
A Chaotic Inertia Weight TLBO Applied to
Troubleshooting Optimization Problems

Daniel B. P. Coelho
Performance Software Department

Embraer S.A.
Belo Horizonte, Brazil

daniel.coelho@embraer.com.br

Leonardo R. Rodrigues
Electronics Engineering Division

Aeronautics Institute of Technology
São José dos Campos, Brazil

leonardolrr2@fab.mil.br

Abstract—When a failure event occurs in a complex system
with multiple interconnected components, identifying the faulty
component can be a challenging task. A troubleshooting optimiza-
tion problem consists in finding the sequence of activities that
must be followed to find the faulty component and fix the system
with minimum expected cost of repair (ECR). Troubleshooting
optimization can be modeled as a combinatorial optimization
problem, and different algorithms have been proposed to solve it.
This paper proposes a chaotic inertia weight Teaching-Learning
Based Optimization (TLBO) algorithm for the troubleshooting
optimization problem. A chaotic sequence is used to update
the inertia weight used in each iteration of TLBO. Numerical
experiments using three troubleshooting models and nine chaotic
maps are conducted to evaluate the performance of the proposed
algorithm. The standard TLBO algorithm is also considered in
the experiments to establish a reference baseline. The results
showed that the proposed model presented a better performance
in terms of average ECR, when compared with the standard
TLBO algorithm.

Index Terms—metaheuristic, TLBO, inertia weight, chaotic
map, combinatorial optimization, troubleshooting.

I. INTRODUCTION

The problem of identifying the faulty component in a com-
plex system has become a topic of great interest for academy
researchers and industry practitioners due to its potential
benefits [1]. A maintenance investigation is often required
to identify the root cause of a system failure, especially in
complex systems with multiple components. Troubleshooting
is the process of identifying the root cause and repairing the
faulty component.

A troubleshooting optimization problem can be solved in
polynomial time under very restrictive assumptions [1]. When
these assumptions are not valid, the problem becomes NP-hard
[2]. In these situations, an alternative to find good solutions in
an acceptable time is to use metaheuristic algorithms. Many
solutions using a wide range of methods have been proposed
to solve troubleshooting problems [3]–[7].

The Teaching-Learning Based Optimization (TLBO) is
a population-based metaheuristic algorithm based on the
teaching-learning process observed in a classroom [8]. In re-
cent years, many variants of TLBO have been proposed aiming
at improving the performance of the algorithm in different
aspects. The use of multiple teachers and the adaptation of
the teaching factor are some of the modifications proposed

in [9] to increase both the diversification and intensification
capabilities of TLBO. In [10], the authors incorporated a
local learning and a self-learning method into the original
formulation of TLBO. In [11], the authors proposed an elitist
TLBO. The elitism approach preserves the best candidates
of each iteration and prevents the loss of a good candidate
solution.

Many population-based metaheuristic algorithms include in
their mathematical formulation a parameter that is randomly
changed during the execution of the method. A study on
the impact of using chaotic sequences instead of random
parameters in evolutionary algorithms is presented in [12].
Many works have been published reporting the successful
use of chaotic mechanisms in different algorithms such as
Symbiotic Organisms Search (SOS) [13], Firefly algorithm
[14], and Whale Optimization [15], among others. Chaotic
versions of TLBO have also been proposed [16].

The inertia weight concept was introduced in [17]. Inertia
weight plays an important role in the control of the balance
between the diversification and intensification capabilities of
population-based algorithms. In [17], the authors used a con-
stant inertia weight. Other inertia weight strategies have been
proposed such as random [18], linear [19], nonlinear [20],
adaptive [21], chaotic [22], among others.

In this paper, we propose a modified version of TLBO to
solve troubleshooting optimization problems. Our goal is to
minimize the expected cost of repair (ECR). The proposed
method incorporates a chaotic inertia weight mechanism into
the standard TLBO. A chaotic sequence is used to update the
inertia weight used in each iteration of TLBO.

The remaining sections of this paper are organized as
follows. Section II describes the troubleshooting problem
under consideration. Section III presents the basic principles of
TLBO, inertia weights and chaotic maps. Section IV presents
the proposed method. Section V illustrates the application of
the proposed method in three different troubleshooting models.
Concluding remarks are given in section VI.

II. PROBLEM DESCRIPTION

As mentioned earlier, a troubleshooting optimization prob-
lem consists in finding the sequence of activities that must be

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

followed to find the faulty component and fix a multiple com-
ponent system with minimum expected cost of repair (ECR).
In this paper, we assume that a probabilistic troubleshooting
model of the system under consideration is available. A
troubleshooting model describes the system failure modes, as
well as the set of available maintenance interventions to fix
the system. Also, a troubleshooting model contains the costs
associated with each intervention [7].

The interventions that can be made in the failed system are
divided into two types: repair actions and diagnostic questions.
The number of available repair actions and the number of
available diagnostic questions in the model are denoted by
nA and nQ, respectively. A repair action consists in fixing
a component (or group of components). Performing a repair
action may fix the system or not. A diagnostic question cannot
fix the system, but the result of a diagnostic question reduces
the number of possible failure modes that may have caused
the system failure.

Groups of interventions (actions and questions) may have
a common initialization procedure. For example, it may be
necessary to disassemble part of the system to access a
region where a group of components is located. The resources
need to access this region are required to fix one or all the
components in the region. This situation is represented in
the troubleshooting model by clusters, which are subsets of
actions and questions of the model. When at least one action
or question belonging to a cluster is performed, the cost of the
cluster is incurred [3].

The troubleshooting optimization problem consists in find-
ing a sequence of interventions (actions and questions) that
fixes the faulty system and minimizes the expected cost
of repair (ECR). Each candidate sequence is called a trou-
bleshooting strategy, which will be denoted by S. Fig. 1 shows
an example of a troubleshooting model containing all the basic
elements: four failure modes {F1, F2, F3, F4}, three repair
actions {A1, A2, A3}, one diagnostic question {Q1}, and
the associated costs {C(A1), C(Q1), C(A2), C(A3), C(K1)}.
Note that cost C(K1) is the cost associated with the cluster
composed by repair action A2 and diagnostic question Q1.

Fig. 1. Example of a troubleshooting model

Failure modes are the ways in which the system can fail.
We adopt the assumption that there is one and only one failure
mode present in the failed system.

Consider the troubleshooting model presented in Fig. 1. If a
system failure is caused by failure mode F1, then performing

action A1 will be sufficient to fix the system. However, if
a system failure is caused by failure mode F4, then both
actions A2 and A3 must be performed to fix the system.
Also, by performing diagnostic question Q1 it is possible to
know whether the failure mode that caused the system failure
belongs to {F1, F2} or not. Finally, if question Q1 or action
A2 are performed, the cost of cluster K1 is incurred.

A troubleshooting strategy S is evaluated by its Expected
Cost of Repair (ECR), which is defined according to (1).

ECR(S) =

Nf∑
i=1

pi · Ci(S) (1)

where Nf is the number of failure modes, pi is the probability
associated with failure mode i and Ci(S) is the cost to fix a
system failure caused by failure mode Fi using troubleshooting
strategy S, which is computed according to (2).

Ci(S) =

Na∑
j=1

C(Aj) · αj(S) +

+

Nq∑
v=1

C(Qv) · βv(S) + (2)

+

Nk∑
z=1

C(Kz) · γz(S)

where Na, Nq and Nk are the number of actions, questions and
clusters in the troubleshooting model, respectively. The terms
C(Aj), with j ∈ {1, . . . Na}, C(Qv), with v ∈ {1, . . . Nq}
and C(Kz), with z ∈ {1, . . . Nk} are costs associated with
each action, question and cluster, respectively. Also, αj(S),
βv(S) and γz(S) are binary decision variables that assume
value 1 if the associated action, question or cluster cost is
incurred and zero otherwise.

Consider that the system described by the troubleshoot-
ing model presented in Fig. 1 is failed due to failure
mode F4. Also, consider that troubleshooting strategy S =
{A2, Q1, A1, A3} is used to fix the system. In this example,
the first intervention is to perform action A2. Costs C(A2)
is incurred. Action A2 activates cluster K1, so cost C(K1)
is also incurred. The system is still failed, so the next step
is to perform question Q1. Cost C(Q1) is incurred. Since
cluster K1 was already activated by action A2, no additional
cost is incurred in this step. The execution of question Q1

provides the information that the failure mode that caused the
system failure belongs to {F3, F4}. Following the sequence of
troubleshooting strategy S, the next step would be to perform
action A1. However, action A1 can fix a failure caused by
failure mode F1 only, and at his step of strategy S it is already
known that the failure mode which caused the system failure
belongs to {F3, F4}. For this reason, action A1 is skipped
and the next step becomes to perform action A3, which fixes
the system, with cost C(A3). The total cost associated to this
troubleshooting strategy to fix a failure caused by failure mode
F4 is given by C4(S) = C(A2) +C(K1) +C(Q1) +C(A3).

III. THEORETICAL BACKGROUND

A. Teaching-Learning Based Optimization

The TLBO (Teaching-Learning Based Optimization) algo-
rithm is a population-based metaheuristic algorithm inspired
by the teaching-learning process observed in a classroom [8].
This algorithm simulates the influence of a teacher on the
output of a group of students in a class. The algorithm has
two main phases: the Teacher Phase and the Student Phase
[9]. During the Teacher Phase, students learn from the teacher,
while in the Student Phase students learn through interactions
among themselves.

Consider a group of N students. Each student X has an
associated solution that corresponds to a candidate solution
for the optimization problem. The quality of each solution
is quantified by fitness value f(X), that is computed by
evaluating the solution X using the objective function J .

The student with the best solution in each iteration is called
the Teacher. Fig. 2 shows the flowchart for implementing the
TLBO algorithm [8]. The Teacher Phase and the Student Phase
are described in the next sections.

Fig. 2. TLBO flowchart

1) Teacher Phase: During the Teacher Phase, the algorithm
simulates the learning of the students from the teacher (best
solution). During this phase, the teacher makes an effort to
increase the mean result of the class. Let Mi be the mean
solution of all the students and Ti be the teacher in the i-th
iteration. The teacher Ti will try to move Mi to its own level.
Knowledge is obtained based on the quality of the teacher and
the quality of students. The difference Di between the solution
of the teacher, denoted by XTi, and the mean solution of the
students, Mi, is expressed according to (3).

Di = ri(XTi − TF ·Mi) (3)

where ri is a random number chosen from a standard uniform
distribution, and TF is the teaching factor for iteration i, which
is randomly set to either 1 or 2 according to (4).

TF = round(1 + rand(0, 1)) (4)

Based on the difference Di, the current solution associated
with each student k in iteration i, denoted by Xki, with k ∈
{1, 2, . . . , n}, is updated during the teacher phase according
to (5).

X?
ki = Xki +Di (5)

where X?
ki is the updated value of Xki.

If f(X?
ki) is better than f(Xki), then X?

ki is accepted
and replaces Xki for the next iteration. Otherwise, X?

ki is
discarded.

2) Student Phase: During the Student Phase, TLBO sim-
ulates the learning of the students through interactions among
themselves. During this phase, students gain knowledge by
discussing with other students who have more knowledge [9].

Consider a pair of students y and z. Let Xyi and Xzi be
the solutions of students y and z in iteration i, respectively.
If f(Xyi) is better than f(Xzi), the solution of student z is
updated according to (6). If f(X?

zi) is better than f(Xzi), X?
zi

is accepted and replaces Xzi for the next iteration. Otherwise,
X?

zi is discarded. Similarly, if f(Xzi) is better than f(Xyi),
the solution of student y is updated according to (7). If f(X?

yi)
is better than f(Xyi), X?

yi is accepted and replaces Xyi for
the next iteration. Otherwise, X?

yi is discarded.

X?
zi = Xzi + ri(Xyi −Xzi) (6)

X?
yi = Xyi + ri(Xzi −Xyi) (7)

At the end of each iteration, the termination criteria is
checked. Different termination criteria may be adopted. Some
commonly used termination criteria are the maximum number
of iterations, the maximum number of successive iterations
without any improvement, the maximum simulation time, and
the maximum number of function evaluations.

B. Inertia Weights

The inertia weight concept, originally introduced in [17],
has an important role in optimization processes using
population-based metaheuristic algorithms. It provides a good
balance between the diversification and the intensification
capabilities of the algorithm [23]. High inertia weight values
increase the diversification capability, while low inertia weight
values increase the intensification capability of the algorithm.

A constant inertia weight w was initially used in Particle
Swarm Optimization (PSO) to update the velocity of each par-
ticle [17]. The inertia weight was used as a memory element,
representing the contribution of the previous velocity to the up-
dated velocity value. In the last years, several works proposed
different strategies to implement dynamic inertia weights in
different population-based metaheuristic algorithms. Some of
the inertia weight strategies are listed below.

• Constant: As mentioned earlier, a constant inertia weight
was initially used. In this strategy, the inertia weight
w is fixed during the execution on the algorithm [17].
Commonly used values for constant weight inertia are in
the interval [0.8, 1.2].

• Linear: In this strategy, an interval [wmin, wmax] is
defined. The inertia weight value in each iteration de-
creases linearly from wmax to wmin [19]. Using this
strategy, the diversification capability of the algorithm is
enhanced during the first iterations of the method, when
the whole search space must be explored. During the final
iterations, when the algorithm refines the final solution,
the intensification capability of the method is enhanced.

• Nonlinear: This strategy is similar to the linear strategy.
However, the weight inertia value at each iteration is
obtained through a nonlinear function of the iteration
number [20].

• Random: In a random strategy, the inertia weight is ran-
domly chosen from an interval [wmin, wmax] [18]. Uni-
form distributions are commonly considered, but other
distributions can be used.

• Fuzzy: In this strategy, a fuzzy inference system is used
to define the inertia weight for each iteration. In [24], the
authors used the iteration number and the relative velocity
to define the inertia weight in a PSO model.

• Adaptive: An adaptive strategy updates the inertia weight
value based on a set of parameters of the execution such
as current best solution and current average solution [21].

• Chaotic: In this strategy, a chaotic map is used to
generate the inertia weight for the current iteration based
on the inertia used in the previous iteration [22].

C. Chaotic Maps

The mathematical definition of chaos is a randomness
generated by simple deterministic systems [25]. Randomness
is related to the sensitivity of chaotic systems to their initial
conditions. In other words, small changes in parameters or
initial state of chaotic systems may lead to significant changes
in future behaviors.

Chaotic maps are mathematical models used to generate
chaotic sequences. Chaotic maps are iterative functions that
return, in each iteration, an output value that is a function
of the output obtained in the last iteration. The sequence of
values generated by a chaotic map is called an orbit. Chaotic
maps have the following characteristics [12]:

• The rule of generating the sequence of numbers is deter-
ministic;

• The orbits are non-periodic;
• The orbits are bounded (the chaotic variables assume a

value between an upper and a lower limit); and
• The sequence has a sensitive dependence on the initial

condition.
Different chaotic maps have been reported in the literature.

Since different maps may lead to different results, a set of
chaotic maps must be investigated to find the best one for
the problem under consideration. In this paper, nine different
chaotic maps are considered. These maps are presented in
Table I [26], [27].

IV. PROPOSED OPTIMIZATION METHOD

In this section, we present the proposed chaotic inertia
weight TLBO algorithm, denoted by TLBOCWI. As men-
tioned earlier, high inertia weight values increases the diversifi-
cation capability of the algorithm, while low inertia weight val-
ues increase its intensification capability. So, in the proposed
algorithm, we use a chaotic sequence that generates a value
zi ∈ [0, 1] for the i-th iteration. Then, the lower bound and the
upper bound inertia weights for the i-th iteration, denoted by
LBi and UBi, respectively, are computed. Finally, the inertia
weight wi for the i-th iteration is computed according to (8).

wi = LBi + zi · (UBi − LBi) (8)

In each iteration of TLBOCWI, the update solution X?
ki

during the Teacher Phase is computed according to (9).

X?
ki = wi ·Xki +Di (9)

Based on experimental observations, in this paper we use
a lower bound that decreases linearly from 0.7 to 0.4, and an
upper bound that decreases linearly from 1.5 to 0.6. Fig. 3
shows a sequence of inertia weights obtained with the upper
and lower bounds aforementioned. In this example, a Logistic
chaotic map with an initial value z1 = 0.8 was used. We
used an initial value z1 = 0.8 in all experiments conducted
in this paper. This value has been adopted to initiate chaotic
sequences in other works [28].

A. Solution Representation

The candidate solution X associated with each student in
TLBO is represented by a vector with nA + nQ elements.
Each element xi of X is a real number. Elements x(1) to
x(nA) corresponds to the priority of repair actions A1 to AnA

,
respectively. Elements x(nA +1) to x(nA +nQ) corresponds
to the priority of diagnostic questions Q1 to QnQ

, respectively.
The conversion of vector X into a troubleshooting strategy is

TABLE I
CHAOTIC MAPS

Number Name Equation
1 Logistic map z(t+ 1) = 4z(t) · (1− z(t))

2 PWLCM z(t+ 1) =

{
z(t)/0.7 , 0 < z(t) ≤ 0.7

(1− z(t)) · (1− 0.7) , 0.7 < z(t) ≤ 1

3 Sine map z(t+ 1) = sin(πz(t))

4 Tent map z(t+ 1) =

{
z(t)/0.4 , 0 < z(t) ≤ 0.4

(1− z(t))/0.6 , 0.4 < z(t) ≤ 1

5 Bernoulli map z(t+ 1) =

{
z(t)/0.6 , 0 < z(t) ≤ 0.6

(z(t)− 0.6)/0.4 , 0.6 < z(t) < 1

6 Chebyshev map z(t+ 1) = cos(0.5cos−1z(t))
7 ICMIC z(t+ 1) = sin(70/z(t))
8 Cubic map z(t+ 1) = 2.59z(t) · (1− z2(t))
9 Singer map z(t+ 1) = 1.073[7.86z(t)− 23.31z2(t) + 28.75z3(t)− 13302875z4(t)]

Fig. 3. Example of a chaotic inertia weight sequence using a Logistic map

made by sorting the elements of X . Actions or questions with
higher numbers are executed first. The strategy obtained after
the conversion is evaluated according to (1).

For illustration purposes, consider a troubleshooting opti-
mization problem with nA = 4 and nQ = 2. The vector X
associated with one of the students is presented in Table II.
It can be seen that the last element of X is the one with the
highest value. Since the last element represents the priority
of question Q2, the resulting troubleshooting strategy will
start with question Q2. Following this procedure, the strategy
obtained is S = {Q2, A4, A1, Q1, A3, A2}.

TABLE II
CONVERSION OF VECTOR X INTO A TROUBLESHOOTING STRATEGY

j 1 2 3 4 5 6
x(j) 6.22 1.08 2.59 7.67 5.45 8.65
A/Q A1 A2 A3 A4 Q1 Q2

V. NUMERICAL EXPERIMENTS

This section presents the results obtained in numerical
experiments conducted to evaluate the application of the

proposed method in three different troubleshooting models.
Experiments using the TLBO algorithm in its original for-
mulation are also conducted for comparison purposes. Table
III summarizes the main characteristics of each model. The
topology of Models 1, 2 and 3 are shown in Figs. 4, 5 and 6,
respectively.

Table IV presents the probability associated with each
failure mode in each troubleshooting model. Table V shows the
costs associated with each repair action, diagnostic question
and cluster in each model.

TABLE III
TROUBLESHOOTING MODELS

Model 1 Model 2 Model 3
Failures 6 10 15
Actions 5 10 16

Questions 2 4 6
Clusters 2 4 6

Fig. 4. Troubleshooting model 1

A. Parameter Settings

The performance of metaheuristic algorithms dependents
on the choice of parameter values. In TLBO, the population
size (denoted by PS) and maximum number of generations
(denoted by GN) are the parameters to be defined. A design of
experiments (DOE) approach was used in this paper to define
good values for these parameters. DOE is an investigative

TABLE IV
FAILURE PROBABILITIES FOR EACH MODEL

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

Model 1 10% 5% 20% 30% 15% 20% - - - - - - - - -
Model 2 1% 5% 10% 15% 8% 4% 13% 17% 16% 11% - - - - -
Model 3 1% 5% 10% 15% 2% 4% 13% 14% 1% 11% 2% 7% 10% 1% 4%

TABLE V
COSTS FOR REPAIR ACTIONS, DIAGNOSTIC QUESTIONS AND CLUSTERS FOR EACH MODEL

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
C(Ai) 10 20 30 40 50 40 35 5 20 15 20 30 70 10 20 15
C(Qi) 5 10 30 10 30 20 - - - - - - - - - -
C(Ki) 10 40 20 50 10 30 - - - - - - - - - -

Fig. 5. Troubleshooting model 2

approach used to evaluate the effect of multiple factors on
a process [29].

The original TLBO and troubleshooting model 2 were used
in the DOE approach. Four different candidate values were
considered for GN : 100, 200, 300, and 400. We defined the
population size as a function of the solution size, which for the
troubleshooting problem is the sum of the number of repair
actions (Na) and the number of diagnostic questions (Nq). The
population size is obtained by multiplying the sum Na +Nq

by a factor h. Four candidate values were considered for factor
h: 1, 2, 3, and 4. A full factorial DOE layout was used. For
each combination, a Monte Carlo approach with 30 repetitions
was adopted.

A statistical analysis of variance (ANOVA) was conducted
to determine which parameter effects are significant. Table
VI shows the results observed. A significance level of 5%
is adopted for each main effect and interactions. In Table VI,
df are the degrees of freedom, SS is the sum of squares,
MS is the mean square, F is the F-test statistics and p is
the probability value used to test the null hypothesis that a
parameter effect is not significant. The values computed for p
are lower than 5%, so we can conclude that both factors are
significant.

Tables VII and VIII show the average ECR computed for

Fig. 6. Troubleshooting model 3

TABLE VI
ANOVA RESULTS

Source SS df MS F p
GN 5.45 3 1.82 5.28 0.0225
h 29.28 3 9.76 28.36 0.0001

Error 3.10 9 0.34
Total 37.83 15

each candidate value of GN and h, respectively. Based on the
results, the final values adopted for GN and for factor h were
300 and 3, respectively.

TABLE VII
AVERAGE ECR FOR EACH GN VALUE

GN 100 200 300 400
Avg. ECR 202.20 201.04 200.74 200.85

TABLE VIII
AVERAGE ECR FOR EACH h VALUE

h 1 2 3 4
Avg. ECR 203.24 201.62 199.84 200.13

B. Simulation Results

Ten models were considered during the experiments: the
original TLBO and nine chaotic inertia weight variants. Each
proposed variant used a different chaotic map, as presented in
Table I. For each algorithm and each model, a Monte Carlo
approach with 150 repetitions was used. All the experiments
reported in this paper were carried out on a personal computer
with Intel® CoreTM i3, 1.9 GHz processor and 4GB RAM. The
algorithms were coded in Matlab®.

Tables IX, X, and XI show the results obtained with each
algorithm for troubleshooting models 1, 2, and 3, respectively.
In terms of average result, the proposed chaotic inertia weight
algorithm presented a better performance with eight chaotic
maps for model 1, and with seven chaotic maps for models 2
and 3. All chaotic maps outperformed the original TLBO in
at least one model. Also, six chaotic maps outperformed the
original TLBO in all models.

For models 1 and 2, all algorithms found the optimal
solution in at least one Monte Carlo repetition. For model 3,
the best known ECR is 206.1. The proposed model with the
sine was the only algorithm that could not find this solution
during the simulations.

The worst result found by the original TLBO was outper-
formed by the proposed algorithm with five chaotic maps for
model 1, two chaotic maps for model 2, and six chaotic maps
for model 3.

The best troubleshooting strategies are presented below:

• Model 1: S∗
1 = {Q1, A1, A3, Q2, A5, A2, A4}

• Model 2: S∗
2 = {Q4, A9, A10, A2, A1, A4, A6, A7, A8,

A3, Q1, Q3, A5, Q2}
• Model 3: S∗

3 = {Q4, A2, Q1, Q6, A3, A12, A5, A9, A8,
A11, A10, A1, A7, A15, A16, Q5, Q3, A14, A4, A6, Q2,
A13}

TABLE IX
SIMULATION RESULTS FOR MODEL 1

Algorithm Average Best Worst Sim. Time
TLBO 78.85 78.50 84.00 2.02

TLBOCWI1 78.68 78.50 84.00 2.11
TLBOCWI2 78.66 78.50 80.50 2.15
TLBOCWI3 78.72 78.50 89.50 2.09
TLBOCWI4 78.75 78.50 82.00 2.10
TLBOCWI5 78.80 78.50 82.50 2.08
TLBOCWI6 78.67 78.50 81.50 2.06
TLBOCWI7 78.96 78.50 90.50 2.09
TLBOCWI8 78.80 78.50 89.00 2.13
TLBOCWI9 78.67 78.50 80.50 2.13

TABLE X
SIMULATION RESULTS FOR MODEL 2

Algorithm Average Best Worst Sim. Time
TLBO 201.81 199.00 215.60 9.08

TLBOCWI1 200.86 199.00 218.50 9.54
TLBOCWI2 202.71 199.00 217.40 9.29
TLBOCWI3 201.91 199.00 215.60 9.17
TLBOCWI4 201.56 199.00 215.60 9.22
TLBOCWI5 201.27 199.00 214.95 9.99
TLBOCWI6 200.82 199.00 215.00 9.71
TLBOCWI7 201.28 199.00 215.60 9.50
TLBOCWI8 200.75 199.00 215.60 9.37
TLBOCWI9 200.80 199.00 215.60 9.66

TABLE XI
SIMULATION RESULTS FOR MODEL 3

Algorithm Average Best Worst Sim. Time
TLBO 220.85 206.10 257.40 32.08

TLBOCWI1 219.51 206.10 262.60 35.06
TLBOCWI2 222.95 206.70 263.30 33.71
TLBOCWI3 221.41 206.10 251.40 34.04
TLBOCWI4 219.86 206.10 252.80 33.12
TLBOCWI5 218.99 206.10 250.45 32.62
TLBOCWI6 217.81 206.10 247.80 34.33
TLBOCWI7 218.66 206.10 262.00 32.78
TLBOCWI8 219.54 206.10 245.00 32.28
TLBOCWI9 217.56 206.10 246.35 32.75

VI. CONCLUSIONS

This paper proposed a chaotic inertia weight algorithm to
solve the troubleshooting optimization problem. Three dif-
ferent troubleshooting models were used in the numerical
experiments. Nine different chaotic maps were considered. The
performance of the proposed algorithm was compared with the
original TLBO.

When compared with the original TLBO, the proposed
model presented a better performance in terms of average
result with eight chaotic maps for model 1, and with seven
chaotic maps for models 2 and 3. All the chaotic maps
considered in this paper outperformed the original TLBO for
at least one model. The increase in simulation time required by
the proposed approach in comparison with the original TLBO
was, on average, 4.18% for model 1, 4.56% for model 2, and
4.15% for model 3. The additional simulation time remained
stable for the different models.

The optimal troubleshooting strategy depends on the proba-
bility of each failure mode to cause a system failure event. The
use of information generated by fault detection and isolation
algorithms can improve the efficiency of the troubleshooting
process.

Future research may extend the scope of this paper by
comparing the performance of the proposed algorithm in
other instances of the troubleshooting optimization problem.
Another opportunity is to investigate different approaches for
defining the lower and upper bonds for the inertia weight for
each execution.

ACKNOWLEDGMENT

The authors acknowledge the support of the Brazilian Na-
tional Council for Scientific and Technological Development
- CNPq (grant 423023/2018-7).

REFERENCES

[1] V. Lı́n, “Decision-theoretic troubleshooting: Hardness of approxima-
tion,” International Journal of Approximate Reasoning, vol. 55, pp. 977–
988, 2014.

[2] M. Vomlelová, “Complexity of decision-theoretic troubleshooting,” In-
ternational Journal of Intelligent Systems, vol. 18, no. 2, pp. 267–277,
2003.

[3] H. Langseth and F. V. Jensen, “Heuristics for two extensions of basic
troubleshooting,” Frontiers in Artificial Intelligence and Applications,
vol. 66, pp. 80–89, 2001.

[4] F. V. Jensen, U. Kjærulff, B. Kristiansen, H. Langseth, C. Skaanning,
J. Vomlel, and M. Vomlelová, “The SACSO methodology for trou-
bleshooting complex systems,” Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, vol. 15, no. 4, pp. 321–333, 2001.

[5] M. Vomlelová and J. Vomlel, “Troubleshooting: NP-hardness and solu-
tion methods,” Soft Computing, vol. 7, no. 5, pp. 357–368, 2003.

[6] T. J. Ottosen, “Solutions and heuristics for troubleshooting with de-
pendent actions and conditional costs,” Ph.D. dissertation, Aalborg
University, 2011.

[7] W. O. L. Vianna, L. R. Rodrigues, T. Yoneyama, and D. I. Mattos,
“Troubleshooting optimization using multi-start simulated annealing,”
in 10th Annual IEEE Systems Conference, Orlando, FL, USA, 18-21
April 2016, 2016, pp. 1–6.

[8] R. V. Rao, D. P. Vakharia, and V. J. Savsani, “Teaching-learning-
based optimization:a novel method for constrained mechanical design
optimization problems,” Computer-Aided Design, vol. 43, pp. 303–315,
2011.

[9] R. V. Rao and V. Patel, “An improved teaching-learning-based opti-
mization algorithm for solving unconstrained optimization problems,”
Scientia Iranica, vol. 20, pp. 710–720, 2013.

[10] D. Chen, F. Zou, Z. Li, J. Wang, and S. Li, “An improved teaching-
learning-based optimization algorithm for solving global optimization
problem,” Information Sciences, vol. 297, pp. 171–190, 2015.

[11] R. V. Rao and V. Patel, “An elitist teaching-learning based optimization
algorithm for solving complex constrained optimization problems,”
International Journal of Industrial Engineering Computations, vol. 3,
pp. 535–560, 2012.

[12] E. Emary and H. M. Zawbaa, “Impact of chaos functions on modern
swarm optimizers,” Plos One, vol. 11, no. 7, pp. 1–26, 2016.

[13] M. Z. M. Khairuzzaman, I. Musirin, S. S. Izwan, and T. Bouktir,
“Chaos embedded symbiotic organisms search technique for optimal
FACTS device allocation for voltage profile and security improvement,”
Indonesian Journal of Electrical Engineering and Computer Science,
vol. 8, no. 1, pp. 146–153, 10 2017.

[14] I. Brajević and P. Stanimirović, “An improved chaotic firefly algorithm
for global numerical optimization,” International Journal of Computa-
tional Intelligence Systems, vol. 12, pp. 131–148, 2018.

[15] G. Kaur and S. Arora, “Chaotic whale optimization algorithm,” Journal
of Computational Design and Engineering, vol. 5, no. 3, pp. 275–284,
2018.

[16] A. Farah, T. Guesmi, H. H. Abdallah, and A. Ouali, “A novel chaotic
teaching-learning-based optimization algorithm for multi-machine power
system stabilizers design problem,” International Journal of Electrical
Power & Energy Systems, vol. 77, pp. 197–209, 2016.

[17] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in
1998 IEEE International Conference on Evolutionary Computation
Proceedings. IEEE World Congress on Computational Intelligence (Cat.
No.98TH8360), 1998, pp. 69–73.

[18] R. C. Eberhart and Y. Shi, “Tracking and optimizing dynamic systems
with particle swarms,” in Proceedings of the 2001 Congress on Evolu-
tionary Computation (IEEE Cat. No.01TH8546), vol. 1, 2001, pp. 94–
100.

[19] J. Xin, G. Chen, and Y. Hai, “A particle swarm optimizer with multi-
stage linearly-decreasing inertia weight,” in 2009 International Joint
Conference on Computational Sciences and Optimization, vol. 1, 2009,
pp. 505–508.

[20] R. F. Malik, T. A. Rahman, S. Z. M. Hashim, and R. Ngah, “New particle
swarm optimizer with sigmoid increasing inertia weight,” International
Journal of Computer Science and Security, vol. 1, no. 2, pp. 35–44,
2007.

[21] A. K. Shukla, P. Singh, and M. Vardhan, “An adaptive inertia weight
teaching-learning-based optimization algorithm and its applications,”
Applied Mathematical Modelling, vol. 77, no. 1, pp. 309–326, 2020.

[22] C.-H. Yang, Y.-H. Cheng, L.-Y. Chuang, and C.-H. Yang, “Chaotic
inertia weight particle swarm optimization for PCR primer design,”
Journal of Systemics, Cybernetics and Informatics, vol. 11, no. 3, pp.
44–49, 2013.

[23] J. C. Bansal, P. K. Singh, M. Saraswat, A. Verma, S. S. Jadon, and
A. Abraham, “Inertia weight strategies in particle swarm optimization,”
in 2011 Third World Congress on Nature and Biologically Inspired
Computing, 2011, pp. 633–640.

[24] P. Yadmellat, S. M. A. Salehizadeh, and M. B. Menhaj, “A new
fuzzy inertia weight particle swarm optimization,” in 2009 International
Conference on Computational Intelligence and Natural Computing,
vol. 1, 2009, pp. 507–510.

[25] R. Sheikholeslami and A. Kaveh, “A survey of chaos embedded meta-
heuristic algorithms,” International Journal of Optimization in Civil
Engineering, vol. 3, no. 4, pp. 617–633, 2013.

[26] I. Fister, M. Perc, S. M. Kamal, and I. Fister, “A review of chaos-
based firefly algorithms: Perspectives and research challenges,” Applied
Mathematics and Computation, vol. 252, pp. 155–165, 2015.

[27] M. Mitić, N. Vuković, M. Petrović, and Z. Miljković, “Chaotic meta-
heuristic algorithms for learning and reproduction of robot motion
trajectories,” Neural Computing and Applications, vol. 30, pp. 1065–
1083, 2018.

[28] C.-H. Yang, Y.-H. Cheng, L.-Y. Chuang, and C.-H. Yang, “Chaotic
inertia weight particle swarm optimization for PCR primer design,”
Journal of Systemics, Cybernetics and Informatics, vol. 11, no. 3, pp.
44–49, 2013.

[29] D. C. Montgomery, Design and Analysis of Experiments, 6th ed. John
Wiley & Sons, Inc., 2005.

