
Evolutionary Graph Compression and Diffusion
Methods for City Discovery in Role Playing Games

Joseph Alexander Brown
AI in Games Development Lab

Innopolis University
Innopolis, Russia

j.brown@innopolis.ru

Daniel Ashlock
Mathematics & Statistics

University of Guelph
Guelph, ON, Canada
dashlock@uoguelph.ca

Sheridan Houghten
Computer Science
Brock University

St. Catharines, ON, Canada
shoughten@brocku.ca

Angelo Romualdo
Computer Science
Brock University

St. Catharines, ON, Canada
angelo.m.romualdo@gmail.com

Abstract—Cities, while exciting in their visualization and
permitting several layouts, do not take into account the placement
of crucial characters which might be part of the narrative.
Narrative graphs, a connected graph of all potential and existing
relations within a game, can enable an ability to find a Non-
player Character (NPC) who is likely to live nearby, under the
assumption that those who interact most frequently are also
close in distance. We examine the use of an evolutionary graph
compression method and a method using simulated diffusion to
cluster features based on relational information about players
to generate relationally intimate groups. This clustering can be
used to generate information about the game world and cities
to inform PCG as to how the connectivity of these areas is,
and should be, arranged. The algorithms are validated as being
human competitive.

Index Terms—Procedural content generation, narrative
graphs, diffusion characters, compression, clustering

I. INTRODUCTION

Procedural Content Generation (PCG), see [30] for an
overview, provides developers with generators based on al-
gorithmic means to potentially speed up the developmental
process and allow for replayability. While several generators
exist for the creation of cities [29] and building interiors
[12], [18], [25] and exteriors [15], few take into account the
narrative factors of the relationships of non-player characters
(NPCs) within them and as a result, are unable to make
discoveries.

As more procedural content development tools for NPCs are
created, and as they focus more on narrative factors, the dis-
covery of natural relationships among players in the placement
of NPCs becomes more relevant. The study [10] examines a
number of rules for the relations NPCs should have. In [11]
a number of NPC communications were examined for both
small world graphs and with real game graphs. In [13], this
graph framework was applied to emotional outcomes due to
interactions between NPCs.

A. Main Goal

The goal of this work is to use narrative requirements,
social structures, and networks as a basis for a generative
requirement, namely the placement of cities and people. In
doing so, this frees designers to concentrate solely on the
narrative aspects, with the proposed methods taking care of

the generation of appropriate links and relationships between
NPCs and their placement within cities.

Narrative aspects are represented in a player relation graph,
which we propose to mine in two ways in order to allow
for the automatic discovery of logical cities based on NPC
relationships. The first is compression of the graph as a
precursor to a city or level generation. The second uses
simulated gas diffusion, termed diffusion characters, to inject
the graph into Euclidean space for visualization and analysis.
We examine the performance of the two methods when applied
to the problem of extracting information from player relation
graphs.

Discovering the relational links between NPCs, created from
the narrative communities, naturally forms communities in
the player space, which then map smoothly to the formal
communities created by PCG. The proposed methods permit
the discovery of natural cities arising from social relationships.

We apply our methods to a number of graphs developed
from the NPCs of four actual games: Fallout 4 [27], New
Vegas [7], The Elder Scrolls IV: Oblivion [6], and The El-
der Scrolls V: Skyrim [8]. These were selected due to the
similarities in their design patterns allowing for the creation
of graph networks of conversations between characters, and
they are representative of this class of games. The purpose
of examining these existing graphs is to act as a proof of
concept, namely, to demonstrate that our methods are able
to provide a human competitive approach to the problem by
comparing their output against a ground truth created by a
designer. The methods are given only the narrative context
of the relationships between NPCs, from which they are then
expected to generate a potential city clustering. The developer
can thus focus on the narrative aspects of the game.

The remainder of this paper is organized as follows. Section
II provides background information on graphs, compression
and diffusion characters. Section III describes the process
followed to extract information from the existing games, to
be used as input and validation for our methods. Section
IV provides detail on the two proposed methods, with the
corresponding results in Section V. Sections VI and VII detail
conclusions and discuss possible future work.

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

II. BACKGROUND

A graph has a set of nodes (or vertices) and a set of edges,
where each edge connects two nodes; when there is an edge
between two nodes then those nodes are neighbours of one
another. A path between two nodes is a sequence of edges
that connect the nodes; the distance between two nodes is the
length of the shortest path between the nodes.

This study tests two methods, graph compression and diffu-
sion character analysis, on graphs in which vertices represent
NPCs and edges represent interactions between them. These
are standard simple, undirected graphs. Only a very basic
knowledge of graph theory is required: the graph stores the
interaction structure, and the analysis techniques attempt to
recover the communities within the game, where the NPCs
resided.

A. Graph Compression

There are many different forms of graph compression
schemes [5]. Graph compression is studied for various reasons.
Studies on graph compression may be organized into three
main groups: the first studies the structure of graphs, the
second concerns graph partitioning, and the last group solves
challenges in large graph mining.

1) Graph structure: Most real-world graphs exhibit inter-
esting properties which distinguish them from random graphs
such as power-law degree distributions [22]. However, pro-
cessing large graphs and representing them in a meaningful
form is very expensive. Graph compression allows the scalable
processing of such graphs.

The algorithms in [17] and [23] compress graphs by removal
of hub nodes. After the removal of the hub nodes, many nodes
“shatter” and become disconnected. The authors repeated the
process of removal until satisfied, noting that this is most
effective on graphs that contain multiple hubs recursively
connected to larger hubs.

In the current study, we are working with graphs drawn
from game environments that are known a priori. We consider
algorithms for detecting community structure and use them
to attempt to recover the known community structure from
the game environment in a number of commercially available
games. By doing so, we validate the algorithm as being human
competitive to a game designer.

2) Graph partition and compression: One of the most
extensively studied topics in network analysis is community
detection or clustering. The main task is to find a set of nodes
in a graph that is homogeneous and group them. Clustering
naturally implies that the resulting graph would have clusters
of nodes, and therefore, we can partition nodes into groups.
Once the graph is partitioned, we can compress each group
with a representative node. One of the most successful meth-
ods to partition graphs is multilevel graph partitioning, which
leverages the structural information.

In social networks, the graph may be partitioned in terms
of node attributes. For instance, in twitter networks, we may
partition the graph in terms of tweet topics [28].

Fig. 1. Shown is a five-vertex graph with five types of gas, represented by
different colours. The coloured bars associated with each vertex represent
the gas distribution at the vertex. Converting the relative gas abundance into
fractions generates the coordinates of the point associated with the vertex by
the diffusion character.

3) Large graph mining: As the sizes of graphs have grown,
many adaptive techniques to process such enormous datasets
have been developed, such as machine learning algorithms and
MapReduce. However, to be able to cope with exponentially
growing graph datasets, new parallel abstractions like Google’s
Pregel [24] have been introduced. Pregel enables the process-
ing of large graphs in a scalable manner by vertex-centric
computations. Depending on the types of graph datasets, many
different properties of nodes can be exploited to compress the
graph with Pregel, such as similarity and locality. For example,
[14] used link reciprocity to compress social networks.

B. Diffusion Characters on Graphs

Diffusion characters [4] are a technique for injecting the
vertices of a graph into Euclidean space in a number of
dimensions equal to the number of vertices in a graph.
This permits analysis of the graph and the relationships it
encodes by means that operate on feature vectors with a fixed
number of dimensions. Each vertex in a graph has a diffusion
character centred on it, and the coordinates of this diffusion
character form the coordinates of the point in Euclidean space
representing it.

The diffusion character of a vertex is computed by permit-
ting a gas, perpetually renewed at the vertex, to diffuse across
the graph. One unit of gas is added, in each time step, to
the central vertex and the amount of the gas at each vertex
is then divided equally among the vertex and its neighbours.
After the gas has moved to neighbour vertices, the amount of
gas at each vertex is then multiplied by decay parameter α,
0 < α < 1, set to α = 0.99 in this study. This decay represents
the absorption of the gas at each vertex. There is a separate
diffusion character, with a different type of gas, centred at
each vertex. A graph with five vertices is shown with its gas
diffusion in Figure 1. The amount of the gas associated with
the diffusion character centred at vertex i present at vertex j,
once the system has come to equilibrium, is a measure of the
connectivity from j to i. The measure is not a metric (it does
not obey the three metric space axioms) and is not symmetric.
This latter fact agrees with the behaviour of random walks.

A random walk starting at a high degree vertex has more
potential destinations than one starting at a low degree vertex,
and so the probability of walking from a low degree vertex to
a high degree vertex is asymmetric. The conservation law we
impose on gas diffusion neatly captures this fact.

The absorption, encoded by the decay parameter α, ensures
that the system comes to equilibrium. In a theorem from
[21] it is demonstrated that the system of diffusion character
equations can be made well conditioned by choice of a
parameter and so may safely be computed by the solution of a
linear system or by simulation (when the number of vertices in
the graph makes a direct solution by matrix inversion imprac-
tical). The mathematics of diffusion characters is explained
in substantial detail in [21]. They have been used in network
analysis in several past studies [1], [2] [4].

The concentration of each type of gas drops off exponen-
tially with the distance from the vertex where that gas orig-
inates. For that reason, the values of the diffusion characters
are negative-log transformed to create the coordinates of points
in Euclidean space. The standard Euclidean metric on those
points then places an alternate distance measure on the vertices
representing NPCs in a social graph.

III. GRAPHS FROM GAMES

A. Process

The process assumes the existence of a narrative graph
of relations between a set of characters as a basis for the
generation. This could be directed about interactions in a quest
line or based on interpersonal relationships existing in the
narrative of the game. The presence of these relationships
once found in the game can be placed into a graph structure,
in which nodes are the entities in the game, and the edges
represent the connections of positive relationships between
them.

B. Test Graphs

We evaluate our system using a series of Bethesda games
in both the Elder Scrolls and Fallout Universes. We created
NPC connection graphs for each of the four games. Spatial
information (i.e. cities) is also known for each of these games.
We evaluate the ability of the system to discover these cities
based on the narrative information (NPC interaction graphs)
alone. If successful, this indicates that narrative information
can be used to generate spatial information; as stated in Section
I-A, this then allows the developer to concentrate solely on
narrative aspects while using the system to generate the spatial
aspects.

For all of the four games, NPCs were considered to have a
relationship if they at any time entered the same loading sector
(known as a CellName) in the game. Note this means there are
a small number of narrative-driven links that may not happen
in a playthrough of the games but that have the potential of
occurring, which are treated as having an equally strong link
as two people who are constantly in communication who live
in the same village. We have removed several NPCs that do
not have a home CellName. Where possible, we have also

included downloadable content (DLC) to obtain the data. Also,
we have limited the study to assigning characters to major
cities in the game and have removed factional sectors (such
as the Prydwen and Institute in Fallout 4 or Caesar’s legion
in Fallout: New Vegas) in which there are no communication
links outside of the faction’s base, as it would be an obvious
design choice for the designer to just place these functionaries
in the fortress-monastery of the Faction, and we are interested
in the overworld being created. They also form a small non-
connected component of the graph – making their detection
trivial as compared to a factional base like Acadia in Fallout
4, which does have external communicative links.

1) Fallout: New Vegas: Fallout New Vegas [7] contains a
graph of 151 NPCs. There are eight large cities in the area:
Boulder City, Freeside, Goodsprings, New Vegas, Hopeville,
Jacobstown, Red Rock Canyon, and Westside.

2) Fallout 4: Fallout 4 [27] contains a graph of 152 NPCs.
There are eight large cities in the area: Acadia, Bunker Hill,
Covenant, Diamond City, Far Harbor, Goodneighbor, The
Nucleus, and Vault 81. See Figure 2.

Fig. 2. Fallout 4 Graph with cities denoted by a Human

3) Oblivion: Elder Scrolls: Oblivion [6] contains a graph
of 659 NPCs. There are nine large cities in the area: The
Imperial City, Anvil, Bravil, Bruma, Cheydinhal, Chorrol,
Kvatch, Leyawin, and Skingrad. See Figure 3.

4) Skyrim: Skyrim [8] contains a graph of 612 NPCs. There
are nine large cities in the area: Markarsh, Rifter, Solitude,
Windhelm, Dawnstar, Falkreath, Morthal, and Winterhold.

Fig. 3. Oblivion Graph with cities denoted by a Human

IV. METHODS

A. Compression

In the current study, a hierarchical approach is used. In
this approach, a graph is compressed by the merging of sets
of nodes into supernodes and sets of edges into superedges.
Examples of such an approach include [26] and [31]. The
current study employs a genetic algorithm (GA) to select
which nodes to merge according to a fitness function that
measures the distortion created by the merges. Nodes that are
merged together are considered to have some sort of close
relationship or similarity. From the perspective of the game
graphs, therefore, supernodes are essentially clusters of nodes
(NPCs) that are closely related. By finding these clusters, we
have evidence for where a generative placement of a city
should be within the game world.

The representation and methodology have evolved over the
course of a number of previous studies (see, e.g. [9], [32],
[16], [20]) and used successfully to address the compression
of biological data. A brief description of the representation
follows, and we refer the reader to these earlier studies for
further details.

1) Representation: The compression is accomplished by a
sequence of merges, with each step merging two nodes. The
chromosome represents the sequence of merges as a pair of
one-dimensional arrays, with matching elements representing
the two nodes in a given merge. The index of the first node
in merge i is root[i] and the index of the second node
in merge i is (root[i] + offset[i]) mod No, where
No is the number of nodes in the original graph.

root 4 7 75 20 17
offset 55 88 57 30 93

Fig. 4. Example Chromosome

root 4 8 75 20 17
offset 55 11 57 30 93

Fig. 5. Result of Mutation

To compress a graph with No nodes by a compression ratio
of C requires a sequence of C ∗No merges to produce a graph
with Nc = No−C ∗No nodes. The desired compression ratio
is given as an input parameter. A graph with 100 nodes to
be compressed by 5% requires 5 merges, so the chromosome
consists of a pair of arrays of length 5. In the example
chromosome shown in Fig. 4, the following nodes are merged:
node 4 with node (4 + 55) mod 100 = 59, node 7 with node
(7 + 88) mod 100 = 95, node 75 with node (75 + 57) mod
100 = 32, node 20 with node (20 + 30) mod 100 = 50 and
node 17 with node (17 + 93) mod 100 = 10.

2) Local Merges: As in [20], all merges must be local. In a
local merge, the nodes are within a specified distance of each
other. From the perspective of the game graphs considered in
the current study, this restriction should help to prevent merges
between nodes (NPCs) in different cities, thereby helping to
ensure that nodes are only merged together if they are closely
related from a game perspective.

3) Initial Population: The first node of each merge is
chosen randomly, and then a breadth-first search is performed
from that node to find all other nodes within the specified
distance; one is then chosen at random as the second node.

4) Selection: Tournament selection is used: for each parent,
k chromosomes are chosen at random from the population
and evaluated, with the best selected for reproduction. These
parents are then subjected to crossover and mutation based on
the settings to create two children. The process is repeated to
create all chromosomes for the next generation.

5) Mutation: A single-point mutation is used, having the
effect of changing a single merge. The mutation point j is
chosen randomly. First, root[j] is changed to a random
value between 0 and No − 1. Next, to ensure that the merge
will be local, the other node is chosen randomly from among
all other nodes within the specified distance of root[j];
from among these, one is chosen at random and offset[j]
is set accordingly. Fig. 5 shows the result of a single-point
mutation in the 2nd entry of the chromosome from Fig. 4.

6) Crossover: Two-point crossover is used. The first
crossover point is a random value between 1 and No − Nc,
the size of the chromosome, and the second point is a random
value between the first crossover point and No − Nc. Fig. 7
shows the result of crossover on the pair of chromosomes from
Fig. 6, with the second and third entries both being exchanged
between the two chromosomes.

7) Fitness: The fitness function measures the distortion cre-
ated by the sequence of merges, where we consider distortion
to be the creation of additional edges that did not exist in the

rootA 4 7 75 20 17
offsetA 55 88 57 30 93

rootB 9 22 46 20 85
offsetB 11 35 49 14 1

Fig. 6. Before Crossover

rootA 4 22 46 20 17
offsetA 55 35 49 30 93

rootB 9 7 75 20 85
offsetB 11 88 57 14 1

Fig. 7. After Crossover

original graph. In merging two nodes into a supernode, upon
decompression, this supernode becomes a clique, which may
create additional edges in comparison to the original graph.
The fitness, which should be minimized, counts the number
of such additional edges created. For further detail, we refer
the reader to [20].

B. Diffusion Character Methods

The diffusion characters for the four graphs in this study are
computed by direct simulation of the gas diffusion, running
the diffusion for a long time, over several time steps equal to
three times the number of vertices, to ensure that the level of
each gas at each vertex is close to equilibrium. The vertices
are then injected into Rn where n is the number of types of
gas (equivalently, number of vertices in the graph), taking the
negative log transform of the gas levels for each gas at each
vertex. This creates a cloud of points that can be clustered and
visualized.

Non-linear projection (NLP) [3] is a method for projecting
a cloud of points in n dimensions into a lower-dimensional
space for visualization. NLP is a form of multidimensional
scaling performed with evolutionary computation. A survey
of techniques for multidimensional scaling is [19], which
gives many fast heuristics and variations on multidimensional
scaling. The goal of nonlinear projection is to provide a
relatively faithful projection of points from a high-dimensional
space into a two-dimensional space that distorts the inter-point
distances as little as possible.

In order to perform NLP, we evolve the coordinates of a
collection of points in two dimensions, one for each point
in the higher dimensional space, and maximize the Pearson
correlation coefficient, given in Equation 1, of the original dis-
tances with distances of points in two dimensions. We restrict
the two-dimensional point cloud to the unit square; Pearson
correlation of distance matrices is invariant under translation,
rotation, reflection across a line, and scaling of the projected
points. Use of Pearson correlation as a fitness function permits
the evolutionary algorithm to solve the problem of relative
distance without worrying about other quantities, yielding a
faithful if scaleless visualization.

The Pearson correlation coefficient is given by:

cor =

∑n
i=1(xi − x)(yi − y)

(n− 1)sxsy
(1)

Where for z ∈ {x, y}, z denotes the sample mean and sz
denotes the sample standard deviation. This is applied to the
entries of the distance matrices for the high-dimensional points
and the projected points.

V. RESULTS

A. Compression Results

We compressed each of the four-game graphs using com-
pression ratios of 10%, 25% and 40%; for each of these, the
maximum allowed distance between merged nodes was set to
3 and 5, thus producing a total of six trials for each of the
graphs. For all test cases, we use the GA settings as specified
in Table I; these were determined empirically.

In the compression, a merge is deemed to be correct if
it joined two NPCs from the same city. Table II shows the
fraction of correct merges, for the run with the highest fitness
for each of the four graphs and six trials. The results clearly
show the value of using an appropriate distance to force all
merges to be local. In all but one case, the percentage of
correct merges was higher for distance 3 than for distance 5.
Even at 40% compression, with distance 3, the percentage of
correct merges was 100% for New Vegas, 98.3% for Fallout4,
99.6% for Skyrim and 93.9% for Oblivion, which is the largest
graph.

We remind the reader that the goal of this study is to demon-
strate the potential of such methods in creating a suitable
spatial structure based solely on narrative information. The
above results show that the described compression methodol-
ogy will reliably compress a graph based on NPC interactions,
such that when two nodes (NPCs) are merged together, they
have a very high likelihood of belonging to the same city
when the spatial structure is known a priori. In the future, the
designer can simply provide narrative information, i.e. a set of
known NPC interactions that form a narrative graph, and use
the compression methodology to generate the spatial structure.
Specifically, if a set of nodes (NPCs) are merged together by
compression of the narrative graph, then the developer can
have high confidence that these NPCs should be in the same
city and thus create cities based on that information. This
allows for complex but sensible spatial structures to be easily
built from even very large sets of NPC interactions.

B. Diffusion Character Results

Both k-means clustering and NLP were performed to see
how well the non-player characters, represented as graph
vertices, could be classified as belonging to their known city.
The k-means results were terrible while the NLP visualizations
yielded promising results that also explain the problems with
the k-means results. The NLP projections showing the dis-
tributions of the NPCs are shown in Figure 8. These results
show good to excellent separation of the agents into the correct
community groups.

New Vegas Fallout 4

Oblivion Skyrim
Fig. 8. Non-linear projections of the log-transformed diffusion characters for the four game communities used in this study.

All four clouds of points generated as log-transformed
diffusion characters were run through k-means clustering with
k chosen to be the number of communities, a known number
of clusters, and a rare luxury in using k-means. The clustering
always grouped distinct communities as single clusters. First
of all, it is clear from the results in Figure 8 that some of
the communities have strong interpersonal linkage and so are
not unreasonably associated. A more significant issue is that

the communities detected seldom form a compact shape. The
k-means algorithm must find compact clusters, or to be more
precise, sets of points that fit within a convex polytope, with
one such polytope for each cluster. The long thin clusters
that dominate the Skyrim results, and which appear in all the
visualizations, are likely to either be split (if we had used more
clusters) or fuse with a nearby community chosen so that the
union of the two communities makes a compact shape. Many

TABLE I
EXPERIMENTAL PARAMETERS FOR THE COMPRESSION GA

Parameter Value
Mutation Rate 10%
Crossover Rate 90%
Generations 500
Population Size 100
Tournament Size 5
Number of Elites 1
Number of Runs 10

TABLE II
PERCENTAGE OF MERGES THAT INVOLVED TWO RESIDENTS OF THE SAME

CITY. FOR EACH OF THE GRAPHS, SIX TRIALS WERE PERFORMED WITH
DIFFERENT COMPRESSION AND DISTANCE PARAMETERS.

New Vegas Comp. Dist. Fallout 4 Comp. Dist.
100% 10% 3 93.3% 10% 3
100% 10% 5 100% 10% 5
100% 25% 3 94.7% 25% 3
100% 25% 5 94.7% 25% 5
100% 40% 3 98.3% 40% 3
93.3% 40% 5 91.6% 40% 5

Oblivion Comp. Dist. Skyrim Comp. Dist.
100% 10% 3 100% 10% 3
90.8% 10% 5 96.7% 10% 5
98.2% 25% 3 100% 25% 3
85.4% 25% 5 95.4% 25% 5
93.9% 40% 3 99.6% 40% 3
76.8% 40% 5 91.0% 40% 5

other clustering techniques could be tried, and the NLP results
will be instructive in the selection of an effective one.

Historical connections between some of the regions due
to their narratives are also seen. Looking at the cities of
Winterhold and Solitude in Skyrim, the capital was once in
Winterhold and then moved to Solitude, leading to a rivalry
between the cities which is seen in the movement of some
NPCs between the locations. Similarly, Acadia is tightly
connected in Fallout 4 being one of the locations in the Far
Harbour DLC in which the Synths have shelter away from the
number of factions.

As with the compression results, the diffusion character
results detected either cohesive cities or, for New Vegas, well-
connected city cores, using only narrative information. This
shows that diffusion character results, based solely on narrative
information, can be used to gather together players that would
form natural cities within the game world. Both methods
thus achieve the stated goals of detecting cities from player
interactions.

VI. CONCLUSIONS

The goal of this work was to use the narrative requirements,
social structures and networks, as a basis for a generative
requirement, the placement of cities and people. We examine
the performance of two methods, graph compression and

simulated gas diffusion, when applied to the problem of
extracting information from player relation graphs.

In order to demonstrate the methods, we used four com-
munication networks from commercially developed games as
base truth information. These graphs show highly connected
cliques with weak connections between them centred about the
cities. Both techniques used discover the existing cities with
a high probability of success. Therefore, we would see this as
evidence of the techniques’ suitability for games during the
development phase, and for being part of a PCG pipeline that
respects the narrative structures of the system created by NPC
interactions.

We do not view either of these techniques as producing
inherently better outcomes from the perspective of the defi-
nition of the placement of cities Hence, we present both as
viable methods of design, and depending on other factors in
the development and the data available to the games designer,
either could be selected as a reasonable approach this problem.
In order to see a clear use-case for one method over the other,
we would need to examine other factors in actual development,
e.g. speed, offline/online development, narrative requirements,
etc.

VII. FUTURE WORK

There are other narrative requirements examined, such as
quest lines providing information to the generational process.
The clustering using narrative relationships allows new city
layouts to be produced. It can also act as a tool for designers
in order to verify assumptions about the quest lines. If several
highly connected NPCs are placed in a group by the clustering
but are supposed by the designers to live about the world, then
they are violating the assumption that close relationships are
formed between physically close characters. In such a case,
this can be addressed either by adding more relationships to
force the relations to be meet with the assumption, or this
implies a violation of the assumption of proximity. Violations
should have a narrative rationale, which is assumed to be a
city-like grouping, for example, a hidden spy network that
keeps a member of their order in each city and clandestinely
communicates. Further, the method of examination of pro-
posed cities can also act as a check for excessive backtracking
in quest lines.

In order to examine the stability of the approaches, it
would be best to introduce several noise-introducing factors. If
developers make minor changes to the narrative relationships
between characters, this should not make significant changes
to the expected clustering of the graph of the cities. Also,
the links in our game graphs do not take into account the
factional natures, the type of communication, or the strength
of the bonds between the NPCs. If we had information about
the types of links, we could better split graphs based upon
other factors such as occupation or factional biases and even
give back narrative actions to the next generator. For example,
a trader is likely to be on the edge of two cities as he moves
gossip and information between them, whereas it would be
unlikely for two enemy factions to be clustered in the same

city without a local conflict. These concerns are, of course,
highly dependent upon the problem case.

DATASETS

The datasets for the graphs are publicly available at:
http://www.cosc.brocku.ca/~houghten/gamegraphs.html

ACKNOWLEDGEMENTS

This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada.

REFERENCES

[1] D. Ashlock and C. Lee. Characterization of extremal epidemic networks
with diffusion characters. In Proceedings of the 2008 IEEE Symposium
on Computational Intelligence in Bioinformatics and Computational
Biology, pages 264–271, 2008.

[2] D. Ashlock and C. Lee. Using diffusion characters for the taxonomy
of self-organizing social networks. In Proceedings of the 2009 IEEE
Symposium on Computational Intelligence in Bioinformatics and Com-
putational Biology, pages 60–67, 2009.

[3] D. Ashlock and A. McEachern. Evolutionary nonlinear projection. IEEE
Transactions on Evolutionary Computation, 6(19):857–869, 2015.

[4] D. Ashlock, E. Shiller, and C. Lee. Comparison of evolved epidemic
networks with diffusion characters. In Proceedings of IEEE Congress
on Evolutionary Computation, pages 781–788, 2011.

[5] M. Besta and T. Hoefler. Survey and taxonomy of lossless graph
compression and space-efficient graph representations. arXiv preprint
arXiv:1806.01799, 2018.

[6] Bethesda Game Studios. The Elder Scrolls IV: Oblivion. Bethesda
Softworks, 2006.

[7] Bethesda Game Studios. Fallout : New Vegas. Bethesda Softworks,
2010.

[8] Bethesda Game Studios. The Elder Scrolls V: Skyrim. Bethesda
Softworks, 2011.

[9] J. A. Brown, S. Houghten, T. K. Collins, and Q. Qu. Evolving graph
compression using similarity measures for bioinformatics applications.
In 2016 IEEE Conference on Computational Intelligence in Bioinfor-
matics and Computational Biology (CIBCB), pages 1–6, Oct 2016.

[10] J. A. Brown and Q. Qu. Systems for player reputation with npc agents.
In 2015 IEEE Conference on Computational Intelligence and Games
(CIG), pages 546–547, Aug 2015.

[11] Joseph Brown, Jooyoung Lee, and Niktia Kraev. Reputation systems for
non-player character interactions based on player actions. In AAAI Con-
ference on Artificial Intelligence and Interactive Digital Entertainment,
2017.

[12] Joseph Brown, Bulat Lutfullin, Pavel Oreshin, and Ilya Pyatkin. Levels
for hotline miami 2: Wrong number using procedural content genera-
tions. Computers, 7(2):22, Apr 2018.

[13] X. Caddle, C. Gittens, and M. Katchabaw. A psychometric detection
system to create dynamic psychosocial relationships between non-player
characters. In 2018 IEEE Games, Entertainment, Media Conference
(GEM), pages 256–262, Aug 2018.

[14] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher,
Alessandro Panconesi, and Prabhakar Raghavan. On compressing social
networks. In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’09, pages
219–228, New York, NY, USA, 2009. ACM.

[15] C. Coia and B.J. Ross. Automatic evolution of conceptual building
architectures. In 2011 IEEE Congress on Evolutionary Computation
(CEC), pages 1140–1147, 2011.

[16] T.K. Collins, A. Zakirov, J.A. Brown, and S. Houghten. Single-objective
and multi-objective genetic algorithms for compression of biological
networks. In 2017 IEEE Conference on Computational Intelligence in
Bioinformatics and Computational Biology (CIBCB), pages 1–8, 2017.

[17] Christos Faloutsos and U. Kang. Beyond ’caveman communities’:
Hubs and spokes for graph compression and mining. 2011 IEEE 11th
International Conference on Data Mining (ICDM 2011), 00:300–309,
2011.

[18] R. W. J. Flack and B.J. Ross. Evolution of architectural floor
plans. In Cecilia Chio, Anthony Brabazon, Gianni A. Caro, Rolf
Drechsler, Muddassar Farooq, Jörn Grahl, Gary Greenfield, Christian
Prins, Juan Romero, Giovanni Squillero, Ernesto Tarantino, Andrea G.B.
Tettamanzi, Neil Urquhart, and A.Şima Uyar, editors, Applications of
Evolutionary Computation, volume 6625 of Lecture Notes in Computer
Science, pages 313–322. Springer Berlin Heidelberg, 2011.

[19] P. J. F. Groenen and I. Borg. Modern Multidimensional Scaling: Theory
and Applications. Springer-Verlag, Secaucus, NJ, 2005.

[20] S.K. Houghten, A. Romualdo, T.K. Collins, and J.A. Brown. Compres-
sion of biological networks using a genetic algorithm with localized
merge. In 2019 IEEE Conference on Computational Intelligence in
Bioinformatics and Computational Biology (CIBCB), pages 1–8, 2019.

[21] C. Lee and D. Ashlock. Diffusion characters: Breaking the spectral
barrier. In Proceedings of the Canadian Conference on Electrical and
Computer Engineering 2008, pages 847–850, 2008.

[22] Jooyoung Lee and Jae C Oh. Estimating the degrees of neighboring
nodes in online social networks. In International Conference on
Principles and Practice of Multi-Agent Systems, pages 42–56. Springer
International Publishing, 2014.

[23] Yongsub Lim, U. Kang, and Christos Faloutsos. Slashburn: Graph
compression and mining beyond caveman communities. IEEE Trans.
Knowl. Data Eng., 26(12):3077–3089, 2014.

[24] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel:
A system for large-scale graph processing. In Proceedings of the
2010 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’10, pages 135–146, New York, NY, USA, 2010. ACM.

[25] Paul Merrell, Eric Schkufza, and Vladlen Koltun. Computer-generated
residential building layouts. In ACM SIGGRAPH Asia 2010 papers,
SIGGRAPH ASIA ’10, pages 181:1–181:12, New York, NY, USA, 2010.
ACM.

[26] Saket Navlakha, Rajeev Rastogi, and Nisheeth Shrivastava. Graph
Summarization with Bounded Error. In SIGMOD, pages 419–432, 2008.

[27] Obsidian Entertainment. Fallout 4. Bethesda Softworks, 2015.
[28] Qiang Qu, Cen Chen, Christian S. Jensen, and Anders Skovsgaard.

Space-time aware behavioral topic modeling for microblog posts. IEEE
Data Eng. Bull., 38(2):58–67, 2015.

[29] Christoph Salge, Michael Cerny Green, Rodgrigo Canaan, and Julian
Togelius. Generative design in minecraft (gdmc): Settlement generation
competition. In Proceedings of the 13th International Conference on the
Foundations of Digital Games, FDG ’18, pages 49:1–49:10, New York,
NY, USA, 2018. ACM.

[30] Noor Shaker, Julian Togelius, and Mark J. Nelson. Procedural Content
Generation in Games. Springer, Sweden, 2016.

[31] Hannu Toivonen, Fang Zhou, Aleksi Hartikainen, and Atte Hinkka.
Compression of weighted graphs. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 965–973, 2011.

[32] A.N. Zakirov and J.A. Brown. NSGA-II for biological graph compres-
sion. Advanced Studies in Biology, 9(1):1–7, 2017.

