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Abstract—A hyper-heuristic is an optimization approach that
continually selects the most appropriate heuristic(s) to apply to
an optimization problem. Hyper-heuristics conduct a search in
the space of heuristics, or heuristic space, for the most suitable
heuristic to apply to candidate solutions in problem space.
Traditionally, hyper-heuristics manage relatively simple low-level
heuristics, which are often based on human domain intuition.
Increasingly, hyper-heuristics are being used in conjunction with
population-based meta-heuristics as the low-level heuristics. A
heuristic space diversity measure helps practitioners understand
the behavior of hyper-heuristics that manage population-based
heuristics. This paper discusses existing measures to quantify
heuristic space diversity, highlights shortcomings of these existing
measures, and proposes a new heuristic space diversity entropy-
based measure. Spatial and temporal volatility measures that
characterize entity-to-heuristic assignments are also proposed.

Index Terms—hyper-heuristic, meta-heuristic, heuristic space
diversity, heuristic space volatility

I. INTRODUCTION

Heuristic search-based optimization is the process of finding
the combination(s) of input value(s) in a search space of
possible input values that yield “optimal” output values for
an optimization problem. A plethora of heuristic and meta-
heuristic algorithms have been developed to solve optimization
problems, be that static or dynamic problems that are single-
or multi-objective, and that may or may not be constrained
[1]. The field of Computational Intelligence (CI) comprises of
many Swarm Intelligence (SI) and Evolutionary Computation
(EC) meta-heuristics that are inspired by nature. Most SI and
EC approaches rely on a population of candidate solutions.
Candidate solutions may be modified by various types of SI
(and even non-SI) algorithms, and are referred to as entities
instead of individuals, particles, or other term.

Determining the best meta-heuristic to use on any particular
problem is elusively hard. Wolpert and Macready [2] published
the “No Free Lunch” (NFL) theorems for optimization in
1997. The NFL theorems imply that no algorithm can be con-
sidered “generally better” than any other algorithm in domains
where the NFL theorems hold. Naturally, the NFL theorems
cause a stir among researchers that develop algorithms that
they hope to be “generally better” than other algorithms.

Uneasiness around the NFL theorems prompted researchers
to further understand the conditions under which the NFL
theorems hold. Schumacher et al. [3] show that any two
algorithms will have the same performance over a set of fitness
functions (for any performance measure) if and only if the set
of fitness functions is closed under permutation. A given set of
fitness functions (i.e. problems) is closed under permutation
if, for every function f in the set, all possible rearrangements
of mappings from search space values xi to function values
f(xi) are also contained as another function in the set. Igel
and Toussaint [4] show that, for problems of interest, the sets
of fitness functions that are closed under permutation comprise
of an infinitesimally small part of the whole.

Additionally, Auger and Teytaud [5] show that the NFL
theorems do not hold generally in continuous domains. Alabert
et al. [6] sharpen the results of Auger and Teytaud by proving
that there are indeed no NFL theorems for functions in
continuous domains, except for a few extreme theoretical
edge cases which require additional technical conditions that
are simply too restrictive to be found in practice. A recent
algorithm selection survey by Kerschke et al. [7] echoes these
findings of how the necessary conditions for the NFL theorems
to hold are simply not found in problems of interest.

These practical perspectives on the theoretical underpin-
nings of optimization encourage research into control adap-
tation methods that can find the best algorithms for particular
sets of problems. Much work has been done in this area by
practitioners in the EC and SI fields. Well-known approaches
include parameter control (PC) for EAs [8] [9], adaptive
operator selection (AOS) [10], adaptive memetic algorithms
(MA) [11], self-learning PSO [12] [13], heterogeneous PSO
[14] [15], and algorithm portfolios [16].

The fields of Operations Research, Computer Science, and
Artificial Intelligence have produced optimization methods
called hyper-heuristics. Hyper-heuristics adapt the optimiza-
tion process by choosing which low-level heuristics to apply
to a problem over time [17]. A simpler definition is that hyper-
heuristics are “heuristics to choose heuristics” [17]. Hyper-
heuristics aim to improve performance above that of using
any heuristics in isolation. What distinguishes hyper-heuristics
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from other control adaptation approaches is the separation
between solving a problem and searching for a suitable method
to solve a problem [18]. Burke et al. [19] distinguish between
selection hyper-heuristics, which use predefined selection op-
erators that choose a suitable existing heuristic to apply next,
and generative hyper-heuristics, which iteratively evolve cus-
tomized heuristics (mostly via genetic programming) that are
tailored to a domain (or problem instance). This paper focuses
on perturbative population-based selection hyper-heuristics.

Poli and Graff [20] show that the NFL theorems do not
automatically apply to meta-search methods such as hyper-
heuristics. Kerschke et al. [7] remark that increased perfor-
mance is possible by exploiting the complementary strengths
of a set of algorithms through automatically selecting the
most appropriate algorithm that is expected to perform best
on the problem set at hand (at any stage of the search).
Kerschke et al. list hyper-heuristics as one such promising field
to increase performance by solving the online per-instance
algorithm selection problem.

When a hyper-heuristic manages meta-heuristics that use
a population1 of entities, the manner in which the hyper-
heuristic assigns entities to specific meta-heuristics becomes
important to understand. Heuristic space diversity (HSD) [21]
represents the degree to which the entity-to-heuristic assign-
ments made by the hyper-heuristic is balanced or unbalanced.
Characterizing a hyper-heuristic’s HSD over time is valuable
to understanding how the hyper-heuristic makes heuristic
selection decisions. Many selection operators, in turn, may
rely on HSD to determine new entity-to-heuristic assignments.
Grobler et al. [21] quantify HSD to guide entity-to-heuristic
allocation, and found that this strategy increased performance
in static environments.

This paper discusses methods that quantify the HSD of
population-based selection hyper-heuristics, and outlines de-
ficiencies in these existing approaches. An improved measure
for HSD is presented, along with various measures to quan-
tify the spatial and temporal volatility of entity-to-heuristic
assignments made by a hyper-heuristic. Section II provides
an overview of hyper-heuristics as an approach for solving
optimization problems, outlines the distinction between heuris-
tic space and problem space, and discusses selection hyper-
heuristics for population-based meta-heuristics. Section III
discusses methods to characterize behavior in heuristic space.
Section IV presents an improved HSD measure and discusses
how entity reassignment numbers, frequencies, and volatility
analysis forms a core part of understanding the heuristic space
search behavior of a hyper-heuristic. Section V demonstrates
how the proposed heuristic space behavior measures can be
used by practitioners. Section VI concludes the paper.

II. BACKGROUND ON HYPER-HEURISTICS

The distinction between the heuristic space and problem
space is outlined bellow, followed by a deeper look at hyper-
heuristics for population-based meta-heuristics.

1Such hyper-heuristics are classified as multi-point search hyper-heuristics
by Burke et al. [18].

A. Problem Space versus Heuristic Space

A hyper-heuristic is defined by Chakhlevitch and Cowling
[22] as a high-level control mechanism that uses limited
problem-level knowledge to search a set of low-level heuristics
for good methods and not good solutions. The classification of
Burke et al. [18] discusses the domain barrier that separates
the problems space from the heuristic space as follows:
• The problem space consists of the domain of the objective

function. A point in the problem space represents a
candidate solution to the optimization problem.

• The heuristic space is the search space of all applicable
methods and their associated utility at time t during the
optimization process. The domain of available heuristics
is referred to as the pool of heuristics.

A point in the heuristic space represents a proposal of which
heuristic(s) should be applied to improve the problem space
solution vectors. This control flow is illustrated in figure 1.

Fig. 1: The conceptual framework for selection hyper-
heuristics as presented by Burke et al. [18].

Ongoing research into hyper-heuristics continues to refine
the working definition, goals, and constraints of what con-
stitutes a hyper-heuristic approach. A growing number of
researchers are revisiting the assumption that hyper-heuristics
require a strict separation between the problem space and
the heuristic space. Recently, Swan et al. [23] show that a
“maximally restrictive” barrier between the hyper-heuristic
and problem domain is counter-productive. The authors argue
that certain types of a priori problem information (what the
authors call “analytic information”) can be exploited by a
hyper-heuristic in a problem-independent manner to aid in
the heuristic selection process. Such a broader view allows
the incorporation of heuristic-to-domain mapping information,
declarative domain descriptions, and constraint languages as
data instead of code changes [23]. A research agenda has
been defined to promote this view and gain consensus across
the field as to what such an architectural vision for hyper-
heuristics would look like [23] [24].



B. Hyper-heuristics for population-based meta-heuristics

The majority of hyper-heuristics in the literature employ
single-point search techniques, where a single candidate solu-
tion is iteratively improved (or constructed) [17] [18]. Recent
research trends focus increasingly more on multi-point search
approaches, where a population of candidate solutions are as-
signed to heuristics by the hyper-heuristic. Multi-point search
hyper-heuristics provide an opportunity to have the pool of
heuristics comprise of more complex meta-heuristic techniques
such as SI and EC algorithms. Burke et al. [17] review a
number of studies where multi-point search hyper-heuristics
are used to select which meta-heuristics should modify which
entities in the population at time t.

Grobler et al. [25] [26] [27] present the heterogeneous
meta-hyper-heuristic (HMHH) as a selection hyper-heuristic
framework that manages a pool of population-based meta-
heuristics. Each heuristic is a meta-heuristic algorithm con-
figuration that comprises of specific logic, parameter values,
operator functionality, and other design decisions. HMHH
treats each heuristic as a “sealed unit” and never adapts any of
the aforementioned components. This approach is analogous
to practitioners providing manually crafted domain-specific
heuristics, except that the heuristics in HMHH are specific
instances of meta-heuristics that are suitable in the problem
domain. The intention is to have a pool of several different
(yet specific) algorithm configurations with known behaviors.

Adaptation in HMHH occurs by assigning a specific heuris-
tic to manage each entity in the population. Different heuristics
become distinct behaviors that yield different outcomes when
applied to any given candidate solution. Generally, the position
and fitness of an entity is noticeably altered in different
ways depending on which heuristic acts upon the entity. For
example, an entity modified for one iteration by a DE algo-
rithm variant will generally have a noticeably different output
candidate solution compared to if the entity was, instead,
modified by a PSO or GA variant. HMHH strives to give
the most promising heuristics every opportunity to succeed by
letting more entities be updated by the most suitable heuristics.

HMHH is shown in algorithm 1 with parts of the original
notation adapted to align with notation in this paper. Every
k iterations HMHH employs a selection operator, ς , to assign
entities in the parent population E to heuristics. The perfor-
mance feedback of each heuristic hm, namely Qδm , may be
used by ς in determining entity-to-heuristic allocations.

The choice of selection operator allows HMHH to exhibit
different types of heuristic allocation behavior. Van der Stockt
and Engelbrecht [28] [29] [30] investigate the performance and
behavior of various selection operators for HMHH applied to
solving different types of dynamic optimization problems.

III. MEASURING DIVERSITY IN HEURISTIC SPACE

Hyper-heuristics that manage population-based meta-
heuristics continually need to assign the most suitable heuris-
tics to entities. Good hyper-heuristics prevent a downward
spiral called heuristic space convergence where one heuristic
“takes over” by holding on to all assigned entities forever.

Algorithm 1 Heterogeneous Meta-Hyper-Heuristic [26]
E ← initialize parent population of ns solution entities.
hj(t)← the heuristic algorithm applied to entity ej at iteration t.
k ← algorithm iterations between heuristic assignments.1

for all entities ej ∈ E do
hj(1)← choose random initial heuristic algorithm for ej .

end for
t = 1.
while a stopping condition is not met do

for all entities ej ∈ E do
Apply hj(t) to entity j for k iterations.
Qδm(t)← total improvement of entities assigned to hm

for the last k iterations.2

end for
for all entities ej ∈ E do

hj(t+ k)← Select next heuristic for entity ej using
selection operator ς(ej , Qδm(t)).

end for
t = t+ k.

end while
Notes:

1) k = 5 is used in [26].
2) In [26], ς(ej , Qδm(t)) is rank-based tabu search [19]. Many other

hyper-heuristic selection operators may be used with HMHH.

If this happens, many heuristics may be unable to provide
adequate feedback. Depending on the exact selection operator
logic, the optimization process may devolve to using only that
one dominating heuristic.

Insight into the diversity of the heuristic space provides
insight into whether a hyper-heuristic is able to cope with
the above situation. The diversity of entities-to-heuristic as-
signments may be assessed in a number of ways:

Entity allocation plots

A simple method to analyze how entities are allocated
across heuristics is to plot the percentage of entities that is
managed by each heuristic. Example entity allocation plots are
presented in figure 2, which shows how many entities are allo-
cated to each heuristic over all 1000 iterations. Nepomuceno
and Engelbrecht [31] use behavior profile plots to illustrate
the balance of how particle swarm optimization behaviors are
allocated across particles. Van der Stockt and Engelbrecht [30]
apply this technique to reveal how different hyper-heuristics
assign entities across a pool of hyper-heuristics.

Entity allocation plots offer an intuitive understanding of
how balanced entity assignments are across heuristics, but
tend to become difficult to interpret when more than three
heuristics are used. It is hard to compare the entity-to-heuristic
assignments of multiple algorithm runs against each other to
determine which runs show higher heuristic diversity than oth-
ers. Comparisons of experiments that use a different number of
heuristics affects the interpretation of the plot, since the point
of equal balance of ns entities across nh heuristics occurs at
ns/nh (which, visually, is located at different points on the y-
axis for different values of nh). Lastly, statistical comparisons
are hard to perform when using this measure, since each plot
yields a multi-variate time series of values that cannot be
readily compared using established statistical tests.



Fig. 2: Allocations of entities across nine heuristics.

Aggregated entity allocation plots

Viewing the aggregated statistics of entity allocations across
time allows practitioners to obtain a more concise view of
entity-to-heuristic allocations. Statistical measures of central-
ity, such as the mean or median, provides insight into which
heuristics gets applied to the majority of entities most often.
Statistical measure of spread, such as the standard deviation or
inter-quartile range (IQR), give a sense of how much heuris-
tic assignments vary over time. Visualizations such as box
whisker plots allow this distribution analysis to be illustrated
in concise form. Figure 3 shows an example of the entity-
to-heuristic allocation distributions of the same algorithm run
that was illustrated in figure 2.

Fig. 3: Box whisker plot of entity-to-heuristic allocations of
the same data that is used in figure 2.

Aggregated entity allocation plots improve upon entity
allocation plots by producing scalar values for each heuristic

instead of a time series values. However, each heuristic still
yields a separate output value. Since the resulting distributions
are all related, it is hard to compare different algorithms or
experiment runs against each other (visually or statistically).

Heuristic space diversity

The HSD metric, H(t), proposed by Grobler and Engel-
brecht [26] measures the spread of the population of entities
across heuristics in the heuristic space as

H(t) = α

(
1−

∑nh

m=1 |T − nm(t)|
1.5ns

)
(1)

where t is the current algorithm iteration, ns is the number of
entities, nh is the number of heuristics, nm is the number of
entities assigned to heuristic hm, α is a scaling factor (here
α = 100), and T = ns/nh. Values of H(t) ≈ 1 indicate
that entities are balanced equally across all heuristics while
H(t) ≈ 0 show that a few heuristics are controlling almost all
of the entities. H(t) does not give an indication as to which
heuristic has the greatest number of entities assigned, only that
an imbalance is present.

Overall, the H(t) HSD measure offers a better description
of how entities are distributed across heuristics than raw or
aggregated entity allocation plots. The measure is normalized
so that values of 0.0 or 1.0 are, respectively, always associated
with imbalanced or balanced entity assignments, regardless of
the number of heuristics. The H(t) measure can be used as a
time series to directly inspect the HSD at a specific time t, or to
compare the diversity of multiple hyper-heuristics across time
(i.e., for vector-based or time series based analysis). The H(t)
measure can also be aggregated over to produce a single scalar
value that is easier to incorporate into existing statistical testing
procedures (such as the average, median, or standard deviation
of HSD values, among other type of aggregation). Grobler et
al. [21] use H(t) to guide entity-to-heuristic assignments as
part of the selection operator logic of the hyper-heuristic.

IV. HOLISTIC HEURISTIC SPACE BEHAVIOR MEASURES

An improved HSD measure is outlined below, as well as
proposed measures to characterize the number, frequency, and
volatility of the entity assignments made by a hyper-heuristic.

A. An Improved Heuristic Space Diversity Measure

The H(t) measure, as defined in equation (1), has a draw-
back in that the value of H(t) can become less than zero:
if there are more than four heuristics, and all ns entities are
assigned to a single heuristic, then equation (1) simplifies to
α(1 − 2(nh − 1)/1.5nh). To avoid this situation, any hyper-
heuristic must maintain nm > 1 at all times to ensure that
H(t) > 0. This places an artificial constraint on the hyper-
heuristic that is undesirable.

Another option is to use a different method to calculate the
disparity between the entity assignments of different heuristics.
Budescu and Budescu [32] discuss a measure called normal-
ized entropy that is based on a measure of diversity of pop-
ulations of people by Teachman [33], which uses Shannon’s



entropy theory [34]. Normalized entropy is extended below as
a measure called N (t) that can be used as an alternative to
H(t), where N (t) is defined as

N (t) = −
nh∑
m=1

p(t) log2(p(t))

log2(nh)
(2)

where

p(t) =


nm(t)

ns
if nm(t) > 0

ε otherwise

where ε is a very small positive constant. Similar to H(t),
values of N (t) ≈ 1 when entity-to-heuristic allocations are
balanced, and N (t) ≈ 0 if one heuristic dominates. The
N (t) measure improves upon H(t) since N (t) can never be
negative, and N (t) is resilient in cases where a heuristic has
zero entities assigned (i.e. nm(t) = 0) which removes the
artificial constraint that H(t) placed on practitioners.

B. Entity Reassignment Behavior

HSD gives insight into the state of entities-to-heuristic
allocations, but does not portray the full dynamics behind
entity reassignments. The assignment of entities to heuristics
by a hyper-heuristic can be analyzed along a number of
dimensions, namely
• the balance of entity assignments across the pool of

heuristics at time t,
• the number of entities that are reassigned to new heuris-

tics by a hyper-heuristic at time t,
• the frequency (or temporal volatility) with which a hyper-

heuristic assigns entities to new heuristics over a run, and
• the (spatial) volatility with which a hyper-heuristic dis-

rupts existing entity allocations over a run.
The balance of entity assignments is measured using N (t),

which is calculated after every iteration using equation (2).
The resulting series of HSD values over time may or may not
vary, depending on the actions taken by the hyper-heuristic.

The number of entities that are reassigned to different
heuristics at time t expresses the magnitude of entity reas-
signments that occur. Various hyper-heuristics perform entity
reassignments in different ways, depending on the selection
logic employed. The subset E∗(t) ⊂ E contains those entities
in the population E that are reassigned new heuristics at time
t. The number of entities that are reassigned to new heuristics
at time t, υ(t), is simply the size of the subset E∗(t), i.e.

υ(t) = |E∗(t)| (3)

The minimum value of υ(t) is zero, which occurs when no
entities are reassigned to new heuristics. The maximum value
of υ(t) is ns − nf , where ns = |E| is the total number of
entities in the HMHH parent population E, and nf is the sum
of the minimum allowed entity counts for each heuristic.

It is possible for two hyper-heuristics to have similar N (t)
values over a period of time, yet have vastly different υ(t)
values. Figure 4 illustrates howN (t) and υ(t) are related using
an example. Consider two hyper-heuristics that each manage

(a) The hyper-heuristic reassigns entities across heuristics in an
increasingly unbalanced way. N (t) and υ(t) change every iteration.

(b) The hyper-heuristic reassigns entities in a balanced way. N (t)
remains constant while υ(t) changes every iteration.

Fig. 4: Illustrative example of measuring heuristic space di-
versity using N (t) and the entity reassignment rate using υ(t)
for four heuristics, h1, h2, h3, and h4, and 32 entities over
three time steps t, t+ 1, and t+ 2.

32 entities. The first hyper-heuristic in figure 4a shows steadily
decreasing HSD values as more entities are progressively as-
signed to a single heuristic (namely h2). The second heuristic
in figure 4b actually reassigns a larger number of entities to
new heuristics each iteration (i.e., υ(t) is greater for the second
hyper-heuristic), yet HSD values remain constant at N (t) = 1.

The balance and number of entity assignments as measured,
respectively, by N (t) and υ(t), need to be considered indepen-
dently. By itself,N (t) only gives insight into how balanced the
entity assignments are across the heuristics, regardless of the
quantity or frequency of entity reassignments. On its own, υ(t)
measures the churn (or agitation) of entities by showing how
many entities were reassigned to new heuristics, regardless
of the balance or frequency of entity assignments. High υ(t)
values do not always imply large changes in N (t) values.
Figure 5 shows the N (t) and υ(t) values over time for the
same roulette wheel selection operator depicted in figures 2
and 3, but using different logic to trigger heuristic selection.

The frequency with which a hyper-heuristic reassigns enti-
ties to new heuristics is the proportion of all HMHH algorithm
iterations T where entities are reassigned to new heuristics.
The entity reassignment frequency, δ, is defined as

δ =
|T ′|
|T |

(4)

where T ′ ⊆ T is the subset of all algorithm iterations T where
at least one entity reassignment occurs (i.e. where υ(t) > 0).
The δ measure provides a sense of the temporal volatility of
hyper-heuristic assignments.

The volatility with which a hyper-heuristic makes adjust-
ment to entity allocations is the mean number of entities that



(a) Performing heuristic selection for all entities simultaneously
every k iterations.

(b) Performing heuristic selection for entities at random itera-
tions with a per-entity reassignment probability of P = 1/k.

Fig. 5: N (t) (black) and υ(t) (gray) over time for the roulette
wheel selection operator. Different selection logic yields com-
parable N (t) values, but drastically different υ(t) values.

are reassigned in an algorithm run. The mean is computed rel-
ative to the proportion of iterations where entity reassignments
occur (i.e. T ′) as follows:

ϕ =

∑
t′∈T ′

υ(t′)

|T ′|
(5)

In other words, algorithm iterations that do not contain any
entity reassignments do not skew the mean calculation. The
ϕ measure reports how large the average disruption to entity
allocations is when heuristic allocation changes are made.

V. VISUALIZING HEURISTIC SPACE BEHAVIOR

The proposed HSD measure (N (t)), the entity reassignment
frequency (δ), and the volatility of heuristic allocation changes
(ϕ) are used in an experimental setting to characterize the
behavior of various HMHH selection operators. The term
“HMHH selection operator” and hyper-heuristic are used
interchangeably in the remainder of this paper.

A. Experimental setup

A pool of heuristics, H , is constructed that consists of
nh = 9 different EC and SI meta-heuristics. HMHH is used
to manage a population of entities, E. The population size is
set to ns = 50. Each entity, ej ∈ E, is assigned to a specific
heuristic hm ∈ H by the HMHH selection operator. Each
heuristic hm manages nm(t) entities at time t. For each entity,

the probability of the hyper-heuristic selecting heuristic hm at
time t is Pm(t), where m = {1, ... , nh}. Various selection
operators determine each Pm(t) differently. The following
HMHH selection operators are used:
• Simple random (Rand) selection always assigns each

entity ej ∈ E to heuristic hm with equal probability.
The probabilities of selection of each heuristic remain
constant, i.e. Pm(t) = 1

nh
.

• Roulette wheel (RoulM) selection assigns each entity
ej ∈ E to heuristic hm with a probability relative to the
mean fitness of entities assigned to hm, i.e.

µm(t) =

∑nm

j=1 fj(t)

nm
(6)

The probability of selection of each heuristic hm is set
to Pm(t) = µm(t)∑nh

l=1 µl(t)
.

• Entity tournament (ETour) selection employs tourna-
ment selection from EC [1]. For every entity ej ∈ E, a
tournament set of entities, Tj ∈ E, is randomly drawn.
The entity ew ∈ Tj with the best fitness is considered
the winner. The entity ej under consideration is assigned
the same heuristic as ew, while ew remains unchanged.
Tournament sizes may be in the range {2, ... , ns}.

• Ant-inspired fitness proportional (AProp) selection
[14] is inspired by the fundamental version of the ant
colony optimization meta-heuristic (ACO-MH) [35] [36].
Each heuristic hm is assigned a pheromone concentration
ρm(t) that is used to calculate Pm(t) as

Pm(t) =
ρm(t)∑nh

l=1 ρl(t)
(7)

Roulette wheel selection assigns entities to heuristics rel-
ative to Pm(t). Initially, each heuristic has a pheromone
concentration ρm(1) = 1

nh
. Pheromone levels are updated

based on the size of the fitness improvement of entities.
For function maximization ρm(t) is updated as

ρm(t) = ρm(t− 1) +

nm∑
j=1

max{0, fj(t)− fj(t− 1)} (8)

Pheromone concentrations are partially evaporated every
k iterations to avoid the build-up of large scores, i.e.

ρm(t)←
∑nh

l=1,l 6=m ρl(t)∑nh

l=1 ρl(t)
× ρm(t) (9)

Ant-inspired fitness proportional selection emphasizes the
magnitude of the raw fitness value improvements.

• Frequency improvement (Freq) selection is based on
Nepomuceno and Engelbrecht’s frequency-based hetero-
geneous PSO behavior selection scheme (FB-HPSO)
[15]. FB-HPSO selects new particle behaviors based on
the frequency with which each behavior improved the
fitness of particles over the previous k iterations. FB-
HPSO is adapted here to select the best heuristic for each
entity. A frequency score, χm(t), is calculated for each
heuristic hm based on the number of times each entity



ej assigned to hm improved its fitness since the current
heuristic was assigned, i.e.

χm(t) =

k∑
i=1

nm∑
j=1

{
+1 if fj(t− i) improved
0 otherwise

(10)

A maximum of k = 10 prior iterations are considered
to prevent historical feedback from overshadowing more
recent feedback, as per the guidance of Nepomuceno and
Engelbrecht [15]. Tournament selection using χm(t) is
applied to determine the winning heuristic, with tourna-
ment sizes in the range {2, ... , nh}.

• Frequency improvement reinforcement learning (RL-
Freq) selection uses a reinforcement learning approach
similar to Narayek [37] and Burke et al. [19]. A
rank score, rm(t), is maintained for each heuristic, and
rm(1) = 0 initially. Changes in rank, ∆rm(t), are based
on how many times the fitness of entities assigned to hm
improved versus remaining the same or stagnating, i.e.

∆rm(t) =

nm∑
j=1

{
+1 if fj(t) improved
−1 if fj(t) otherwise

(11)

Ranks are updated as rm(t) = rm(t− 1) + ∆rm(t). The
maximum rank is rmax = ns and the minimum rank is
rmin = −ns. Every entity ej ∈ E is assigned to the
highest ranked heuristic (essentially all other heuristics
are on the tabu list as per Burke’s approach [19]). Rank
ties are broken randomly.

• Difference proportional (DProp) selection [38] by
Spanevello and Montes de Oca probabilistically assigns
entities to that heuristic hb that contains the fittest entity
eb ∈ E. The probability Pb(t) of reassigning entity ej
from the entity’s currently assigned heuristic hj to hb is

Pb(t) =
1

1 + exp
(
−β fb(t)−fj(t)|fb(t)|

) (12)

where β = 5 as recommended by Spanevello and Montes
de Oca. The function Pb(t) has a sigmoidal shape that
enables difference proportional selection to increase the
probability of assigning poor performing entities to hb,
and lower the probability of reassigning well-performing
entities to different heuristics.

The moving peaks benchmark (MPB) by Branke [39] is
used create 27 unique classes of dynamic optimization prob-
lems (DOPs) as identified by Duhain and Engelbrecht [40].
HMHH is configured with each of the selection operators
outlined above. Each configuration is run for 1000 iterations on
71 random instances2 of each type of DOPs, resulting in 1917
algorithm runs. Heuristic changes are triggered randomly for

2Derrac et al. [41] and Garcia et al. [42] recommend that the number of
samples, s, used for a nonparametric Friedman test-based analysis must satisfy
2a ≤ s ≤ 8a, where a is the number of algorithms being compared. The
choice of s = 71 samples satisfies the requirement for the analysis of the
nine stand-alone heuristics (i.e. a = 9 satisfies s ≤ 8× 9), the analysis of 6
hyper-heuristics (i.e. a = 6 yields s ≥ 2 × 6), as well as any joint analysis
of all heuristics and hyper-heuristics (i.e. a = 15 results in s ≥ 2× 15).

every entity with a probability set relative to 20% of the time
between MPB landscape changes. The values of δ, ϕ, and the
median and IQR values of N (t) are subsequently calculated
for each run. Figure 6 shows the result of the analysis.

B. Results

Scatter plots of the median and IQR of N (t), and δ versus
ϕ, respectively, are a natural way3 to visualize this information.
Figure 6a shows the median and IQR values of N (t). These
non-parametric measures make fewer assumptions about the
distribution of the data, and the mean and standard deviation
could potentially also be used. Figure 6b highlights the entity
assignment volatility of each hyper-heuristic, both in spatial
and temporal terms by using ϕ and δ, respectively.

Practitioners may typically analyze figure 6 as follows:
• Rand: Figure 6a shows that each sample had N (t) ≈ 1

with no variation (indicated by low IQR values), re-
gardless of the problem type. Figure 6b reveals that a
consistent number of entities were assigned new heuris-
tics every iteration (i.e., ϕ was high and δ = 1). The
discrepancy in the two groups of samples is due to the
fact that the HMHH parameter k was dependent on the
cycle length parameter of the MPB, which resulted in
higher proportions of entities to be reassigned in the one
group.
Figure 6 confirms that Rand was impartial to reassigning
entities across heuristics, always created balanced assign-
ments with high HSD, and was unaffected by the type of
problem or sample being addressed.

• RoulM: A wider distribution of N (t) values across
problem types and samples shows that RoulM was more
selective than Rand. Certain runs showed completely
balanced HSD values with low variance (very similar
to Rand). Other runs showed that RoulM frequently
assigned most entities to only a few heuristics. The wide
range of different IQR values for N (t) when the median
N (t)values was less than one reveals that RoulM could
selectively maintain high or low HSD for different runs.
In contrast to Rand, the wide distribution of δ values
reveals that RoulM was selective in entity reassignments,
sometimes choosing not to reassign any entities at certain
algorithm iterations of a run.

• AProp: The results for AProp appear very similar to
RoulM, which indicates that the behavior of AProp
was indistinguishable from random heuristic assignment.
The results may help practitioners to investigate the
causes, i.e., perhaps pheromone updates using equation
(8) were too similar to the outcome of equation (6), or
pheromone evaporation using equation (9) was too strong
each iteration.

• ETour25: The hyper-heuristic showed an approximately
triangular relationship between median and IQR values of
N (t). Within a single algorithm run, the hyper-heuristic

3Other multi-dimensional visualization techniques may of course be used
as well, such as spiderweb plots or parallel coordinate plots.



(a) Median versus IQR for N (t) for 71 algorithm runs (by selection operator).

(b) ϕ versus δ for 71 algorithm runs (by selection operator).

Fig. 6: Measuring the balance and volatility of a hyper-heuristic over 71 algorithm samples.

showed evidence of always assigning all entities to a sin-
gle heuristic (lower left corner of the triangle), fluctuating
between assigning all entities to a single heuristic and
assigning entities across heuristics in a more balanced
manner (top left corner of the triangle), and also showed
a tendency to maintain lop-sided assignments (where a
large proportion of entities are assigned to few heuristics,
indicated by N (t) ≈ 0.65) with high variation in the
balance of assignments.
Generally, ϕ values were much lower and more uniform
across problem types and samples for ETour25 than for
Rand or RoulM, indicating markedly different volatility
in entity assignments. Large variations in δ values can
be seen for ETour25. Certain runs resulted in few to no
entity-to-heuristic changes at all in a run (i.e., heuristic
space convergence may have occurred), but other runs
showed that up to 70% of algorithm iterations contained
heuristic reassignments. These plots are useful for practi-
tioners to understand what the source of the variation is,
i.e. is the type of problem correlated with δ or ϕ values.

• DProp: The HSD behavior of DProp was dominated by
allocating all entities to a single heuristic across most
iterations of each run, as indicated by low median and
IQR values for N (t). DProp was less volatile than Rand
or RoulM and showed ϕ values similar to ETour25. The
δ value distribution for DProp reveals that, similar to
ETour25, the hyper-heuristic was highly adaptive to the
specific problem instance being solved. Practitioners can
now isolate specific samples and further investigate which
problem types or cases caused ETour25 to display higher
variation in HSD behavior than DProp.

• RLFreq: The straight vertical line in figure 6a shows that

RLFreq allocated all entities to a single heuristic, but was
able to rapidly re-diversify entity-to-heuristic allocations
when needed (as shown by the large range of IQR values).
This finding is supported by figure 6b which shows how
RLFreq showed large variations in both ϕ and δ across
samples. Practitioners might investigate if there was any
correlation between these samples ()where median N (t)
values were greater than 0.35) and specific problem types
and/or ϕ and δ values.

VI. CONCLUSION

The heuristic space behavior of a hyper-heuristic that man-
ages population-based meta-heuristics is critical to understand-
ing how the hyper-heuristic operates. The newly proposed
heuristic space diversity measure, N (t), improves upon previ-
ous measures by placing fewer algorithm parameter constraints
on the practitioner. Additionally, this paper proposes volatility
measures, namely ϕ and δ, that characterize the amount
of spatial and temporal disruption that the hyper-heuristic
selection logic causes.

Future work should characterize the behavior of different
hyper-heuristics on the same set of benchmark problems, and
compare the results to determine if there are any correlations
between certain types of behaviors and increased or decreased
performance. Comparison of the behavior of a hyper-heuristic
against control groups (such as random selection) will be valu-
able to understand if and how intelligent selection mechanisms
improve upon simply maintaining algorithmic diversity.
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