
Dynamic Normalization in MOEA/D for
Multiobjective Optimization

Linjun He∗†, Hisao Ishibuchi∗, Anupam Trivedi† and Dipti Srinivasan†
∗Shenzhen Key Laboratory of Computational Intelligence,

University Key Laboratory of Evolving Intelligent Systems of Guangdong Province,
Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China

†Department of Electrical and Computer Engineering, National University of Singapore, Singapore
Email: this.helj@gmail.com, hisao@sustech.edu.cn, eleatr@nus.edu.sg, dipti@nus.edu.sg

Abstract—Objective space normalization is important since a
real-world multiobjective problem usually has differently scaled
objective functions. Recently, bad effects of the commonly used
simple normalization method have been reported for the popular
decomposition-based algorithm MOEA/D. However, the effects of
recently proposed sophisticated normalization methods have not
been investigated. In this paper, we examine the effectiveness of
these normalization methods in MOEA/D. We find that these
normalization methods can cause performance deterioration. We
also find that the sophisticated normalization methods are not
necessarily better than the simple one. Although the negative
effects of inaccurate estimation of the nadir point are well recog-
nized in the literature, no solution has been proposed. In order
to address this issue, we propose two dynamic normalization
strategies which dynamically adjust the extent of normalization
during the evolutionary process. Experimental results clearly
show the necessity of considering the extent of normalization.

Index Terms—Objective space normalization; decomposition-
based algorithms; MOEA/D; evolutionary multiobjective opti-
mization

I. INTRODUCTION

A real-world optimization problem usually involves multiple
mutually conflicting objective functions, known as a multiob-
jective optimization problem (MOP) [1]. No single solution
can minimize all objective functions at the same time; by
contrast, a set of Pareto optimal solutions is obtained owing
to the trade-offs among different objectives. In the past two
decades, evolutionary algorithms have shown its superiority in
solving such problems. A number of multiobjective evolution-
ary algorithms have been developed to handle various MOPs.
These algorithms mainly fall into three classes: dominance-
based, indicator-based, and decomposition-based approaches
[1], [2].

MOEA/D [3] is one of the most popular decomposition-
based EMO algorithms, which solves the MOP by decom-
posing it into several scalar optimization problems with the

This work was supported by National Natural Science Foundation of
China (Grant No. 61876075), the Program for Guangdong Introducing
Innovative and Enterpreneurial Teams (Grant No. 2017ZT07X386), Shen-
zhen Peacock Plan (Grant No. KQTD2016112514355531), the Science and
Technology Innovation Committee Foundation of Shenzhen (Grant No.
ZDSYS201703031748284), the Program for University Key Laboratory of
Guangdong Province (Grant No. 2017KSYS008). (Corresponding author:
Hisao Ishibuchi.)

𝑓2

𝑑2

𝑑1

𝑓1𝟎(𝐳ideal)

𝒘

𝐳nad
𝑓2

𝑑2

𝑑1
𝑓1𝟎(𝐳ideal)

𝒘

1

1 𝐳nad

(a) Original Objective Space.

𝑓2

𝑑2

𝑑1

𝑓1𝟎(𝐳ideal)

𝒘

𝐳nad
𝑓2

𝑑2

𝑑1
𝑓1𝟎(𝐳ideal)

𝒘

1

1 𝐳nad

(b) Normalized Objective Space.

Fig. 1: Illustration of the effect of the objective space normal-
ization when the PBI function is used for fitness evaluation.
The solid blue line is the Pareto front.

help of uniformly distributed weight vectors. For each weight
vector, one scalar optimization problem is generated using a
scalarizing function. The penalty-based boundary intersection
(PBI) function [3] is the most commonly used scalarizing
function due to its effectiveness in solving multiobjective
problems with more than three objectives [4], [5]. Given a
solution x and its corresponding weight vector w, the PBI
function returns d1 + θd2, where d1 is the projected distance
of the solution x along the weight vector w, and d2 is the
perpendicular distance of the solution x toward the weight
vector w, as shown in Fig 1 (a). Here, θ is a user-defined
penalty parameter (we use θ = 5 as in [3]).

One important property, disparately-scaled objectives, of a
real-world MOP has drawn researchers’ attention recently [6],
[7]. The multiple objective functions are usually measured
in different units, resulting in differently-scaled objectives.
In order to handle optimization problems with differently-
scaled objectives, objective space normalization is always
encouraged and is even sometimes mandatory in an evolu-
tionary multiobjective algorithm [6]. A simple normalization
method mentioned in [3] always gains researcher’s favor and
is frequently used in the literature [8], [9].

Although objective space normalization plays a non-
neglectable role in solving MOPs, its effects have rarely been

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

studied [8], [10]. Since the fitness evaluation in MOEA/D
is completely based on the distance calculation, the ranking
of two solutions can be heavily dependent on the scaling of
objective functions [8], [9].

An example is shown in Fig. 1. The red point is worse than
the blue point in the original objective space in Fig. 1 (a), while
it is better in the normalized objective space in Fig. 1 (b). Thus,
it is important to examine the effects of different normalization
methods in MOEA/D. In [8], the authors examine the effects
of the simple normalization method in MOEA/D, where both
positive and negative effects are reported. In [9], four differ-
ent implementations of the simple normalization method are
presented and examined. Experimental results show that all of
these implementations lead to certain performance deteriora-
tion of MOEA/D on some test problems. Some sophisticated
normalization methods [7], [11], [12] are proposed recently.
Extreme point identification and hyperplane construction are
needed before deriving the estimated nadir point, which makes
them different from the simple normalization method.

In this paper, the simple normalization method and two
sophisticated normalization methods are compared in the
framework of MOEA/D. Our results clearly show that these
sophisticated normalization methods are even worse than the
simple normalization method. In order to address the per-
formance deterioration, two dynamic normalization strategies
are proposed by considering the extent of normalization.
Experimental results clearly show that our proposed strate-
gies help remedy the performance deterioration of different
normalization methods.

The rest of the paper is organized as follows. In Section II,
we present an overview of objective space normalization. Our
proposed normalization strategies are presented in Section III
and their effectiveness is experimentally validated in Section
IV. In Section V, we conclude the paper.

II. PRELIMINARIES

A. How Objective Space Normalization is Performed?

Objective space normalization is usually performed by using
the ideal point zideal = (zideal

1 , zideal
2 , ..., zideal

m)T and the nadir
point znad = (znad

1 , znad
2 , ..., znad

m)T for an m-objective opti-
mization problem. As illustrated in Fig. 1 (a), these two points
contain the information on the range of each objective in the
true Pareto front. Given the decision variable space Ω and the
Pareto optimal set PS, the ideal point gives the lower bound of
the Pareto front, i.e., zideal

i = minx∈Ω fi(x), i = 1, 2, . . . ,m,
and the nadir point gives the upper bound of the Pareto front,
i.e., znad

i = minx∈PS fi(x), i = 1, 2, . . . ,m.
With the ideal and nadir points, objective space normaliza-

tion can be done by the following two steps:
1) Objective function translation: Each objective function

is translated as

f ′i(x) = fi(x)− zideal
i , i = 1, 2, . . . ,m. (1)

After objective function translation, the ideal point of the
Pareto front is translated to the origin of the coordinate

system [3], [7]. This method is used in the standard
MOEA/D [3], in which the ideal point is translated to
(0, 0, ..., 0), so that the weight vectors start from the
origin. It is worth noting that the translated objectives
still have differently scaled objective values.

2) Objective function scaling: This step relies on both the
ideal and nadir points. The translated objective functions
are normalized as follows [8], [13]:

f̃i(x) =
f ′i(x)

znad
i − zideal

i

, i = 1, 2, . . . ,m. (2)

After normalization, objective values are commensurable
and of approximately the same order of magnitude.

However, the ideal and nadir points are not always known
a priori in real-world MOPs [14]. The ideal point can be
obtained by minimizing each objective function separately
while the nadir point needs the information of the Pareto front,
which makes the calculation of the nadir point a difficult task
[14]. For nadir point offline estimation methods, one can refer
to [14]–[16]. In practice, these two points are usually estimated
during the evolutionary process in an online manner.

Objective space normalization using estimated ideal and
nadir points is often referred to as adaptive normalization
[17] because the ideal and nadir points are estimated adap-
tively at every generation. We denote the estimated ideal and
nadir points as zmin = (zmin

1 , zmin
2 , . . . , zmin

m)T and zmax =
(zmax

1 , zmax
2 , . . . , zmax

m)T , respectively.
The ideal point can be estimated by taking the minimum

value of each objective function from a candidate solution set.
As reported in [9], [18], the estimated ideal point can approach
to the true ideal point very fast, especially when all solutions
examined so far are selected as the candidate solution set.
Usually, the ideal point is estimated from the best objective
value found so far for each objective [19]–[23]. We use this
setting to estimate the ideal point in this paper. However, there
are different methods to estimate the nadir point due to its
difficulty. The main difference between different normalization
methods lies in the way of estimating the nadir point.

B. Simple Normalization Method

In the simple normalization method, the nadir point is
estimated as follows:

zmax
i = max

x∈S
fi(x), i ∈ {1, 2, . . . ,m}, (3)

where S is a candidate solution set. The current solution set
can be either the current population or its non-dominated
solutions. Due to its simplicity, this is the most commonly
used normalization method.

In this paper, we use non-dominated solutions in the current
population as the candidate solution set according to [9]. For
other implementations, one can refer to [9].

C. Hyperplane-based Normalization Methods

In the hyperplane-based normalization method, the nadir
point estimation involves extreme point identification and
hyperplane construction, which makes it more sophisticated

than the commonly used simple normalization method. To be
more specific, for an m-objective optimization problem, given
a candidate solution set S, the objective function translation
is firstly performed. Then, m extreme points are identified
and a hyperplane is constructed by using the m extreme
points. Finally, the estimated nadir point zmax is derived from
the intercept of the hyperplane with each objective axis. For
details of hyperplane construction, one can refer to [11],
[22]. The main difference between different hyperplane-based
normalization methods lies in their extreme point identification
methods. Two extreme point identification methods, which are
used in NSGA-III [7] and θ-DEA [11], are explained below.

1) NSGA-III [7]: The extreme point of each objective is
defined as the solution that minimizes the following achieve-
ment scalarizing function:

ASF (x,w) =
m

max
i=1

f ′i(x)/wi, for x ∈ S,

wi =

{
1 i = k
10−6 i 6= k

, i ∈ {1, 2, . . . ,m},
(4)

where w is a weight vector with the axis direction correspond-
ing to one objective. For the k-th objective, we have wk = 1
and wl = 0 for l 6= k. Notice that wl = 0 here is often
replaced by a small number wl = 10−6.

In other words, this extreme point identification method is to
identify the closest solution to each objective axis by calculat-
ing the Tchebychev distance. This extreme point identification
method is used in many recently-proposed algorithms, such as
DBEA-Eps [24], DBEA [25], DoD [26], LEAF [27], DECAL
[21].

2) θ-DEA [11]: A slightly different extreme point identifi-
cation method is used in θ-DEA [11]. The extreme points are
identified by minimizing the following function:

ASF (x,w) =
m

max
i=1

{∣∣∣∣ f ′i(x)

żmax
i − żmin

i

∣∣∣∣ /wi} , for x ∈ S. (5)

This extreme point identification method is also used by
many recently-proposed algorithms, such as MOEA/D-DU
[28], EFR-RR [28], MOEA/D-AU [29], and ASEA [20].

Similar to NSGA-III [7], the extreme point identification
method in θ-DEA [11] also identifies the closest solution to
each objective axis by calculating the Tchebychev distance.
The only difference is that this method is performed in the
normalized objective space. The objective space is normalized
before the extreme point identification using the estimated
ideal and nadir points in the previous generation. This might
help to more accurately identify the extreme points because
the Tchebychev distance is a distance metric (which is scaling-
dependent). However, if the estimated ideal and nadir points
are not accurate, the use of the normalized space may deteri-
orate the identification process.

Let us denote the candidate solution set S at the t-th gener-
ation by St. A frequently used method for specifying St is to
choose the best fronts (based on the non-dominated sorting)
containing at least N solutions from the current population

[7], [30], where N is the population size. In MOEA/D, the
candidate solution set St is almost the same as the current
population, since only one offspring is generated at each
generation. To make a fair comparison, we also consider the
non-dominated solution set in the current population, which is
used in the simple normalization method in this paper.

It is worth noting that the hyperplane-based nadir point
estimation method might fail to obtain reasonable intercepts.
The hyperplane can degenerate when the identified extreme
points are less than m. Even when the hyperplane is con-
structed, there exist no intercept when the hyperplane is
parallel to certain axes. The intercept can be also negative
when the hyperplane intersects an axis below the origin. In
NSGA-III [7], any countermeasure against these cases is not
presented. Thus, we use the method in θ-DEA [11]. When
these degenerated cases happen, the nadir point is estimated
by the simple normalization method.

III. COMPARISONS OF THREE NORMALIZATION METHODS

In this section, the three normalization methods (i.e., the
simple normalization method and the two hyperplane-based
normalization methods) described in Section II are compared.
MOEA/D without normalization is also compared in this sec-
tion. We denote MOEA/D with each normalization method as
MOEA/D-N, MOEA/D-NN , and MOEA/D-Nθ, respectively.
All the algorithms used in this paper are implemented in
PlatEMO [31].

A. Experimental Settings

Our experiments are conducted on the DTLZ test suite [32]
with 3, 5, 8, and 10 objectives. The parameter settings of
DTLZ are taken from [32]. The population size N and the
maximum number of function evaluations are the same as [11].
The neighborhood size of MOEA/D is set as dN/10e, i.e., 10
percent of the population size. When N/10 is not an integer,
we round it to the smallest integer greater than N/10. A small
value ε is usually used in the denominator of (2) to prevent
the denominator from being zero in the case of zmax

i = zmin
i .

We set ε = 10−6 in our experiments. To evaluate the quality
of the final solution sets, we use the hypervolume metric [33]
since it can evaluate the overall performance of a solution set
with respect to both its convergence and diversity. The final
solution sets are normalized using the true Pareto front before
hypervolume calculation. The reference point for hypervolume
calculation is specified as (1.1, 1.1, ..., 1.1) in the normalized
objective space.

B. Experimental Results on DTLZ

The mean hypervolume values over 21 independent runs of
MOEA/D, MOEA/D-N, MOEA/D-NN , and MOEA/D-Nθ on
the DTLZ problems are shown in Table I. We use the Wilcoxon
rank sum test at the confidence level of 95% to show the
statistical difference of the results. ‘+’ and ‘−’ indicate that
the corresponding result is significantly better than and worse
than that of the compared algorithm, respectively. ‘≈’ means

TABLE I: Hypervolume values obtained by MOEA/D and MOEA/D with each of the three objective space normalization
methods on the DTLZ test suite with 3, 5, 8, and 10 objectives. The best value of each row is highlighted with bold typeface,
while the worst with gray background.

Problem M MOEA/D-N MOEA/D-NN MOEA/D-Nθ MOEA/D

St Non-dominated St Non-dominated

DTLZ1

3 8.3772e-1 ≈ 8.3885e-1 ≈ 8.3814e-1 ≈ 8.3737e-1 ≈ 8.3835e-1 ≈ 8.3861e-1
5 9.7774e-1 − 9.7777e-1 − 9.7864e-1 − 9.7950e-1 ≈ 9.7942e-1 ≈ 9.7974e-1
8 6.5773e-1 − 3.9361e-1 − 3.3686e-1 − 3.6825e-1 − 3.7284e-1 − 9.9729e-1

10 8.9745e-1 − 4.8018e-1 − 6.4365e-1 − 6.6534e-1 − 5.8068e-1 − 9.9965e-1

DTLZ2

3 5.5918e-1 ≈ 5.5917e-1 ≈ 5.5919e-1 ≈ 5.5919e-1 ≈ 5.5918e-1 ≈ 5.5919e-1
5 8.1217e-1 ≈ 8.1205e-1 ≈ 8.1217e-1 ≈ 8.1231e-1 ≈ 8.1222e-1 ≈ 8.1217e-1
8 8.7090e-1 ≈ 9.2349e-1 − 9.2208e-1 ≈ 9.2294e-1 − 9.2352e-1 ≈ 9.2385e-1

10 9.6986e-1 ≈ 9.6977e-1 ≈ 9.6987e-1 ≈ 9.6982e-1 ≈ 9.6988e-1 ≈ 9.6977e-1

DTLZ3

3 5.5213e-1 ≈ 5.5342e-1 ≈ 5.5357e-1 ≈ 5.5150e-1 − 5.5412e-1 ≈ 5.5495e-1
5 7.2799e-1 − 7.7517e-1 − 7.6366e-1 − 7.7936e-1 − 7.5341e-1 − 8.0985e-1
8 1.6655e-1 − 2.8039e-1 − 2.7657e-1 − 3.2681e-1 − 2.9359e-1 − 7.8473e-1

10 1.2531e-1 − 2.8586e-1 − 2.7533e-1 − 2.5856e-1 − 2.5800e-1 − 9.3318e-1

DTLZ4

3 4.2693e-1 ≈ 3.7043e-1 − 2.4868e-1 − 3.3795e-1 − 3.0524e-1 − 4.2142e-1
5 7.7390e-1 ≈ 3.5170e-1 − 5.4389e-1 − 4.5003e-1 − 4.4506e-1 − 7.6644e-1
8 8.9051e-1 + 4.7226e-1 − 5.2807e-1 − 4.3009e-1 − 6.2024e-1 − 8.4422e-1

10 9.5590e-1 ≈ 5.4502e-1 − 5.0243e-1 − 4.2324e-1 − 5.8981e-1 − 9.4275e-1
+/− / ≈ 1/6/9 0/11/5 0/10/6 0/11/5 0/9/7

‘+’ and ‘−’ mean that the corresponding result is significantly better than and worse than that of MOEA/D, respectively.
‘≈’ means that the corresponding result is statistically similar to that of MOEA/D.

MOEA/DMOEA/D-N MOEA/D-NN MOEA/D-Nq

St Non-dominated St Non-dominated

MOEA/DMOEA/D-N MOEA/D-NN MOEA/D-Nq

St Non-dominated St Non-dominated

Fig. 2: Obtained solutions by a single run of each algorithm with the median hypervolume value on the 3-objective DTLZ4.

MOEA/DMOEA/D-N MOEA/D-NN MOEA/D-Nq

St St Non-dominatedNon-dominated

Fig. 3: Obtained solutions by a single run of each algorithm with the median hypervolume value on the 10-objective DTLZ4.

that the corresponding result is statistically similar to that of
the compared algorithm.

As can be observed from Table I, MOEA/D without any
normalization method obtains the best mean hypervolume
values on 9 out of the 16 test problems. From the statistical test
results, we can also see that MOEA/D is significantly better
than or statistically similar to MOEA/D-N, MOEA/D-NN , and
MOEA/D-Nθ on almost all DTLZ test problems.

For MOEA/D-N, we can observe clear performance dete-
rioration on DTLZ1 and DTLZ3 when the objective normal-
ization method is used, especially on problems with 8 and 10

objectives, while performance improvement is observed on all
DTLZ4 problems. Fig. 2 and Fig. 3 show obtained solutions
by a single run of each algorithm on the 3- and 10-objecrtive
DTLZ4 problems, respectively. As shown in Fig. 2 and Fig. 3,
MOEA/D-N can achieve better diversity than MOEA/D on the
DTLZ4 problems. It is worth noting that MOEA/D-N still fails
to find uniformly distributed solutions over the Pareto fronts of
the DTLZ4 problems, as shown in Fig. 2 and Fig. 3, although
it achieves the best results among the compared algorithms.

For MOEA/D-NN and MOEA/D-Nθ, statistically similar
results to MOEA/D are obtained on DTLZ2, while perfor-

mance deterioration can be observed on the rest of the DTLZ
problems, especially when the number of objectives is larger
than 3. The selection of the candidate solution set, St or the
non-dominated solution set, does not have a large effect on
the performance of MOEA/D-NN and MOEA/D-Nθ. Similar
results are obtained by MOEA/D-NN and MOEA/D-Nθ when
different candidate solution sets are used. Therefore, in the
next section, we only consider the candidate solution set St.

Comparing MOEA/D-NN and MOEA/D-Nθ with
MOEA/D-N, we can see that the two sophisticated
normalization methods do not show superiority over the
simple normalization method. Even worse results are obtained
by the two sophisticated normalization methods. As shown in
Fig. 2 and Fig. 3, MOEA/D-N can find much more diverse
solutions than MOEA/D-NN and MOEA/D-Nθ on the DTLZ4
problems.

IV. PROPOSED DYNAMIC NORMALIZATION STRATEGIES

The negative effects of objective space normalization result
from the inaccurate estimation of the nadir point [8], [18]. At
early generations, the population is far away from the Pareto
front and the estimated nadir point is not able to approximate
the upper bound of the Pareto front. With the inaccurately
estimated nadir point, the heavily rescaled objective space
misleads the search direction, which then makes the nadir point
estimation even worse [8]. Although this negative cycle is well
recognized in the literature, objective space normalization is
still performed at the beginning of the evolutionary process.

In this paper, we propose to control the extent of the ob-
jective space normalization. The objective space normalization
formula (2) is reformulated as follows:

f̃i(x) =
fi(x)− zmin

i

Li + ε
, i = 1, 2, . . . ,m, (6)

Li =
zmax
i − zmin

i

(1− α)(zmax
i − zmin

i − 1) + 1
, (7)

where α is a parameter with a value in the range of [0, 1] that
controls the extent of normalization. When α = 1, we have
Li = zmax

i − zmin
i (i.e., exactly the same as (2)). When α = 0,

we have Li = 1, which makes the formula (6) independent of
the estimated nadir point. That is, only the objective function
translation in (1) happens.

To the best of the authors’ knowledge, only these two
extreme cases are considered in the literature: 1) when α = 0,
no normalization is performed; 2) when α = 1, normalization
is performed. Despite the fact that the population improves
with generations (i.e., the estimation of the nadir point and the
ideal point improves as the population evolves), no researcher
has considered controlling the extent of normalization.

By adjusting the value of α, we can control the extent of
normalization (i.e., the reliance on the estimated nadir point).
When the nadir point estimation is not reliable, a small value
of α can be used to reduce the extent of normalization (i.e.,
to reduce the influence of the inaccurate range zmax

i − zmin
i).

As the accuracy of the nadir point improves, a large value of
α can be used to increase the extent of normalization.

Based on the assumption that the accuracy of the estimated
nadir point improves with generations, we simply increase the
value of α linearly from 0 at the initial generation to 1 at the
final generation as follows:

α(t) =
t− 1

T − 1
, (8)

where t is the index of the current generation and T is the
total number of generations (t = 1, 2, . . . , T). As illustrated in
Fig. 4, the value of α changes from 0 to 1. As a result, Li in
(6) changes from Li = 1 to Li = zmax

i − zmin
i .

Instead of the linear function, we can also use the sigmoid
function (9) since it places less reliance on the estimated nadir
point at early generations and more reliance at late generations.

α(t) =
1

1 + exp(−8(t−1
T−1 − 0.5))

. (9)

A normalization method with these two dynamic strategies
are named as the linear dynamic normalization (LDN) and the
sigmoid dynamic normalization (SDN), respectively.

V. EFFECTIVENESS OF PROPOSED STRATEGIES

In this section, we validate the effectiveness of the two
proposed dynamic normalization strategies by integrating them
into the three normalization methods in Section II. They
are denoted by MOEA/D-LDN, MOEA/D-SDN, MOEA/D-
LDNN , MOEA/D-SDNN , MOEA/D-LDNθ, and MOEA/D-
SDNθ, respectively. They are compared to their original ver-
sions on the DTLZ [32] and WFG [6] test suites.

The mean hypervolume value over 21 independent runs of
each algorithm on each test problem is shown in Table II-
IV. We only show the results on the problems with 8 and 10
objectives to make the tables more concise. This is because the
performance deterioration mainly happens when the number
of objectives is large.

As we can see from Table II, MOEA/D-SDN achieves
the best results on 13 out of the 20 test problems in terms

0.0

0.2

0.4

0.6

0.8

1.0
 Linear
 Sigmoid

T
number of generations t

Fig. 4: Illustration of the value of α over the number of
generations.

TABLE II: Hypervolume values obtained by MOEA/D-N and
MOEA/D-N with each of the two dynamical normalization
strategies on the DTLZ and WFG test suites with 8 and 10
objectives. The best value of each row is highlighted with bold
typeface, while the worst with gray background.

Problem M MOEA/D-SDN MOEA/D-LDN MOEA/D-N

DTLZ1 8 9.9702e-1 + 9.9569e-1 + 6.5773e-1
10 9.9960e-1 + 9.9370e-1 + 8.9745e-1

DTLZ2 8 9.2388e-1 ≈ 9.2383e-1 ≈ 8.7090e-1
10 9.6979e-1 ≈ 9.6982e-1 ≈ 9.6986e-1

DTLZ3 8 9.1472e-1 + 8.9009e-1 + 1.6655e-1
10 8.8517e-1 + 7.9464e-1 + 1.2531e-1

DTLZ4 8 9.0702e-1 + 9.0952e-1 + 8.9051e-1
10 9.6486e-1 + 9.6662e-1 + 9.5590e-1

WFG4 8 9.2017e-1 + 9.1486e-1 + 8.8237e-1
10 9.6819e-1 ≈ 9.6429e-1 − 9.6909e-1

WFG5 8 8.6471e-1 + 8.6349e-1 ≈ 8.6240e-1
10 9.0605e-1 + 9.0608e-1 ≈ 9.0470e-1

WFG6 8 8.3311e-1 + 8.1992e-1 + 4.4042e-1
10 8.6567e-1 ≈ 8.6919e-1 ≈ 5.3689e-1

WFG7 8 8.5900e-1 + 8.4500e-1 + 4.3726e-1
10 9.2084e-1 + 9.0879e-1 + 5.0426e-1

WFG8 8 6.1252e-1 + 5.7822e-1 + 0.9584e-1
10 7.4313e-1 + 6.1754e-1 + 0.9539e-1

WFG9 8 7.8041e-1 + 7.0549e-1 + 3.0510e-1
10 7.7476e-1 + 8.1486e-1 + 4.3554e-1

+/− / ≈ 16/0/4 14/1/5

TABLE III: Hypervolume values obtained by MOEA/D-NN
and MOEA/D-NN with each of the two dynamical normaliza-
tion strategies on the DTLZ and WFG test suites with 8 and
10 objectives. The best value of each row is highlighted with
bold typeface, while the worst with gray background.

Problem M MOEA/D-SDNN MOEA/D-LDNN MOEA/D-NN

DTLZ1 8 9.9731e-1 + 9.9729e-1 + 3.9361e-1
10 9.9966e-1 + 9.9966e-1 + 4.8018e-1

DTLZ2 8 9.2384e-1 + 9.2388e-1 + 9.2349e-1
10 9.6973e-1 ≈ 9.6973e-1 ≈ 9.6977e-1

DTLZ3 8 9.1922e-1 + 9.1961e-1 + 2.8039e-1
10 9.6969e-1 + 9.6950e-1 + 2.8586e-1

DTLZ4 8 9.1439e-1 + 9.0941e-1 + 4.7226e-1
10 9.6488e-1 + 9.6468e-1 + 5.4502e-1

WFG4 8 9.2018e-1 ≈ 9.1303e-1 − 9.2169e-1
10 9.6825e-1 ≈ 9.6328e-1 − 9.6936e-1

WFG5 8 8.6412e-1 + 8.6379e-1 + 6.0932e-1
10 9.0625e-1 + 9.0541e-1 + 6.6801e-1

WFG6 8 8.1101e-1 + 8.2921e-1 + 4.9381e-1
10 8.6759e-1 + 8.5801e-1 + 8.3429e-1

WFG7 8 8.6473e-1 ≈ 8.4897e-1 ≈ 6.6763e-1
10 9.2021e-1 + 9.0962e-1 + 8.8204e-1

WFG8 8 6.4006e-1 + 6.0630e-1 + 1.0722e-1
10 6.8628e-1 + 6.2094e-1 + 1.0429e-1

WFG9 8 7.6096e-1 + 7.2139e-1 + 2.0627e-1
10 8.0174e-1 + 7.8019e-1 + 0.9111e-1

+/− / ≈ 16/0/4 16/2/2

TABLE IV: Hypervolume values obtained by MOEA/D-Nθ
and MOEA/D-Nθ with two dynamical normalization strategies
on DTLZ and WFG test suites with 8 and 10 objectives. The
best value of each row is highlighted with bold typeface, while
the worst with gray background.

Problem M MOEA/D-SDNθ MOEA/D-LDNθ MOEA/D-Nθ

DTLZ1 8 9.9725e-1 + 9.9726e-1 + 3.6825e-1
10 9.9966e-1 + 9.9965e-1 + 6.6534e-1

DTLZ2 8 9.2384e-1 + 9.2388e-1 + 9.2294e-1
10 9.6977e-1 ≈ 9.6978e-1 ≈ 9.6982e-1

DTLZ3 8 9.2166e-1 + 9.2038e-1 + 3.2681e-1
10 9.6949e-1 + 9.6954e-1 + 2.5856e-1

DTLZ4 8 9.1029e-1 + 9.1076e-1 + 4.3009e-1
10 9.6731e-1 + 9.6782e-1 + 4.2324e-1

WFG4 8 9.1735e-1 ≈ 9.0387e-1 − 9.2138e-1
10 9.6585e-1 ≈ 9.5436e-1 − 9.6929e-1

WFG5 8 8.6520e-1 + 8.6340e-1 + 5.2636e-1
10 9.0728e-1 + 9.0472e-1 ≈ 6.4121e-1

WFG6 8 8.2383e-1 + 8.0197e-1 ≈ 5.5548e-1
10 8.6525e-1 ≈ 8.5522e-1 ≈ 8.3044e-1

WFG7 8 8.6290e-1 ≈ 8.4764e-1 ≈ 5.7068e-1
10 9.3091e-1 + 9.2067e-1 + 8.3696e-1

WFG8 8 6.1669e-1 + 5.6518e-1 + 1.0506e-1
10 7.0245e-1 + 5.7749e-1 + 1.0188e-1

WFG9 8 7.9890e-1 + 7.7886e-1 + 1.6324e-1
10 8.1717e-1 + 7.5840e-1 + 1.3907e-1

+/− / ≈ 15/0/5 13/2/5

of the mean hypervolume value. According to the statistical
test results, MOEA/D-SDN outperforms MOEA/D-N on 16
test problems and MOEA/D-LDN outperforms MOEA/D-
N on 14 test problems. Similarly, as shown in Table III,
MOEA/D-SDNN achieves the best results on 14 test problems
in terms of the mean hypervolume value. Both MOEA/D-
SDNN and MOEA/D-LDNN significantly outperform their
original version MOEA/D-NN on 16 test problems. As shown
in Table IV, MOEA/D-SDNθ obtains the best results on
12 test problems in terms of the mean hypervolume value.
According to the statistical test results, MOEA/D-SDNθ sig-
nificantly outperforms MOEA/D-Nθ on 15 test problems and
MOEA/D-LDNθ significantly outperforms MOEA/D-Nθ on
13 test problems. Overall, from Table II-IV, we can clearly
observe the performance improvement when the two dynamic
normalization strategies are used.

In Fig. 5 and Fig. 6, we show obtained solutions by a single
run of each algorithm with the median hypervolume value
on the 3- and 10-objective DTLZ4. As shown in Fig. 5 and
Fig. 6, our proposed strategies help all the three normalization
methods obtain promising results on the DTLZ4 problems.
Compared to Fig. 2 and Fig. 3, uniformly distributed solutions
are obtained over the entire Pareto front by each algorithm with
the dynamic normalization strategies.

Fig. 7 shows the results obtained by MOEA/D-N,
MOEA/D-NN , MOEA/D-Nθ, and their variants with the two
proposed strategies on the 10-objective WFG9. We can clearly
see that MOEA/D without the proposed adjustment strategies
cannot find well-distributed solutions.

MOEA/D-SDNqMOEA/D-LDN MOEA/D-LDNN MOEA/D-LDNqMOEA/D-SDN MOEA/D-SDNN

Fig. 5: Obtained solutions by a single run of each algorithm with the median hypervolume value on the 3-objective DTLZ4.

MOEA/D-SDNqMOEA/D-LDN MOEA/D-LDNN MOEA/D-LDNqMOEA/D-SDN MOEA/D-SDNN

Fig. 6: Obtained solutions by a single run of each algorithm with the median hypervolume value on the 10-objective DTLZ4.

MOEA/D-SDNNMOEA/D-N MOEA/D-SDN MOEA/D-LDNNMOEA/D-LDN MOEA/D-NN

MOEA/D-Nq MOEA/D-LDNq MOEA/D-SDNq

Fig. 7: Obtained solutions by a single run of each algorithm with the median hypervolume value on the 10-objective WFG9.

VI. CONCLUSION

In this paper, three normalization methods were examined
on two commonly used test suites. Through computational
experiments, we revealed the limitations of the three normal-
ization methods. All of them lead to performance deterioration.
We also demonstrated that the sophisticated normalization
methods are not necessarily better than the simple normaliza-
tion method. These observations clearly showed the negative
effects of objective space normalization and the necessity of
a robust normalization method.

In order to address the performance deterioration, we pro-
posed to adjust the extent of normalization. Two dynamic
normalization strategies were proposed. Our strategies can
be easily integrated into any objective space normalization
method in a multiobjective evolutionary algorithm. With the
proposed strategies, all normalization methods showed sig-
nificantly improved performance on the DTLZ and WFG

problems. Experimental results clearly suggested the necessity
of controlling the extent of normalization. In this paper,
the extent of normalization was controlled by adjusting the
parameter α in a pre-determined manner. In the future, the
extent of normalization can be controlled in a self-adaptive
manner by monitoring the reliability of the estimation of
the ideal and nadir points. For example, we can use the
convergence information to adaptively control the parameter
α as the constraint handling method in [34]. We may also
need to examine the effectiveness of our strategies in other
evolutionary multiobjective algorithms on other test problems.

REFERENCES

[1] H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary many-
objective optimization: A short review,” in Proceedings of the IEEE
Congress on Evolutionary Computation, Hong Kong, China, Jun. 2008,
pp. 2419–2426.

[2] B. Li, J. Li, K. Tang, and X. Yao, “Many-objective evolutionary
algorithms: A survey,” ACM Computing Surveys, vol. 48, no. 1, pp.
1–35, Sep. 2015.

[3] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Transactions on Evolutionary Compu-
tation, vol. 11, no. 6, pp. 712–731, Dec. 2007.

[4] H. Ishibuchi, N. Akedo, and Y. Nojima, “A study on the specification
of a scalarizing function in MOEA/D for many-objective knapsack
problems,” in International Conference on Learning and Intelligent
Optimization, vol. 7997, Catania, Italy, Jan. 2013, pp. 231–246.

[5] ——, “Behavior of multiobjective evolutionary algorithms on many-
objective knapsack problems,” IEEE Transactions on Evolutionary Com-
putation, vol. 19, no. 2, pp. 264–283, Apr. 2015.

[6] S. Huband, P. Hingston, L. Barone, and L. While, “A review of
multiobjective test problems and a scalable test problem toolkit,” IEEE
Transactions on Evolutionary Computation, vol. 10, no. 5, pp. 477–506,
Oct. 2006.

[7] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
part I: Solving problems with box constraints.” IEEE Transactions on
Evolutionary Computation, vol. 18, no. 4, pp. 577–601, Aug. 2014.

[8] H. Ishibuchi, K. Doi, and Y. Nojima, “On the effect of normalization in
MOEA/D for multi-objective and many-objective optimization,” Com-
plex & Intelligent Systems, vol. 3, no. 4, pp. 279–294, Dec. 2017.

[9] L. He, Y. Nan, K. Shang, and H. Ishibuchi, “A study of the naı̈ve
objective space normalization method in MOEA/D,” in IEEE Symposium
Series on Computational Intelligence, Xiamen, China, Dec. 2019.

[10] A. Trivedi, D. Srinivasan, K. Sanyal, and A. Ghosh, “A survey of
multiobjective evolutionary algorithms based on decomposition,” IEEE
Transactions on Evolutionary Computation, vol. 21, no. 3, pp. 440–462,
2016.

[11] Y. Yuan, H. Xu, B. Wang, and X. Yao, “A new dominance relation-
based evolutionary algorithm for many-objective optimization,” IEEE
Transactions on Evolutionary Computation, vol. 20, no. 1, pp. 16–37,
Feb. 2016.

[12] M. Asafuddoula, T. Ray, and R. Sarker, “A decomposition-based evolu-
tionary algorithm for many objective optimization,” IEEE Transactions
on Evolutionary Computation, vol. 19, no. 3, pp. 445–460, 2014.

[13] O. Grodzevich and O. Romanko, “Normalization and other topics in
multi-objective optimization,” in Fields-MITACS Industrial Problems
Workshop, 2006.

[14] K. Deb, K. Miettinen, and S. Chaudhuri, “Toward an estimation of
nadir objective vector using a hybrid of evolutionary and local search
approaches,” IEEE Transactions on Evolutionary Computation, vol. 14,
no. 6, pp. 821–841, Dec. 2010.

[15] K. Deb and K. Miettinen, “A review of nadir point estimation procedures
using evolutionary approaches: A tale of dimensionality reduction,”
in Proceedings of the International Conference on Multiple Criteria
Decision Making, Auckland, New Zealand, Jan. 2009, pp. 1–14.

[16] Handing Wang and Xin Yao, “Corner sort for Pareto-based many-
objective optimization,” IEEE Transactions on Cybernetics, vol. 44,
no. 1, pp. 92–102, Jan. 2014.

[17] O. P. Jones, J. E. Oakley, and R. C. Purshouse, “Component-level
study of a decomposition-based multi-objective optimizer on a limited
evaluation budget,” in Proceedings of the Genetic and Evolutionary
Computation Conference. ACM, 2018, pp. 689–696.

[18] J. Blank, K. Deb, and P. C. Roy, “Investigating the normalization
procedure of NSGA-III,” in Proceedings of Evolutionary Multi-Criterion
Optimization, vol. 11411, East Lansing, MI, USA, Mar. 2019, pp. 229–
240.

[19] M. Asafuddoula, T. Ray, and R. Sarker, “A decomposition-based evolu-
tionary algorithm for many objective optimization,” IEEE Transactions
on Evolutionary Computation, vol. 19, no. 3, pp. 445–460, Jun. 2015.

[20] C. Liu, Q. Zhao, B. Yan, S. Elsayed, T. Ray, and R. Sarker, “Adaptive
sorting-based evolutionary algorithm for many-objective optimization,”
IEEE Transactions on Evolutionary Computation, vol. 23, no. 2, pp.
247–257, Apr. 2018.

[21] Y.-H. Zhang, Y.-J. Gong, T.-L. Gu, H.-Q. Yuan, W. Zhang, S. Kwong,
and J. Zhang, “DECAL: Decomposition-based coevolutionary algorithm
for many-objective optimization,” IEEE Transactions on Cybernetics,
vol. 49, no. 1, pp. 27–41, Jan. 2019.

[22] M. Elarbi, S. Bechikh, C. A. C. Coello, M. Makhlouf, and L. B.
Said, “Approximating complex Pareto fronts with pre-defined normal-

boundary intersection directions,” IEEE Transactions on Evolutionary
Computation, pp. 1–1, 2019.

[23] R. Hernández Gómez, C. A. Coello Coello, and E. Alba Torres, “A
multi-objective evolutionary algorithm based on parallel coordinates,” in
Proceedings of the Genetic and Evolutionary Computation Conference.
Denver, Colorado, USA: ACM Press, 2016, pp. 565–572.

[24] M. Asafuddoula, T. Ray, and R. Sarker, “A decomposition based
evolutionary algorithm for many objective optimization with systematic
sampling and adaptive epsilon control,” in Proceedings of Evolutionary
Multi-Criterion Optimization, Sheffield, United Kingdom, Mar. 2013,
pp. 413–427.

[25] S. Jiang and S. Yang, “Convergence versus diversity in multiobjective
optimization,” in Proceedings of the International Conference on Par-
allel Problem Solving from Nature, Coimbra, Portugal, Sep. 2016, pp.
984–993.

[26] D. Sharma, S. Z. Basha, and S. A. Kumar, “Diversity over dominance
approach for many-objective optimization on reference-points-based
framework,” in Proceedings of Evolutionary Multi-Criterion Optimiza-
tion, East Lansing, MI, USA, Mar. 2019, pp. 278–290.

[27] D. Sharma and P. K. Shukla, “Line-prioritized environmental selec-
tion and normalization scheme for many-objective optimization using
reference-lines-based framework,” Swarm and Evolutionary Computa-
tion, vol. 51, p. 100592, Dec. 2019.

[28] Y. Yuan, H. Xu, B. Wang, B. Zhang, and X. Yao, “Balancing conver-
gence and diversity in decomposition-based many-objective optimizers,”
IEEE Transactions on Evolutionary Computation, vol. 20, no. 2, pp.
180–198, Apr. 2015.

[29] S. Ying, L. Li, Z. Wang, W. Li, and W. Wang, “An improved
decomposition-based multiobjective evolutionary algorithm with a better
balance of convergence and diversity,” Applied Soft Computing, vol. 57,
pp. 627–641, Aug. 2017.

[30] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr. 2002.

[31] Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “PlatEMO: A MATLAB
platform for evolutionary multi-objective optimization,” IEEE Compu-
tational Intelligence Magazine, vol. 12, no. 4, pp. 73–87, Nov. 2017.

[32] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-
objective optimization test problems,” in Proceedings of the IEEE
Congress on Evolutionary Computation, vol. 1, Honolulu, USA, May
2002, pp. 825–830.

[33] E. Zitzler and L. Thiele, “Multiobjective optimization using evolutionary
algorithms—a comparative case study,” in Proceedings of the Interna-
tional Conference on Parallel Problem Solving from Nature. Springer,
1998, pp. 292–301.

[34] Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, and E. Goodman,
“Push and pull search for solving constrained multi-objective optimiza-
tion problems,” Swarm and Evolutionary Computation, vol. 44, pp. 665–
679, Feb. 2019.

