover

The crossover combines information about cities and cars
to generate the offspring. As shown in Algorithm 3, we use
the strategy defined by the traditional single-point crossover
operator.

The function selectParents, shown in step 3, selects two
different individuals at random, father and mother, to generate
four children (c1, c2, c3 and c4). c1 and c3 inherit genetic

Algorithm 2: CaRSP – Heuristic Passenger Boarding
1 Input: Chromosome c;
2 begin
3 for (l = 1, ..., |L|) do
4 origIndex[l] ← getOrigIndex (c, l)
5 destIndex[l] ← getDestIndex (c, l)
6 if (destIndex[l] = 1) then
7 destIndex[l] ← |N |
8 for (i = origIndex[l], ..., destIndex[l]) do
9 demands[i] ← demands[i] + 1

10 for (l = 1, ..., |L|) do
11 if (origIndex[l] < destIndex[l]) then
12 passengerCost ← 0;
13 for (i = origIndex[l], ..., destIndex[l]) do
14 cost ← Cost (c.Cars[i], c.Cities[i], c.Cities[i+1])
15 if (demands[i] > carCapacity[c.Cars[i]])

then
16 cost ← cost / (carCapacity[c.Cars[i]] + 1)

17 else
18 cost ← cost / (demands[i] + 1)

19 passengerCost ← passengerCost + cost

20 if (passengerCost ≤ Budget[l]) then
21 L∗ ← AddPassenger (l)

22 else
23 demands ← RemoveDemands (demands, l)

24 c ← HeuristicBoarding (c, L∗, demands)

25 return (c)
26 end

material from the mother (step 4). c2 and c4 inherit genetic
material from the father (step 5).

The point that defines which cities the children will inherit
from the other parent is set at step 6. c1 and c3 inherit cities
from the the second part of father (step 7). c2 and c4 inherit
cities from the second part of mother (step 8). c1 inherit the
list of cars from father (step 9). c2 inherit the list of cars from
mother (step 10).

The function repairChromosome, shown in step 11, replaces
each repeated city for one that was not visited that results in
lower costs to traverse the incident arcs. The repairPassengers
function, shown in step 12, removes all boarded passengers
which now are unable to travel and attempts to board other
potential passengers respecting all constraints. This procedure
is similar to the HeuristicBoarding presented previously, in
Section III-C.

Algorithm 3: CaRSP – Crossover
1 Input: Population p
2 begin
3 Chromosome father, mother ← selectParents (p)
4 Chromosome c1, c3 ← mother
5 Chromosome c2, c4 ← father
6 point ← rand (2, |N | − 1)
7 c1, c3 ← InheritCities (father, point, |N |)
8 c2, c4 ← InheritCities (mother, point, |N |)
9 c1.Cars ← father.Cars

10 c2.Cars ← mother.Cars
11 c1, c2, c3, c4 ← repairChromosomes (c1, c2, c3, c4)
12 c1, c2, c3, c4 ← repairPassengers (c1, c2, c3, c4)

13 return (c1, c2, c3, c4)
14 end

E. Mutation

We propose four mutation procedures to the input chromo-
some: removeCar, addCar, swapUsedcars, and exchangeCars.

Procedure removeCar chooses a vehicle to be removed. This
procedure is repetead for each used car. Cities that were visited
using this vehicle are now visited using the previous or the
next car, whichever leads to the best possible solution.

Procedure addCar chooses an unused vehicle to be inserted
before every rental/delivery of the used cars. This procedure
is repetead for each unused vehicle. Assuming that the unused
car c” was added to the solution before the rental of car c’,
the group of cities that was previously visited only by car c’
are now visited by c” and c’, respectively. The sequence of
cities do not change and the choice of which cities will be
visited by each vehicle is given by the combination that leads
to the best possible solution.

Procedure swapUsedCars swaps each pair of used cars. The
sequence of cities do not change, only the group of visited
cities by both swapped vehicles. The sequence of used cars is
defined by the combination that leads to the best solution.

Procedure exchangeCars exchanges each used car for each
unused one. The sequence of cities do not change, only the
vehicle that is used to visit them. The sequence of used cars
is defined by the combination that leads to the best solution.

After each of these procedures, passengers are boarded
using the heuristic shown in Algorithm 2. Each chromosome
c has a variable c.nStagnation used for analyzing whether a
chromosome is stagnated in a local minimum. If after these
procedures there are no improvements in the fitness of chromo-
some c, then this variable is incremented by one. Otherwise,
it is set to zero. This variable is used by recombinant plasmid
presented in Section III-G2.

F. Local Search

We propose six local search procedures to the input chromo-
some: passengersCars, passengersCities, lkhPassengersAnd-
Costs, 2Opt, swapNotRequiredCities, and changePassengers.

Given the sequence of cities of a chromossome, procedure
passengersCars analyzes passengers’ demands along this tour,
i.e., passengers whose pickup city is visited before the drop-
off city. For each arc traveled, if the demand is greater than the
capacity of the used vehicle, it’s verified if there are benefits to
exchange the used car for an unused one with more seats or to
rearrange the used cars to satisfy these demands. The sequence
of used cars is defined by the combination that leads to the
best possible solution.

Procedure passengersCities is a 2-swap local search that
is applied on the sequence of cities. It aims to increase the
number of passengers able to board, i.e., passengers whose
pickup city is visited before the drop-off city and whose
travel’s cost from their origin to their destination with all car
seats occupied meets their budgets. The sequence of cars do
not change. The sequence of visited cities is defined by the
combination that leads to the best possible solution.

Considering that Lin-Kernighan heuristic (LKH) is one
of the best heuristics for solving TSP problems [15], the

procedure lkhPassengersAndCosts splits a chromosome into
TSP subproblems to be solved by Helsgaun implementation
of LKH [14]. Given a chromosome, each TSP subproblem is
composed by the group of cities visited by each used car. To
solve each TSP subproblem, LKH considers that the cost of the
arc connecting two cities A and B is divided by the number of
passengers whose origin is A and destination B, including the
driver. The order of used cars is maintained, only the sequence
of cities visited by each one is changed.

Procedure 2Opt is an adapted version of the traditional local
search algorithm proposed by [3]. Given a chromosome, it
rearranges each pair of traversed arcs, but keeps the order of
used vehicles. The sequence of traversed arcs is defined by
the combination that leads to the best possible solution.

Given a chromosome, procedure swapNotRequiredCities
creates a list with all cities where there are no passengers
being picked-up or dropped-off. Then, a 2-swap local search
is applied only on the cities of this list, without changing the
order of used vehicles. The output is given by the combination
of cities that leads to lowest cost possible.

Procedure changePassengers replaces boarded passengers
for unboarded ones. It creates a list with boarded passengers
that could be replaced for unboarded ones. This generally
happens in parts of the tour where there is a high demand of
passengers, which can be identified according to their origins
and destinations. This local search only performs replacement
of passengers that lead to viable solutions, i.e., that respect all
the restrictions of the problem. The passenger boarding scheme
is defined by the solution that leads to the best solution.

After each of these procedures, except for changePassen-
gers, passengers are boarded using the heuristic shown in
Algorithm 2. Each chromosome c has a variable c.nStagnation
used for analyzing whether a chromosome is stagnated in a
local minimum. For both mutation and local search procedures
we use Lamarckian evolution, i.e., if the fitness of the original
solution is worse than the corrected one, it is replaced in the
population. If after these procedures there are no improve-
ments in the fitness of chromosome c, then this variable is
incremented by one. Otherwise, it is set to zero. This variable
is used by recombinant plasmid presented in Section III-G2.

G. Transgenetic Vectors

We propose two transgenetic vectors, which are used in
metaheuristics GA2 and MA2: transposons and recombinant
plasmids, presented, respectively, in Sections III-G1 and
III-G2. At each iteration, one transgenetic vector, selected
randomly, is applied to all chromosomes. Both methods are
equally likely to be selected, with a 50% chance.

1) Transposon: Transgenetic vector whose information is a
rule for rearranging some genes of the manipulated chromo-
somes [10]. It identifies some genes and modifies them. For
example, it can apply a local search just in a predefined part
of the chromosome.

Given a chromosome, a vehicle exchange occurs when
a car c’ is delivered in city i and a car c” is rented in
the same city to continue the tour. This procedure consists

in anticipating/postponing vehicles’ exchange in part of the
solution. The part of the solution in which this technique
is applied is defined by two randomly selected points. This
results in solutions with the same sequence of cities and
vehicles, the only changes are at the vehicles’ exchange points.
The combination that leads to the best solution is returned.

2) Recombinant Plasmid: Combines information obtained
from two or more sources. It can also be an adhoc heuristic to
construct part of a solution. This procedure consists in inherit
information about an individual’s sequence of visited cities
and used cars and apply an exact passenger boarding tech-
nique, presented below. The recombinant plasmid is applied
to each chromosome, c, that have not improved for a period
greater than two iterations, i.e., chromosomes with variable
c.nStagnation > 2. The goal is to remove each of those
individuals from its stagnation point.

The proposed method is based on [22], which presents a
linearization whose strategy is to replace the divisions by
successive subtractions. Considering a fraction N/D, where N
is the numerator and D the denominator, the transformation is
restricted to cases where D is an integer, D ≥ 1. According
to [22], a fraction N/D can be rewritten as in equation (1).

N

D
= N −

D−1∑
i=1

N

i (i+ 1)
(1)

Considering we have the sequence of cities and vehicles of
a chromosome, it’s possible to obtain the cost of each visit.
This cost is used as the fraction’s numerator. The number of
passengers on board at each visit, i.e., the number of seats
occupied, represents the denominator and will be defined by
the proposed method. The procedure presented in equation
(1) is repeated for each visit of the salesman. The exact
formulation must define the passenger boarding sequence
respecting all restrictions of the problem.

There is a preprocessing stage that eliminates passengers
whose destinations are before their origins or that the budget
is not enough to travel considering the car is full. It creates a
list, L∗, containing all passengers able to board, i.e., persons
whose pickup and drop-off points are feasible regarding the
tour. It increases the computational efficiency of the procedure.

Expressions (2)-(8) show the mathematical formulation for
the problem of assigning passengers to a solution represented
by variable sol, containing the sequence of cities and vehicles.
It requires that the initial city is also inserted as the final city.
The parameters and variables are defined as follows.
Parameters
ci: cost to use car sol.Cars[i] to travel from sol.Cities[i] to
sol.Cities[i+1];
ksol.Cars[i]: capacity of car sol.Cars[i];
L∗: list created in the preprocessing stage explained previously
containing all passengers able to board;
bud(l): maximum fee l agrees to pay, l ∈ L∗;
iorg(l): index, of sol.Cities, for the origin of passenger l, l ∈ L∗;
idst(l): index, of sol.Cities, for the destination of passenger l, l ∈ L∗.
Variables
el: binary variable indicating whether passenger l was

picked-up (el = 1) or not (el = 0);
gih: binary variable indicating whether seat h is occupied on
the i-th visited city (gih = 1) or not (gih = 0). The seats are
occupied sequentially, starting from the first;
qli: real variable that indicates the cost, for passenger l, of
visiting the i-th city.

min
∑
i∈N

ci −
ksol.Cars[i]∑

h=1

gihci
h(h+ 1)

 (2)

subject to∑
l∈Pi

el =

ksol.Cars[i]∑
h=1

gih,
∀i∈N

Pi={l∈L∗ | iorg(l)≤i<idst(l)} (3)∑
l∈Pi

el ≤ ksol.Cars[i], ∀i∈N
Pi={l∈L∗ | iorg(l)≤i<idst(l)} (4)

ciel −
ksol.Cars[i]∑

h=1

gihci
h(h+ 1)

≤ qli,
∀i∈N
∀l∈L∗ |

iorg(l)≤i<idst(l)
(5)∑

i∈N
qli ≤ bud(l), ∀l∈L∗ | iorg(l)≤i<idst(l) (6)

gih, el ∈ {0, 1},
∀i∈N
l∈L∗

h=1,...,ksol.Cars[i]
(7)

qli ∈ R+ (8)

This formulation assumes that the sequence of visited cities
and used cars are previously known in sol. The objective func-
tion (2) consists of minimizing the sum of the costs of each
visit i divided equally between the occupants of the vehicle on
each traversed arc. It uses the strategy proposed in [22] and
presented in equation (1) to replace the division operations.
Constraint (3) couples variables el and gih, defining when
passenger l has boarded, i.e., when l travels from his/her origin
to his/her destination occupying a seat. Constraint (4) ensures
that the capacity of each used vehicle is never exceeded.
Equation (5) and (6) guarantees that the travel cost of each
passenger not exceeds his/her budget. Constraints (7) and (8)
ensures the integrity and nonnegativity of decision variables.

IV. COMPUTATIONAL EXPERIMENTS

We executed the experiments on a computer with an In-
tel Core i7-4790 3.6 GHz x 8, 16 GB RAM DDR4 with
Ubuntu 16.04 LTS operating system. The CaRSP instances
are described in Section IV-A. The strategy used to define the
best parameter settings for each metaheuristic is described in
Section IV-B. To compare the performance of the algorithms,
we divided the experiments into two stages. In the first stage,
described in Section IV-C, we executed the algorithms with
the parameters defined previously, in Section IV-B, using
the number of function evaluations (NFE) as the stopping
criterion. In the second stage, described in Section IV-D, the
experiments were performed again using the highest average
time obtained among all algorithms, in the first stage, as
the stopping criterion. A statistical analysis to compare the
obtained results is presented in Section IV-E. The same initial
population is used by all proposed metaheuristics, so the
experiments are performed under the same circumstances.

In the local search named lkhPassengersAndCosts, we used
LKH-3.0.3 version, released in July 2018 and available at
http://akira.ruc.dk/∼keld/research/LKH/.

A. Instances

The instances created for the CaRSP are described
in [22] and available at http://www.dimap.ufrn.br/lae/
downloads/Instances CaRSP.rar. Instances were named as
<id><n><distance type><cost type>, where id is a
sequence with 2 or 3 characters, n is the number of cities,
distance type “e” (Euclidean) or “n” (non-Euclidean), and
cost type “s” (symmetric) or “a” (asymmetric). For example,
the instance named Afe4ns means that the id is “Afe”, the
graph has 4 cities, it is non-Euclidean, and symmetric.

B. Parameter settings

The parameters, described below, were defined by using
the irace framework (version 3.3), available at http://iridia.
ulb.ac.be/irace/, which implements a number of automatic
configuration procedures. It offers iterated racing procedures,
which have been used successfully to automatically configure
various state-of-the-art algorithms [16]. Each metaheuristics’
best parameters found by irace are shown in Table I.
• Number of individuals (numInd): population size;
• Reproduction rate (repRate): corresponds to the portion

of the population that will reproduce at each iteration;
• Mutation rate (mutRate): represents the portion of the

population that will mutate at each iteration;
• Local search rate (lsRate): determines the portion of the

population in which local search will be applied at each
iteration.

TABLE I
BEST PARAMETERS FOR EACH METAHEURISTIC DEFINED BY IRACE

numInd repRate mutRate lsRate
GA1 193 0.43 0.11 -
GA2 191 0.44 0.14 -
MA1 131 0.23 0.24 0.4
MA2 194 0.25 0.13 0.27

C. First stage

The experiments were performed using the best parameters
found previously, shown in Table I. The number of function
evaluations, which is given empirically by |N |×|C|×500, was
used as the stopping criterion. Each metaheuristic solved all in-
stances 30 times. The column “First stage of the experiments”,
of Table II, shows the average solutions and execution times
obtained by the algorithms. Results show that MA1 obtained
the highest average execution time in almost all instances.

D. Second stage

The execution time was used as the stopping criterion in
this stage. The time limit, for each instance, was defined by
the metaheuristic that obtained the highest average time in
the previous stage. Each metaheuristic solved all instances
30 times. The column “Second stage of the experiments”,
of Table II, shows the average solutions and execution times
obtained by the algorithms. Results show that MA2 and MA1
obtained, respectively, better solutions in 24 and 6 instances.

E. Statistical analysis

For the statistical analysis of the obtained results in the
second stage, the instances were divided into Euclidean, non-
Euclidean, symmetric and asymmetric. First, we applied the
Friedman test [7], a non-parametric statistical test used to
detect differences in treatments across multiple test attempts.
We obtained significant differences, with p-values less than
0.05, to each instance class. Then, we used Nemenyi test
[20], a post-hoc test intended to find the groups of data that
differ after a statistical test of multiple comparisons, such as
the Friedman test. This test makes comparisons between each
pairwise of the proposed metaheuristics in all instance groups.
The results are shown in Table III.

The p-values obtained in the comparisons between each
GA and between each MA are inconclusive, i.e., above 0.05.
Comparisons between both MAs and GAs presents conclusive
results for all cases, i.e., p-values less than 0.05, except
between GA2 and MA1 in Euclidean and asymmetric instances.

V. CONCLUSIONS

This paper described an algorithmic study for the CaRSP
based on evolutionary algorithms. We implemented a genetic
algorithm, a memetic algorithm, and hybridizations of both
using transgenetic vectors. We presented the first heuristic
results for the proposed problem.

We reported the results of an experiment with 30 instances,
divided into Euclidean, non-Euclidean, symmetric and asym-
metric. The computational experiments were performed in two
stages to ensure the algorithms are compared properly and the
obtained results were submitted to statistical analysis.

The statistical analysis showed that memetic algorithms
outperformed genetic algorithms in almost all cases, except
in comparisons between GA2 and MA1 in Euclidean and
asymmetric instances.

Although the statistical tests presented inconclusive results
in the comparison between the MAs, we observed that MA2
reached better solutions in 24 of the 30 instances, as shown in
column “Second stage of the experiments”, of Table II, where
the algorithms were submitted to the same execution time.

Future works will investigate hybridizations of exact meth-
ods and other metaheuristics. In addition, we intend to develop
versions of the proposed problem that could be applied to
dynamic changing situations, becoming even closer to reality.

REFERENCES

[1] N. Agatz, A. Erera, M. Savelsbergh and X. Wang, “Optimization
for dynamic ride-sharing: a review,” European Journal of Operational
Research, vol. 223, pp. 295–303, 2012.

[2] City Lab, “The great divide in how americans commute to work,”
https://www.citylab.com/transportation/2019/01/commuting-to-work-
data-car-public-transit-bike/580507, 2019, accessed in 15 July 2019.

[3] G. A. Croes, “A method for solving traveling salesman problems,”
Operations Research, vol. 6(6), pp. 791–812, 1958.

[4] D. Felipe, E. F. G. Goldbarg and M. C. Goldbarg, “Scientific algorithms
for the car renter salesman problem,” 2014 IEEE Congress on Evolu-
tionary Computation, pp. 873–879, 2014.

[5] J. Digalakis and K. Margaritis, “Performance comparison of memetic
algorithms,” Journal of Applied Mathematics and Computation, Elsevier
Science, vol. 158, pp. 237–252, 2004.

http://akira.ruc.dk/~keld/research/LKH/
http://www.dimap.ufrn.br/lae/downloads/Instances_CaRSP.rar
http://www.dimap.ufrn.br/lae/downloads/Instances_CaRSP.rar
http://iridia.ulb.ac.be/irace/
http://iridia.ulb.ac.be/irace/

TABLE II
RESULTS OBTAINED IN COMPUTATIONAL EXPERIMENTS

First stage of the experiments Second stage of the experiments

GA1 GA2 MA1 MA2 GA1 GA2 MA1 MA2

Instance |C| |L| Sol T(s) Sol T(s) Sol T(s) Sol T(s) Sol T(s) Sol T(s) Sol T(s) Sol T(s)

Bra14e 2 51 405.33 2.31 399.46 2.40 190.33 5.65 193.78 2.95 405.33 5.65 386.29 5.65 189.86 5.65 179.45 5.65
Bra14na 2 51 315.67 2.28 311.90 2.38 196.45 7.78 230.43 3.08 315.67 7.77 261.49 7.77 198.60 7.77 176.11 7.77
Bra14ns 2 51 247.17 2.31 246.45 2.39 134.10 7.44 151.26 3.02 247.17 7.44 227.40 7.44 132.81 7.44 130.62 7.44
Arg15e 3 46 1920.67 3.45 1915.42 3.52 955.63 12.42 1002.87 4.69 1920.67 12.42 1499.78 12.42 924.39 12.42 889.42 12.42
Arg15na 3 46 2164.67 3.42 2082.33 3.58 1326.90 13.49 1387.65 4.80 2164.67 13.49 1403.37 13.49 1322.53 13.49 1203.49 13.49
Arg15ns 3 46 2091.67 3.58 2070.90 3.78 1000.45 14.24 1088.38 4.77 2091.67 14.24 1217.03 14.24 1025.52 14.24 979.09 14.24
Bra16e 2 47 571.70 2.59 571.70 2.54 361.44 9.35 361.50 3.24 571.70 9.35 550.45 9.35 362.24 9.35 355.16 9.35

Bra16na 2 47 362.87 2.45 362.87 2.56 190.24 8.69 215.54 3.26 362.87 8.69 338.22 8.69 184.44 8.69 183.68 8.69
Bra16ns 2 47 398.83 2.56 392.66 2.71 190.01 9.03 233.69 3.29 398.83 9.03 337.94 9.03 210.78 9.03 202.88 9.03
Bra25e 3 65 1160.00 8.72 1153.03 9.30 620.03 20.37 640.62 10.06 1160.00 20.37 1078.98 20.37 625.53 20.37 606.12 20.37

Bra25na 3 65 627.00 7.67 623.60 7.97 398.78 21.53 434.75 10.64 627.00 21.53 561.96 21.53 398.90 21.53 392.82 21.53
Bra25ns 3 65 668.50 7.87 656.18 10.64 385.92 21.59 411.08 10.64 668.50 21.59 571.51 21.59 394.05 21.59 395.12 21.59
Bra30e 4 94 1147.17 18.83 1066.61 20.90 580.18 41.52 587.12 22.23 1147.17 41.52 864.66 41.52 584.38 41.52 559.37 41.52

Bra30na 4 94 715.50 19.65 694.55 19.03 422.07 46.02 434.01 23.98 715.50 46.02 592.94 46.02 424.79 46.02 442.84 46.02
Bra30ns 4 94 635.00 19.93 631.33 26.11 421.50 44.44 429.22 48.14 635.00 48.14 578.34 48.14 418.89 48.14 425.82 48.14
Bra40e 5 114 1698.50 38.86 1503.41 49.78 812.02 90.23 824.87 59.94 1698.50 90.23 1230.07 90.23 816.00 90.23 807.98 90.23

Bra40na 5 114 1250.50 37.56 1219.27 38.42 828.23 89.27 839.28 56.09 1250.50 89.27 1073.59 89.27 827.74 89.27 825.90 89.27
Bra40ns 5 114 1398.00 41.95 1345.95 42.78 825.28 86.08 839.79 59.96 1398.00 86.08 1095.17 86.08 828.71 86.08 838.93 86.08
Bra45e 5 133 2555.50 54.72 2136.56 49.03 1054.01 106.56 1068.38 75.53 2555.50 106.56 1696.40 106.56 1053.23 106.56 1048.50 106.56

Bra45na 5 133 1746.00 55.67 1690.22 56.07 1060.51 118.71 1077.17 74.37 1746.00 118.71 1494.71 118.71 1036.98 118.71 1055.12 118.71
Bra45ns 5 133 1771.00 49.40 1704.72 55.41 1073.02 111.34 1085.17 67.82 1771.00 111.34 1487.94 111.34 1067.41 111.34 1066.65 111.34
Bra50e 5 118 2119.00 46.89 1864.59 52.92 1018.49 112.01 1026.82 80.20 2119.00 112.01 1515.11 112.01 1019.59 112.01 1011.06 112.01

Bra50na 5 118 1720.67 59.79 1711.44 61.55 1140.19 134.89 1132.93 92.95 1720.67 134.89 1508.26 134.89 1129.01 134.89 1123.98 134.89
Bra50ns 5 118 1744.00 64.18 1675.91 59.79 1085.79 120.05 1100.67 74.73 1744.00 120.05 1524.19 120.05 1086.15 120.05 1126.57 120.05
st70eB 4 204 5561.33 91.70 5477.19 100.04 2676.13 185.65 2731.72 115.04 5561.33 185.65 4978.70 185.65 2643.77 185.65 2633.14 185.65
st70naB 4 204 3812.00 97.00 3702.90 95.40 1918.00 188.55 2014.94 116.62 3812.00 188.55 3276.53 188.55 1880.42 188.55 1865.11 188.55
st70nsB 4 204 3859.00 87.65 3757.28 92.11 1853.10 166.85 1963.94 107.75 3859.00 166.85 3245.30 166.85 1900.80 166.85 1766.32 166.85
rd100eB 4 290 54760.00 188.91 54145.88 197.45 13086.70 389.56 13340.15 247.71 54760.00 389.56 50691.51 389.56 13293.45 389.56 13050.57 389.56
rd100naB 4 290 5626.00 193.28 5587.51 197.07 2998.88 370.49 3045.14 242.07 5626.00 370.49 5220.77 370.49 3047.20 370.49 2897.26 370.49
rd100nsB 4 290 5110.50 187.44 5077.23 197.99 3033.67 371.69 3085.31 237.42 5110.50 371.69 4911.23 371.69 3062.58 371.69 2892.14 371.69

TABLE III
P-VALUES OBTAINED IN NEMENYI POST-HOC TEST

Euclidean
Instances

GA1 GA2 MA1 MA2
GA1 - 0.30713 0.00299 0.001
GA2 0.30713 - 0.30713 0.00299
MA1 0.00299 0.30713 - 0.30713
MA2 0.001 0.00299 0.30713 -

non-Euclidean
Instances

GA1 GA2 MA1 MA2
GA1 - 0.068212 0.001 0.001
GA2 0.068212 - 0.007913 0.001
MA1 0.001 0.007913 - 0.735188
MA2 0.001 0.001 0.735188 -

Symmetric
Instances

GA1 GA2 MA1 MA2
GA1 - 0.068212 0.001 0.001
GA2 0.068212 - 0.017331 0.001
MA1 0.001 0.017331 - 0.457254
MA2 0.001 0.001 0.457254 -

Asymmetric
Instances

GA1 GA2 MA1 MA2
GA1 - 0.307130 0.001 0.001
GA2 0.307130 - 0.160247 0.00986
MA1 0.001 0.160247 - 0.701825
MA2 0.001 0.00986 0.701825 -

[6] Environmental Protection Agency, “Inventory of U.S. greenhouse gas
emissions and sinks,” https://www.epa.gov/ghgemissions/inventory-us-
greenhouse-gas-emissions-and-sinks, 2017, Accessed in 15 July 2019.

[7] M. Friedman, “The use of ranks to avoid the assumption of normality
implicit in the analysis of variance,” Journal of the American Statistical
Association, vol. 32(200), pp. 675–701, 1937.

[8] M. R. Garey and D. S. Johnson, “Computers and intractability: a guide
to the theory of np-completeness,” vol. 1, Freeman, San Francisco, 1979.

[9] M. C. Goldbarg, P. H. Asconavieta and E. F. G. Goldbarg, “Memetic
algorithm for the traveling car renter problem: an experimental investi-
gation,” Memetic Computing, vol. 4(2), pp. 89–108, 2012.

[10] M. C. Goldbarg, E. F. G. Goldbarg, P. H. Asconavieta, M. S. Menezes
and H. P. L. Luna, “A transgenetic algorithm applied to the traveling
car renter problem,” Expert Systems with Applications, vol. 40(16), pp.
6298–6310, 2013.

[11] M. C. Goldbarg, E. F. G. Goldbarg, H. P. L. Luna, M. S. Menezes
and L. Corrales, “Integer programming models and linearizations for
the traveling car renter problem,” Optimization Letters, vol. 12(4), pp.
743–761, 2017.

[12] M. C. Goldbarg, L. B. Bagi and E. F. G. Goldbarg, “Transgenetic
algorithm for the traveling purchaser problem,” European Journal of

Operational Research, vol. 119(1), pp. 36–45, 2009.
[13] D. E. Goldberg, “Genetic algorithms in search, optimization, and ma-

chine learning,” vol. 1, Addison-Wesley, Reading, MA, 1989.
[14] K. Helsgaun, “An effective implementation of the Lin-Kernighan travel-

ing salesman heuristic,” European Journal of Operational Research, vol.
126(1), pp. 106–130, 2000.

[15] D. Karapetyan and G. Gutin, “Lin-Kernighan heuristic adaptations
for the generalized traveling salesman problem,” European Journal of
Operational Research, vol. 208(3), pp. 221–232, 2011.

[16] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres and M. B. T.
Stützle, “The irace package: iterated racing for automatic algorithm
configuration,” Operations Research Perspectives, vol. 3, pp. 43–58,
2016.

[17] Mordor Intelligence, “Car rental market - growth, trends, and
forecast (2019 - 2024),” https://www.mordorintelligence.com/industry-
reports/car-rental-market, 2018, accessed in 15 July 2019.

[18] Mordor Intelligence, “Ridesharing market - growth, trends, and
forecast (2019 - 2024),” https://www.mordorintelligence.com/industry-
reports/ridesharing-market, 2018, accessed in 15 July 2019.

[19] P. Moscato, “On evolution, search, optimization, genetic algorithms and
martial arts: towards memetic algorithm,” Technical Report C3P 826,
Caltech Con-Current Computation Program 158–79, 1989.

[20] P. B. Nemenyi, “Distribution-free multiple comparisons,” PhD thesis,
Princeton University, 1963.

[21] B. B. Oliveira, M. A. Caravilla and J. F. Oliveira, “Fleet and revenue
management in car rental companies: a literature review and an inte-
grated conceptual framework,” Omega, vol. 71, pp. 11–26, 2016.

[22] G. A. Sabry, M. C. Goldbarg, E. F. G. Goldbarg, M. S. Menezes and Z.
S. A. Calheiros, “Models and linearizations for the traveling car renter
with passengers,” unpublished.

[23] G. A. Sabry, B. C. H. Silva, M. C. Goldbarg, E. F. G. Goldbarg,
M. S. Menezes and Z. S. A. Calheiros, “An analysis of the Traveling
Car Renter with Passengers and its subproblems,” Brazilian Journal of
Development, vol. 5(11), pp. 24449–24470, 2019.

[24] E. Shahamatnia, R. Ayanzadeh, R. Ribeiro, and S. Setayeshi, “Adaptive
imitation scheme for memetic algorithms,” 2nd Doctoral Conferece on
Computing, Electrical and Industrial Systems, pp. 109–116, 2011.

[25] B. Yu, Y. Ma, M. Xue, B. Tang, B. Wang, J. Yan and Y-M. Wei,
“Environmental benefits from ridesharing: a case of Beijing,” Applied
Energy, vol. 191, pp. 141–152, 2017.

[26] Y. Zhang and Y. Zhang, “Exploring the relationship between ridesharing
and public transit use in the United States,” 2018 Journal of Environ-
mental Research and Public Health, vol. 15(8), pp. 1–23, 2018.

