
Adaptive Structural Hyper-Parameter Configuration
by Q-Learning

Haotian Zhang, Jianyong Sun and Zongben Xu
School of Mathematics and Statistics,

National Engineering Laboratory for Big Data Analytics,
Xi’an Jiaotong University, Xi’an, China

zht570795275@stu.xjtu.edu.cn, jy.sun@xjtu.edu.cn, zb.xu@xjtu.edu.cn

Abstract—Tuning hyper-parameters for evolutionary algo-
rithms is an important issue in computational intelligence.
Performance of an evolutionary algorithm depends not only on
its operation strategy design, but also on its hyper-parameters.
Hyper-parameters can be categorized in two dimensions as
structural/numerical and time-invariant/time-variant. Particular-
ly, structural hyper-parameters in existing studies are usually
tuned in advance for time-invariant parameters, or with hand-
crafted scheduling for time-invariant parameters. In this paper,
we make the first attempt to model the tuning of structural
hyper-parameters as a reinforcement learning problem, and
present to tune the structural hyper-parameter which controls
computational resource allocation in the CEC 2018 winner
algorithm by Q-learning. Experimental results show favorably
against the winner algorithm on the CEC 2018 test functions.

Index Terms—Reinforcement learning, evolutionary algorithm,
hyper-parameter tuning, Q-learning

I. INTRODUCTION

Evolutionary algorithm (EA) is an important research area
in computation intelligence. Over several decades, fruitful
research studies have been conducted. Example EAs, such as
differential evolution (DE) [1], [2], particle swarm optimiza-
tion (PSO) [3], CMA-ES [4] and many others, have attracted
a great amount of attentions.

The hybridization of EAs has also achieved great success,
such as DE/EDA [5], [6], SaDE [7], jSO [8] and others. The
aim of hybrid EAs is to take advantages of the pros of different
EAs and to compensate the cons of these EAs for favorable
algorithmic performance. Very recently, the combination of
univariate sampling and CMA-ES [4], [9], called HSES [10],
has achieved the best performance for the CEC 2018 test
functions.

In all the developed EAs, these always exist more or less
hyper-parameters. Those hyper-parameters can be categorized
in two dimensions as shown in Fig. 1. In one hand, the hyper-
parameters can be time variant or invariant. For instances,
the scaling factor F and crossover rate CR can be either
fixed like in traditional DE, or adaptively changed such as
in JADE [11]. Since the scaling factor and crossover rate
are directly responsible for creating new solutions through
arithmetic and/or logic operations, they are also categorized as
“numerical hyper-parameters”. On the other hand, for hyper-
parameters such as the population size, the integer p in
the current-to-best DE operator [8], the tournament size and

Fig. 1. Categories of hyper-parameters in EAs.

others, are categorized as “structural hyper-parameters” since
they do not directly involve in the solution creation procedure.

The performance of an EA depends not only on its core
components including recombination and selection operations,
but also on its hyper-parameters. Tuning hyper-parameter for
optimal algorithmic performance can be cumbersome, time-
consuming and tedious. What’s worse, hybrid algorithms can
bring extra structural hyper-parameters. For example, they will
require not only the tuning of each composing algorithm’s
parameters, but also need to control the resource allocation
for each of them.

Taking the winner of CEC 2018, HSES [10], as an example,
two heuristics including a univariate sampling algorithm and
CMA-ES are carried out sequentially. In HSES, except the
numerical hyper-parameters used in univariate sampling and
CMA-ES, the allocation of resources, or precisely the number
of iterations K used by the first univariate sampling, is an
important structural hyper-parameter. It could significantly
influence the performance of HSES.

Algorithms such as Bayesian optimization (BOA) [12], se-
quential model-based optimization for algorithm configuration
(SMAC) [13] and others, can be applied on tuning time-
invariant numerical hyper-parameter. For examples, BOA has
been successfully applied to tune numerical hyper-parameters
in [14] [15]. Interested readers please see [16] for a review of
the tuning techniques.

In these methods, tuning time-invariant numerical hyper-

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

parameters is modeled as optimizing black-box optimization
problem. Once optimized, the resultant hyper-parameters are
fixed during the optimization procedure. However, for time-
variant hyper-parameters, we cannot use these methods simply
because of the time-dependence.

It is usually beneficial to adaptively set the hyper-parameters
during the search procedure in an EA. A great number of EAs
with adaptive hyper-parameters have been studied (see [17]
for detail). In most of these studies, it is the numerical
hyper-parameters that are made time-variant, e.g. the scaling
and crossover rate in DE are adaptively updated during the
search by summarizing previous information in JADE [11].
Only recently, some EAs proposed to update structural hyper-
parameter adaptively, e.g., the population size in jSO [8] is
designed to be linearly decreasing.

However, there is no principle way to tune structural
hyper-parameters. Their tuning is case-sensitive. For instance,
controlling the selection of DE operators in SaDE [7] can
be totally different from the switching between univariate
sampling and CMA-ES in HSES.

Recall that to adaptively configure numerical hyper-
parameters, new hyper-parameters are updated based on learn-
ing from previous search history as seen in JADE. The
updating can be broadly considered as a learning problem.
This perspective can be applied for adaptively tuning structural
parameters. To implement this idea, we resort to reinforcement
learning (RL) by modeling the tuning procedure as a finite-
horizon Markov Decision Process [18].

In this paper, we propose to use RL, specifically the Q-
learning algorithm, to tune the structural hyper-parameter of
HSES, i.e. the number of iterations used by the first univariate
sampling. In the rest of the paper, Section II briefly review
HSES, and concepts and algorithms of RL. The proposed
structural hyper-parameter tuning algorithm, called Q-HSES,
is presented in Section III. Section IV summarizes experimen-
tal results on the CEC 2018 test functions in comparison with
HSES. The conclusion is given in Section V.

II. PRELIMINARIES

A. Reinforcement learning

RL has been playing an important role in the thriving of
artificial intelligence. It aims to find a policy so that an agent
is able to take optimal actions in an environment. Fig. 2 shows
a typical representation of RL model. It can be modeled as
a Markov decision process (MDP). Consider a finite-horizon
MDP with discrete and finite state and action space defined
by the tuple (S,A, µ0, p, r, π, T) where S ∈ RD denotes the
state space, A ∈ Rd the action space, µ0 the initial distribution
of the state, r : S → R the reward, and T the time horizon,
respectively. At each time t, there is an st ∈ S, at ∈ A and a
transition probability p : S×A×S → R, where p(st+1|at, st)
denotes the transition probability of st+1 conditionally based
on st and at. The policy π : S × A × {0, 1, · · · T} → R,
where π(at|st) is the probability of choosing action at when
observing current state st. The goal is to find a policy
π = p(at|st) so as to maximize the expectation of total

Fig. 2. The basic idea and elements involved in a RL model, where s, a, r
represents state, action and reward, respectively, and π and P represents the
policy and state transition probability, respectively.

rewards E
(∑T

t=1 αtrt

)
where αt denote time-step dependent

weighting factors. In practice, weighting factors is always set
to exponential power of constant i.e. αt = γt.

There are many RL algorithms, such as Q-learning, sarsa,
deep Q network and policy gradient (interested readers please
see details in [19]), which are developed to deal with different
environments. Among them, Q-learning is developed for MDP
with discrete state and action space, based on value iteration.
Its core idea is to use the action-value function Q(s, a) to
estimate the reward in case st = s and at = a, which is
defined as

Q(s, a) = Eπ(rt+1 +max
at+1

γQ(st+1, at+1)|at = s, at = a)

As A is discrete and finite, policy can be regarded as

π(a|s) = argmax
a∈A

Q(s, a).

The Q-learning algorithm can be summarized in Alg. 1 (taken
from [19]).

Algorithm 1 Q-learning
1: Initialize Q(s, a) = 0 for all a ∈ A, s ∈ S;
2: for e = 1 : maxE do
3: for t = 0 : T do
4: Choose at using policy derived from Q(s, a) (ε-

greedy) ;
5: Take at and observe st+1 and rt+1;
6: Compute

Q(st, at) = (1− α)Q(st, at)+

α[γmax
at+1

Q(st+1, at+1) + rt+1]; (1)

7: end for
8: end for

In Alg. 1, a maximum number (maxE) of epoch is used to
learn the action-value function Q(s, a) for each s ∈ S and
a ∈ A. Q(s, a) is initialized to be zero (line 1). Then at each
epoch, a trajectory is obtained by applying the ε-greedy policy
(line 3, which means in probability 1−ε, action at is taken as
argmaxQ(st, a) and in probability ε, action at is randomly
chosen from A. Based on the state and action at time t, the
action-value function is updated according to the equation in
line 6. The algorithm terminates at the maxE epoch.

Fig. 3. The schematic diagram of HSES and Q-HSES.

B. HSES

HSES [10] is the winner algorithm in CEC 2018 compe-
tition. Its schematic diagram can be seen in the left plot of
Fig. 3. The pseudo-code of HSES is shown in Alg. 2.

Algorithm 2 The pseudo-code of HSES
Require: an optimization function f(x),x ∈ Rn, initial

population X0 = [x0
1, · · · ,x0

N] ∈ Rn×N , the switch
iteration I1 ∈ N+, maximum evaluations MaxNFE.

Ensure: an optimal solution x∗.
1: Set Idx← ∅;
2: [Xt1 ,NFE1,x

∗
1]← UniSampling(X0, f, Idx; I1);

3: [Xt2 ,NFE2,x
∗
2]← CMA-ES(Xt1 ; θ);

4: Idx← Detect(Xt2);
5: [Xt3 ,NFE3,x

∗
3]← UniSampling(Xt2 , f, Idx; I2);

6: return x∗ ← x∗3.

In Alg. 2, the function UniSampling(·) performs univariate
sampling for I1 iterations and returns a population of solutions
Xt1 with relatively high qualities, the number of fitness
evaluations used (NFE1 = N × I1), and the best solution x∗1
found by univariate sampling. Xt1 is then used as the initial
population of CMA-ES with parameter θ. CMA-ES returns
a population Xt2 , the fitness evaluations used NFE2 and the
best solution it found x∗2. Once CMA-ES has terminated, the
function Detect(·) is used to find which variables should be
fixed for the next univariate sampling. In the new univariate
sampling, a maximum of I2 iterations is carried out so that
the whole number of evaluations is no more than the given
constant MaxNFE. Interested readers please refer to [10] for
algorithm details. The algorithm returns the best solution found
x∗3 at termination.

In HSES, except the parameters like population size N
in univariate sampling and the parameter θ of CMA-ES, the
switch iteration I1 is vital to algorithmic performance. It deter-
mines how much resources are allocated for the first univariate
sampling, which reflects the tradeoff between exploration and
exploitation.

In our study, we care only on how to determine the structural
hyper-parameter I1. The other hyper-parameters, such as N
and θ, are fixed as used in the original paper of HSES.

III. METHOD

We model the tuning procedure of structural hyper-
parameters as a finite-horizon MDP with discrete state and
action space and horizon T . At each state, the RL agent
chooses an action, i.e. switching to CMA-ES or not. If the
action is not to switch, univariate sampling will be carried
out. The next state will be observed. Otherwise, if the action
is to switch to CMA-ES, the agent will stop and execute the
rest of HSES (line 3-5 of Alg. 2).

In the following, we shall present the components used in
RL, including state, action, transition probability and reward.
We denote fkbest the minimum function value obtained up to
the k-th iteration.

State: In our RL, st includes two parts s1t and s2t which are
defined as follows:

s1t ,
log
(
f
10(t−2)
best

)
− log

(
f10tbest

)∣∣∣log (f10(t−2)best

)∣∣∣ , t > 1

s2t ,
log
(
f0best

)
− log

(
f10tbest

)
|log (f0best)|

(2)

and s11 ,
log(f0

best)−log(f
10
best)

|log(f0
best)|

. In the definition, s1 is used to
measure the difference between the best function values in
adjacent 20 steps; s2 measures the descent rate from the first
population. We use 10 times t because we don’t want to judge
switching or not every iteration but every 10 iterations.

It is seen that the range of s1 and s2 are all in [0,+∞). To
make the state space discrete and finite, we divide the range to
[0, 0.005],(0.005, 0.05],(0.05, 0.09],(0.09, 0.5],(0.5, 1],(1,+∞)
for s1, and [0, 0.2],(0.2, 0.5],(0.5, 0.8],(0.8, 1.2],(1.2, 3],(3,+∞)
for s2.

Action: The action space is {0, 1}. That is, the agent can
either choose to switch (action equals to 1) to CMA-ES or do
not switch (action equals to 0).

Transition probability: When t < T and at is 0, the next
state st+1 is defined as mentioned above. When t ≥ T or
at is 1, st+1 will be the “terminal state”. Here T is the
horizon. It constrains the maximum iterations that can be used
by univariate sampling. In this paper, we set T = 20.

Reward: In the terminal state, the reward will be the
logarithm of the minimum function value found by the search.
Otherwise, the reward is set to zero since the algorithm’s
performance is not known before the terminal state.

A. The proposed Q-learning based HSES

Given above definitions, the Q-learning algorithm, i.e.
Alg. 1, can be used to train the agent. However, directly
using Q-learning can result in the following three problems.
First, to make Q-learning converge, the maximal number of
epoch, MaxE, is generally large. This means HSES needs to
be executed many times, which is not acceptable. Second,

in Q-learning, the action value function is updated at each
trajectory based on current policy. Since EAs are stochastic,
the performance of one trajectory is not stable, which means
the learning of the action value function is not efficient. Third,
the trajectory created based on current policy is unbalanced
(as using ε-greedy policy). That is, some states may be
rarely observed in the trajectories. This can make the learning
converge slowly.

Algorithm 3 The training process for the RL agent.
Require: Training functions f1, · · · , fL, the maximal epoch

maxE, the horizon T and the learning rate α.
Ensure: an optimal policy π(a|s).

1: Initialize metaQ(s, a) = 0 for all s ∈ S, a ∈ {0, 1};
2: for l = 1 : L do
3: Initialize Q(s, a) = 0 for all s ∈ S, a ∈ {0, 1};
4: Create T training trajectories Trm, m = 1, · · · , T ;
5: for e = 1 : maxE do
6: for each trajectory m do
7: for t = 1 : T do
8: Q(st, at) ← (1 − α)Q(st, at) +

αγmaxat+1
Q(st+1, at+1) + rt+1 where

{st, at} ∈ Trm;
9: end for

10: end for
11: end for
12: for s ∈ S do
13: if Q(s, 1) > Q(s, 0) then
14: metaQ(s, 1)← metaQ(s, 1) + 1;
15: end if
16: if Q(s, 1) < Q(s, 0) then
17: metaQ(s, 0)← metaQ(s, 0) + 1;
18: end if
19: end for
20: end for
21: return π(a|s)← argmaxa metaQ(s, a).

Our training process is summarized in Alg. 3. In line 4, we
generate T trajectories Trm, m = 1, 2, · · · , T . Each trajectory
corresponds to the average of 51 runs of the HSES algorithm
with switch iteration I1 to be 10, 20, · · · , 200 for a given
training function. With these trajectories, the action value
function Q(s, a) is updated as seen in line 8. To eliminate the
influence of different function scales, an auxiliary action-value
function metaQ(s, a) is applied. It records the rank relationship
between Q(s, 0) and Q(s, 1) from line 12 to line 19 for each
training function. After training, the policy π(a|s) is set to
be argmaxa metaQ(s, a) (line 21). Note that for a state s,
metaQ(s, 0) = metaQ(s, 1) means that there is no evidence to
tell which action (switch or not) is better. If this is the case,
an action will be randomly chosen.

The reason that the proposed training process can handle
the mentioned learning problems is simply because the created
trajectories Trm contains all possible situations for the switch
iteration. That is, the performance of HSES with every possible
switch iteration from 10 to 200 is observed, which is measured

by the average of 51 HSES runs. This can make the training
steady and the observed states balanced. Since we do not
need to sample new trajectories during training, the training
efficiency can be guaranteed.

Once the agent is learned (i.e. the optimal π is found), it is
embedded within the HSES algorithm. The resultant algorithm
is called Q-HSES. The right plot of Fig. 3 shows the digram of
Q-HSES. Alg. 4 summarizes the algorithm. In the algorithm,
after univariate sampling runs for M iterations (line 3), the
current state st is computed (line 4) and an action is taken
(line 5). If action is 0, it returns to the univariate sampling.
The procedure repeats until action is 1, which means that the
algorithm switches to CMA-ES. The rest operations are the
same as in Alg. 2.

Algorithm 4 The pseudo-code of Q-HSES
Require: an optimization function f(x),x ∈ Rn, initial

population X0 = [x0
1, · · · ,x0

N] ∈ Rn×N , maximum
evaluations MaxNFE and the learned policy π(a|s).

Ensure: an optimal solution x∗.
1: Set Idx← ∅, t← 0,NFE1 ← 0;
2: repeat
3: [Xt+1,NFEu,x∗1]← UniSampling(Xt, f, Idx;M);
4: Compute the state st by (2);
5: Take at ∼ π(·|st);
6: if at = 1 then
7: Exit;
8: else
9: t← t+ 1, NFE1 ← NFE1 + NFEu;

10: end if
11: until t ≥ T
12: [Xt2 ,NFE2,x

∗
2]← CMA-ES(Xt+1; θ);

13: Idx = Detect(Xt2);
14: [Xt3 ,NFE3,x

∗
3]← UniSampling(Xt2 , f, Idx; I2);

15: return x∗ ← x∗3.

IV. EXPERIMENTS

In this paper, the 29 functions in the CEC 2018 competition
(f1− f30 except f2) is used as benchmark. Metrics, including
the rank and average function value, used in the competition
are adopted for comparison. The proposed algorithm, Q-HSES,
is compared with HSES.

A. Training

Training: The CEC 2018 test functions contain unimodal
functions f1 and f3, multimodal functions f4 − f10, hybrid
functions f11 − f20 and composition functions f21 − f30.
Our training functions cover these 4 function types. 11 CEC
2018 functions (f1, f6, f7, f8, f10, f14, f15, f17, f18, f20, f24)
are used as the training functions. Parameters used in the Q-
learning are set as γ = 1, α = 10−4, M = 10, T = 20
and MaxE = 100, 000. As 50D and 100D problems are more
complicated and the performance of algorithm is worse than
10D and 30D, the division to the range of s2 is a little
bit forward. For 50D and 100D, the interval node of s2 is

multiplied by 0.05 and 0.025. Except the switch iteration, the
other hyper-parameters are held the same as HSES (such as
population size and the parameters of CMA-ES).

Testing: Q-HSES is used to optimize all the 29 functions
of CEC 2018.

B. Comparison Results

In the original HSES, the switch iteration is fixed to be
100. The statistics of the obtained results of Q-HSES on test
functions of CEC 2018 are summarized in Tables I,II,III and
IV for 10D, 30D, 50D and 100D, respectively, in which the
best, worst, mean and std. values are given.

Each of the statistics is obtained over 200, 100, 51, 51 runs
on the error values (i.e. the difference between the obtained
optimum and the known global optimum). When the error
values are smaller or equal to 10−8, they are treated as 0.

TABLE I
RESULTS IN 10D FOR 200 RUNS OBTAINED BY Q-HSES.

best worst median mean std
f1 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
f3 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
f4 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
f5 0.00e+00 3.98e+00 9.95e-01 8.40e-01 8.05e-01
f6 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
f7 1.04e+01 1.28e+01 1.10e+01 1.11e+01 4.96e-01
f8 0.00e+00 2.98e+00 0.00e+00 5.87e-01 7.54e-01
f9 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
f10 6.25e-02 6.12e+02 3.73e+00 1.07e+02 1.42e+02
f11 0.00e+00 1.99e+00 0.00e+00 1.29e-01 3.77e-01
f12 0.00e+00 4.14e+02 2.09e-01 2.43e+01 6.42e+01
f13 0.00e+00 8.51e+00 5.20e+00 3.39e+00 2.55e+00
f14 0.00e+00 3.11e+02 9.85e-04 7.28e+00 3.25e+01
f15 6.71e-05 5.10e+00 4.35e-01 5.58e-01 7.08e-01
f16 1.17e-01 1.19e+02 7.28e-01 1.94e+00 1.18e+01
f17 1.97e-02 3.87e+01 1.73e+01 1.27e+01 1.07e+01
f18 2.24e-05 2.15e+01 9.39e-01 2.15e+00 3.25e+00
f19 2.44e-02 8.99e+00 1.74e-01 5.41e-01 1.34e+00
f20 0.00e+00 1.20e+02 1.31e+00 8.82e+00 1.81e+01
f21 1.00e+02 2.06e+02 2.02e+02 1.97e+02 2.13e+01
f22 1.00e+02 1.00e+02 1.00e+02 1.00e+02 2.85e-14
f23 3.00e+02 3.06e+02 3.00e+02 3.01e+02 1.51e+00
f24 1.00e+02 3.32e+02 3.29e+02 3.27e+02 1.62e+01
f25 3.98e+02 4.50e+02 4.46e+02 4.46e+02 3.62e+00
f26 2.00e+02 3.00e+02 3.00e+02 3.00e+02 7.07e+00
f27 3.91e+02 4.01e+02 3.98e+02 3.97e+02 1.95e+00
f28 3.00e+02 6.46e+02 5.84e+02 5.92e+02 4.77e+01
f29 2.41e+02 2.97e+02 2.63e+02 2.64e+02 1.00e+01
f30 3.95e+02 4.84e+02 3.95e+02 4.11e+02 2.21e+01

The rank sum hypothesis test is carried out at 5% signif-
icance level between the results obtained by Q-HSES and
HSES. The results are summarized in Table V. From Table V,
we see that Q-HSES performs significantly better than HSES
in general for all dimensions.

Table VI shows the average function values obtained for the
test functions in four different dimensions. It is clear that the
average function value obtained by Q-HSES is smaller than
HSES in 10D, 30D, 50D, but a little bit greater in 100D.

Overall, we may conclude that the proposed control algo-
rithm based on Q-learning can indeed find a better structural
hyper-parameter setting for HSES.

TABLE II
RESULTS IN 30D FOR 100 RUNS OBTAINED BY Q-HSES.

best worst median mean std
f1 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
f3 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
f4 0.00e+00 3.99e+00 3.99e+00 2.91e+00 1.78e+00
f5 2.98e+00 1.19e+01 6.96e+00 6.77e+00 2.04e+00
f6 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
f7 3.29e+01 4.04e+01 3.50e+01 3.53e+01 1.43e+00
f8 2.98e+00 1.09e+01 6.96e+00 6.64e+00 1.92e+00
f9 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
f10 1.27e+02 1.81e+03 8.53e+02 8.69e+02 3.44e+02
f11 0.00e+00 7.29e+01 4.97e+00 1.22e+01 2.01e+01
f12 6.96e-02 3.59e+02 3.93e+00 2.89e+01 7.39e+01
f13 3.81e+00 8.59e+01 2.65e+01 3.08e+01 1.57e+01
f14 1.47e-04 3.58e+01 1.40e+01 1.18e+01 9.89e+00
f15 3.92e-01 3.45e+01 3.49e+00 4.45e+00 4.59e+00
f16 1.26e+00 8.72e+02 2.43e+02 2.64e+02 2.00e+02
f17 2.37e+00 6.03e+02 2.48e+01 7.15e+01 1.12e+02
f18 4.98e-01 2.74e+01 2.07e+01 1.89e+01 6.15e+00
f19 1.72e+00 3.10e+01 3.49e+00 4.25e+00 4.20e+00
f20 1.20e+02 4.21e+02 1.43e+02 1.62e+02 6.01e+01
f21 2.02e+02 2.21e+02 2.07e+02 2.08e+02 3.41e+00
f22 1.00e+02 1.00e+02 1.00e+02 1.00e+02 3.03e-13
f23 3.37e+02 3.69e+02 3.50e+02 3.51e+02 8.18e+00
f24 4.08e+02 4.32e+02 4.20e+02 4.20e+02 4.70e+00
f25 3.87e+02 3.87e+02 3.87e+02 3.87e+02 2.38e-02
f26 2.00e+02 1.47e+03 9.17e+02 8.84e+02 2.04e+02
f27 5.07e+02 5.50e+02 5.24e+02 5.25e+02 1.02e+01
f28 3.00e+02 4.03e+02 3.00e+02 3.19e+02 3.99e+01
f29 4.09e+02 8.11e+02 4.39e+02 4.68e+02 7.66e+01
f30 1.97e+03 2.20e+03 2.06e+03 2.06e+03 4.45e+01

TABLE III
RESULTS IN 50D FOR 51 RUNS OBTAINED BY Q-HSES.

best worst median mean std
f1 0.00e+00 1.70e-08 0.00e+00 0.00e+00 0.00e+00
f3 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
f4 0.00e+00 1.14e+02 2.85e+01 4.56e+01 4.72e+01
f5 0.00e+00 3.98e+00 9.95e-01 1.11e+00 1.08e+00
f6 3.59e-08 2.95e-05 1.05e-05 1.27e-05 1.08e-05
f7 5.40e+01 5.81e+01 5.53e+01 5.54e+01 8.05e-01
f8 0.00e+00 3.98e+00 9.95e-01 1.44e+00 9.81e-01
f9 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
f10 1.24e+02 7.39e+02 1.33e+02 2.60e+02 1.69e+02
f11 1.83e+01 2.62e+01 2.33e+01 2.30e+01 1.90e+00
f12 2.40e+00 4.08e+02 1.33e+02 1.53e+02 1.23e+02
f13 2.54e-06 7.85e+01 4.54e+01 3.93e+01 2.54e+01
f14 1.24e-04 2.24e+01 2.03e+01 1.41e+01 9.51e+00
f15 3.14e+00 1.85e+01 1.74e+01 1.73e+01 2.05e+00
f16 1.28e+02 1.24e+03 7.62e+02 6.92e+02 2.73e+02
f17 2.96e+01 9.75e+02 1.77e+02 2.74e+02 1.70e+02
f18 5.72e-01 2.11e+01 2.09e+01 2.05e+01 2.85e+00
f19 3.57e+00 2.61e+01 5.55e+00 7.13e+00 4.79e+00
f20 2.04e+01 2.44e+02 2.50e+01 3.45e+01 4.25e+01
f21 2.01e+02 2.10e+02 2.05e+02 2.05e+02 1.21e+00
f22 1.00e+02 1.00e+02 1.00e+02 1.00e+02 1.16e-06
f23 4.04e+02 4.41e+02 4.24e+02 4.25e+02 9.29e+00
f24 4.84e+02 4.94e+02 4.90e+02 4.89e+02 2.51e+00
f25 4.71e+02 5.66e+02 5.63e+02 5.49e+02 2.38e+01
f26 4.00e+02 8.75e+02 6.58e+02 6.16e+02 1.45e+02
f27 5.24e+02 6.07e+02 5.52e+02 5.56e+02 2.18e+01
f28 4.70e+02 5.08e+02 5.08e+02 5.00e+02 1.20e+01
f29 3.03e+02 8.19e+02 3.47e+02 4.50e+02 1.50e+02
f30 5.80e+05 6.71e+05 5.96e+05 5.99e+05 1.56e+04

TABLE IV
RESULTS IN 100D FOR 51 RUNS OBTAINED BY Q-HSES.

best worst median mean std
f1 0.00e+00 2.45e-08 0.00e+00 0.00e+00 0.00e+00
f3 0.00e+00 3.88e-08 0.00e+00 0.00e+00 0.00e+00
f4 0.00e+00 6.88e+01 0.00e+00 7.74e+00 1.92e+01
f5 9.95e-01 6.96e+00 2.98e+00 3.58e+00 1.49e+00
f6 6.51e-08 1.19e-07 8.95e-08 9.23e-08 1.76e-08
f7 1.08e+02 1.13e+02 1.10e+02 1.10e+02 1.19e+00
f8 9.95e-01 7.96e+00 3.98e+00 3.98e+00 2.14e+00
f9 0.00e+00 6.22e+00 0.00e+00 7.88e-01 1.61e+00
f10 7.63e+02 2.04e+03 1.23e+03 1.31e+03 3.07e+02
f11 1.69e-06 8.91e+01 1.27e+01 3.55e+01 3.80e+01
f12 3.43e+02 1.97e+03 8.70e+02 9.13e+02 4.13e+02
f13 3.77e+01 5.96e+01 4.15e+01 4.32e+01 5.65e+00
f14 1.99e+00 2.38e+01 2.18e+01 2.11e+01 4.54e+00
f15 6.89e+01 1.33e+02 9.06e+01 9.87e+01 1.96e+01
f16 4.31e+02 1.72e+03 1.10e+03 1.04e+03 4.04e+02
f17 5.80e+01 8.72e+02 4.84e+02 4.96e+02 2.37e+02
f18 5.19e-01 2.26e+01 1.53e+00 9.41e+00 9.87e+00
f19 1.10e+01 3.16e+01 1.40e+01 1.50e+01 5.00e+00
f20 2.77e+02 1.33e+03 5.09e+02 5.52e+02 2.78e+02
f21 2.17e+02 2.32e+02 2.27e+02 2.26e+02 4.01e+00
f22 1.00e+02 1.00e+02 1.00e+02 1.00e+02 2.40e-09
f23 5.28e+02 5.58e+02 5.43e+02 5.45e+02 7.51e+00
f24 8.32e+02 8.52e+02 8.45e+02 8.43e+02 5.97e+00
f25 6.58e+02 7.87e+02 7.41e+02 7.34e+02 3.36e+01
f26 2.15e+03 2.55e+03 2.37e+03 2.37e+03 1.23e+02
f27 6.27e+02 6.47e+02 6.37e+02 6.37e+02 6.01e+00
f28 3.00e+02 6.33e+02 5.35e+02 5.03e+02 1.10e+02
f29 8.36e+02 2.14e+03 1.32e+03 1.31e+03 3.71e+02
f30 2.51e+03 2.91e+03 2.71e+03 2.72e+03 1.16e+02

TABLE V
RANK COMPARISON OF Q-HSES AND HSES

better ≈ worse
10D 8 20 1
30D 7 20 2
50D 3 24 2

100D 3 25 1

C. Validation

The switch iteration is fixed in HSES as 100. To validate
the performance of the learned agent, Q-HSES is compared
with HSES on different switch iterations in 10D. Table VII
summarizes the results, in which the hypothesis test results at
5% significant level are listed. The indices of the functions
that Q-HSES performs better are also shown. The indices of
the functions that belong to the training functions are typeset
in bold.

From Table VII, it is seen that with different switch itera-
tions, Q-HSES performs better than HSES in general: Q-HSES
performs better on more functions than HSES. This indicates
that the learned agent works well. It is seen that among the
functions that Q-HSES performs better, half of them do not
belong to the training functions. This indicates the learned
agent generalizes well.

Table VIII shows the average I1 values learned for each
function. From the table, it is seen that the I1 values are
different for different functions.

TABLE VI
FUNCTION VALUE COMPARISON OF Q-HSES AND HSES

Q-HSES HSES
10D 3504.1 3511.1
30D 7246.6 7364.5
50D 604390.5 611750.5

100D 14648.3 14602.3

TABLE VII
VALIDATION OF Q-HSES

fixed iterations better / ≈ / worse index
30 12/ 14 / 3 5 7 8 10 11 17 18 20 21 22 23 26
50 10/ 17 / 2 5 7 8 10 11 16 17 20 23 26
120 7/ 20 / 2 7 16 17 19 20 23 26
160 7/ 20 / 2 13 14 18 19 22 23 26
200 5/ 24 / 1 13 14 15 18 19

D. Training Process

To verify the training process is convergent, we define a
criterion named “the rate of action value change”. As the
state space is divided into 36 intervals (6 intervals for s1

and 6 intervals for s2) and action is {0, 1}, then the action-
value function Q(s, a) is a 36 × 2 matrix. Regarding it as a
72D vector, the rate of action value change is defined as the
Frobenius norm between two adjacent epochs:

‖Qe(s, a)−Qe+1(s, a)‖2F

where Qe(s, a) and Qe+1(s, a) is the action value function
at the eth and (e + 1)th epoch, respectively. This definition
can be used to show how the training goes. Fig. 4 shows the
rates of change for the training functions. From the figure, it
is clear that the training process of action value function is
convergent. It also shows that the range of the changes is very
much different among different functions which roots from
different scales of the function values.

V. CONCLUSION

In this paper, we first categorized the hyper-parameters
of EAs from two perspectives. We then proposed to model
the adaptive control of the structural hyper-parameters as a
Markov decision process. Based on the formalization, Q-
learning was applied to learn an agent for time-variant hyper-
parameter tuning for the winner algorithm of CEC 2018,
called HSES. We proposed the fundamental elements of the
Q-learning for the agent, including states, action and reward.
In the experiments, we trained the agent on a selection of
functions from the CEC 2018 competition. By embedding the
learn agent, Q-HSES was developed. The comparison between
Q-HSES and HSES showed that the structural hyper-parameter
in HSES controlled by the learned agent performs generally
better than HSES.

As a first attempt to use Q-learning for hyper-parameter
controlling, the experiments showed that the proposed method
is promising. In the future, we intend to combine RL to
advancing the development of evolutionary algorithms.

Fig. 4. The rate of function value change against epoch for the 11 training functions.

TABLE VIII
THE I1 VALUES LEARNED BY THE RL AGENT USED IN Q-HSES.

10D 30D 50D 100D 10D 30D 50D 100D
f1 90 200 200 200 f3 60 200 200 200
f4 30 60 200 200 f5 200 200 40 200
f6 200 200 30 200 f7 200 200 200 200
f8 200 200 40 200 f9 30 200 200 200
f10 120 120 30 40 f11 30 200 200 200
f12 30 60 200 200 f13 50 200 200 200
f14 30 200 200 200 f15 60 200 200 200
f16 200 200 30 200 f17 200 200 200 200
f18 140 200 200 200 f19 50 200 200 200
f20 200 200 30 200 f21 200 200 30 200
f22 200 200 200 200 f23 200 200 200 40
f24 200 200 110 200 f25 200 200 200 200
f26 200 200 50 200 f27 200 200 30 200
f28 200 200 200 200 f29 200 200 200 200
f30 30 90 200 200

VI. APPENDIX

In this section, we briefly introduce the concepts used in
reinforcement learning. Basically, RL aims to maximize the
expected cumulative reward, i.e. E

(∑T
t=1 γ

trt

)
. First define

Gt = rt+1 + γrt+2 + · · ·+ γT−t−1rT

The expectation of Gt measures the benefit on time t. Fur-
ther, we define the state-value function v(s) and action-value

function Q(s, a) as follows:

v(s) , E[Gt|st = s] (3)

Q(s, a) , E[Gt|at = a, st = s] (4)

Without loss of generality, set γ = 1, we have the following
Bellman’s equality:

v(s) = E[rt+1|st = s]

+ E[E[rt+2 + · · ·+ rT |st+1 = s′]|st = s]

= E[rt+1 + v(s′)|st = s]

For action value function, we also have the Bellman’s formula:

Q(s, a) = E[rt+1 + v(s′)|st = s, at = a]

For optimal policy π(a|s), we have:

v(s) = max
a

Q(a, s)

which induces the optimal Bellman equation:

Q(s, a) = E[rt+1 +max
a′

Q(a′, s′)|st = s, at = a] (5)

This resembles line 6 of Alg. 1.

ACKNOWLEDGEMENT

This work was partly supported by the National Natural
Science Foundation of China (grant no. 11991023), the Major
Project of National Science Foundation of China (grant no.
U1811461), Key Project of National Science Foundation of
China (grant no. 11690011), and the Project of National
Science Foundation of China (grant no. 61721002).

REFERENCES

[1] K. V. Price, An Introduction to Differential Evolution. GBR: McGraw-
Hill Ltd., UK, 1999, pp. 79–108.

[2] S. Das and P. N. Suganthan, “Differential evolution: A survey of
the state-of-the-art,” IEEE Transactions on Evolutionary Computation,
vol. 15, no. 1, pp. 4–31, 2011.

[3] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proceedings of the Sixth International Symposium on Micro
Machine and Human Science, 1995, pp. 39–43.

[4] N. Hansen and A. Ostermeier, “Completely derandomized self adapta-
tion in evolution strategies,” Evolutionary computation, vol. 9, no. 2, pp.
159–195, 2001.

[5] J. Sun, Q. Zhang, and E. Tsang, “DE/EDA: a new evolutionary algorithm
for global optimization,” Information Sciences, vol. 169, no. 3, pp. 249–
262, 2005.

[6] J. Sun, “Two-stage EDA-based approach for all optical wdm mesh
network survivability under srlg constraints,” Applied Soft Computing,
vol. 11, pp. 916–926, 2011.

[7] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
IEEE Transactions On Evolutionary Computation, vol. 13, no. 2, pp.
398–417, 2009.

[8] J. Brest, M. S. Maucec, and B. BOskovic, “Single objective realparame-
ter optimization: Algorithm jSO,” in Proceedings of the IEEE Congress
on Evolutionary Computation, 2017, pp. 1311–1318.

[9] N. Hansen, S. Muller, and P. Koumoutsakos, “Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES),” Evolutionary computation, vol. 11, no. 1,
pp. 1–18, 2003.

[10] G. Zhang and Y. Shi, “Hybrid sampling evolution strategy for solving
single objective bound constrained problems,” in Proceedings of the
IEEE Congress on Evolutionary Computation, 2018, pp. 1–7.

[11] J. Zhang and A. C.Sanderson, “JADE: Adaptive differential evolution
with optimal external archive,” IEEE Transactions On Evolutionary
Computation, vol. 13, no. 5, pp. 945–458, 2009.

[12] P. I. Frazier, “A tutorial on bayesian optimization,” arXiv preprint
arXiv:1807.02811, 2018.

[13] F. Hutter, H. H. Hoos, and K. Leytonbrown, “Sequential model-based
optimization for general algorithm configuration,” in Proceedings of
International Conference on Learning and Intelligent Optimization,
2011, pp. 507–523.

[14] I. Roman, J. Ceberio, A. Mendiburu, and J. A. Lozano, “Bayesian
optimization for parameter tuning in evolutionary algorithms,” in Pro-
ceedings of the IEEE Congress on Evolutionary Computation, 2016, pp.
4839–4845.

[15] C. Huang, B. Yuan, Y. Li, and X. Yao, “Automatic parameter tuning
using bayesian optimization method,” in Proceedings of the IEEE
Congress on Evolutionary Computation, 2019, pp. 2090–2097.

[16] C. Huang, Y. Li, and X. Yao, “A survey of automatic
parameter tuning methods for metaheuristics,” IEEE Transactions
on Evolutionary Computation, pp. 1–16, 2019. [Online]. Available:
10.1109/ TEVC.2019.2921598

[17] A. Aleti and I. Moser, “A systematic literature review of adaptive pa-
rameter control methods for evolutionary algorithms,” ACM Computing
Surveys, vol. 49, no. 3, Oct. 2016.

[18] M. L. Puterman, Markov decision processes: Discrete stochastic dynam-
ic programming. John Wiley and Sons, Inc., 1994.

[19] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. The
MIT Press, 1998.

