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Abstract—Intelligent optimization algorithms based on swarm
principles have been widely researched in recent times. The
Firefly Algorithm (FA) is an intelligent swarm algorithm for
global optimization problems. In literature, FA has been seen as
one of the efficient and robust optimization algorithm. However,
the solution search space used in FA is insufficient, and the
strategy for generating candidate solutions results in good explo-
ration ability but poor exploitation performance. Although, there
are a lot of modifications and hybridizations of FA with other
optimizing algorithms, there is still a room for improvement.
Therefore, in this paper, we first propose modification of FA
by introducing a stepping ahead parameter. Second, we design
a hybrid of modified FA with Covariance Matrix Adaptation
Evolution Strategy (CMAES) to improve the exploitation while
containing good exploration. Traditionally, hybridization meant
to combine two algorithms together in terms of structure only,
and preference was not taken into account. To solve this issue,
preference in terms of user and problem (time complexity) is
taken where CMAES is used within FA’s loop to avoid extra
computation time. This way, the structure of algorithm together
with the strength of the individual solution are used. In this paper,
FA is modified first and later combined with CMAES to solve
selected global optimization benchmark problems. The effective-
ness of the new hybridization is shown with the performance
analysis.

Index Terms—TFirefly Algorithm, covariance matrix adaptation
evolution strategy, optimization

I. INTRODUCTION

The Digital era has witnessed an avalanche of research con-
ducted by educationist’s dealing with designs and architecture
[1], [2], frameworks and policies, pilots and interventions,
forecasts and predictions [3], theories and pedagogies [4],
[5], tools and technologies, diagnostics, however, an area
that provides improvement for all is optimization. Optimiza-
tion problems involve finding values from set of variables
which will give an optimal functional value of the cost or
objective function. The literature has witnessed a plethora
of optimization techniques to solve problems integrated to
human livelihood and endeavors including education, eco-
nomics, engineering, robotics, and smart cities [6]-[12]. A
sub-area of optimization is global optimization which involves
finding a global minimum or maximum on the domain of
an objective function. There are a lot of optimization algo-
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rithms in literature which either minimizes or maximizes the
objective function [13], [14]. This research firstly modifies
Firefly Algorithm (FA) and later does the hybridization of
modified FA with Covariance Matrix Adaptation Evolution
Strategy (CMAES) algorithm. The reason for hybridization is
that the two algorithms separately sometimes do not perform
well in terms of finding the optimality of a particular function
and also it may take longer time to find best solutions [15]-
[17]. In 20 dimension problem, the median algorithm solves
about 30% of the functions while the best algorithm can solve
about 75% [18]. In 2008, Yang proposed FA scheme, a swarm
intelligence algorithm that is based on the grouping behaviour
of fireflies [19]. The algorithm belongs to stochastic algorithm
and is classified as a meta-heuristic technique. The technique
is widely used in different application fields for their stochastic
search property, similar to Particle Swarm Optimization (PSO)
[20] method. CMAES was proposed by Hansen et al. in [21]
and later enhanced in [22], [23]. The modification of FA will
be done in terms of exploration while later hybridization would
be done to improve the exploitation. The hybridization of FA
with CMAES would allow to gradually change the search
exploration into exploitation which is searching for best results
within the current search space.

We would start by considering some of the results from liter-
ature on modification of FA and their hybridization with other
algorithms. FA was modified in the past to solve problems
from different industries, sectors and domain. In the computing
domain, Sharma et al. in (2020) added adaptive inertia weight
for position update of search agents to overcome trap in local
optima and slow convergence of original FA [24]. Aggarwal
and Kumar in (2019) enhanced the exploitation capability of
FA using randomness factor and the modified algorithm was
applied to vehicle routing problem [25]. Yelghi et al. in (2018)
addressed the problem of the original FA being trapped at
the local minimum, hence finding the global minimum [26].
The authors modified FA by applying Tidal Force formula
(exploitation) where the modified FA keeps a balance between
exploration and exploitation. Teshome et al. in (2017) modified
the FA to improve the performance of the maximum power
point tracking by reducing the number of computation and



the convergence time to the global maxima [27]. The modified
FA was able to suppress voltage fluctuations. He and Huang
used the modified FA for multilevel color image thresholding
segmentation [28] where three different objective functions
were evaluated. Chou and Ngo in (2017) proposed the mod-
ified FA for multidimensional structural design optimization
problem by incorporating logistic for population, Gauss for
attractiveness parameter tuning, adaptive inertia weight for
local exploitation and global exploration and Levy flight for
exploitation [29]. While Wang et al. in (2016) proposed the
modification based on variation trend of the light intensity
difference where it decreases premature convergence [30].
Fister et al. use quaternions which extend complex numbers to
enhance the performance of the FA in computing domain [31].
Verma et al. in (2016) modified the FA at the initialization of
candidate solution step using opposition-based methodology
and update of position of each firefly in different dimensions
using dimensional-based approach [32] to achieve optimal
solution in minimum time. In the electricity industry, Kavousi-
Fard et al. in (2014) proposed a modified FA to determine
the parameters of the Support Vector Regression algorithm,
which in turn will predict the short term electrical load [33].
Every modification improves the original FA either in terms
of exploration or exploitation. According to [34], usually this
balance is insured by favoring exploration at the beginning of
the search and exploitation at the end. Therefore, modification
in terms of exploration is done by searching further in the
search space through stepping ahead in this research.

So far, there has been no hybridization of FA and CMAES
as per our knowledge. One of the reasons for hybridization of
different algorithms together is to get to the optimal solutions
of any given problem. Apart from FA, other popular optimiza-
tion algorithms have been hybridized. For instance, Particle
Swarm Optimization (PSO) [20] and Genetic Algorithm (GA)
[35]. Marinakis and Marinaki in [36] combined genetic algo-
rithm and Particle Swarm Optimization (PSO) to solve vehicle
routing problem. while, DziwiAski et al. presented a hybrid
of PSO and evolutionary algorithm for faster convergence
presented by PSO and global search by evolutionary algorithm
[37]. As for FA, Wang et al. combined the fireworks algorithm
neighborhood search operator with FA to solve the problem
of getting trapped in a local minimum [38]. CMA-ES has also
seen hybridization with various algorithms. Yu et al. combined
Brain storm optimization algorithm (BSO) and CMA-ES to
achieve optimal solution by utilising the search capability of
BSO and search efficiency of CMA-ES [39]. Likewise, other
hybridization of optimization algorithms include [40]-[42].

There are a number of meta-heuristic algorithms, some
commonly used ones are PSO [20], Genetic Algorithm (GA)
[35] , FA [19] and Ant Colony Optimization (ACO) [43].
There has been many modifications and hybridizations of these
algorithms but there is still a chance of better algorithms to
tackle optimization problems. This has given the motivation to
look at FA in much detail and modify in terms of the structure
and later combine it with another algorithm architecture that
would provide a better outcome. The reason to choose FA

is due to its simplicity and success in different application
domains as it is widely used to solve the continuous problem
same as PSO. The main aim involves the modification of
the FA method and its hybridization with CMAES to solve
some test and real-world optimization problems. The imple-
mentation needs to combine FA with CMAES where the other
method is only applied within the execution stage of the FA
method. Authors in [44], [45] have shown that evolutionary
algorithms can benefit a lot from CMAES, which is used
a framework to improve the performance. In this research,
a hybrid of modified FA and CMAES is discussed with
application to real parameter optimization. The algorithm is
tested against 25 benchmarks and 2 real world test problems
and later compared with literature.

The rest of the paper is organized as follows. Section II
highlights on the modification of FA. Section III displays
the proposed hybrid algorithm and section IV discusses the
experimental setup and results. Section V is on the discussion
of the results while section VI concludes the paper with future
overviews.

II. MODIFICATION OF FIREFLY ALGORITHM

Firefly algorithm is a bio-inspired meta-heuristic algorithm
for optimization problems. It was introduced in 2008 by Yang
[19]. The algorithm is inspired by the flashing behavior of
fireflies at night. One of the three rules used to construct the al-
gorithm is that all fireflies are unisex, which means any firefly
can be attracted to any other brighter one. The second rule is
that the brightness of a firefly is determined from the encoded
objective function. The last rule is that attractiveness is directly
proportional to brightness but decreases with distance, and a
firefly will move towards the brighter one, and if there is no
brighter one, it will move randomly [19]. The assumption of
fireflies to be unisex can be removed in the proposed method
as the search is moving further away from the attracted firefly,
but it needs to be tested.

The original FA has been modified and is stated in Algo-
rithm 1.

Steps 1 to 3 are original steps of the FA. Step 1, the
population of fireflies is initialized, while in steps 2 and 3,
the variables are defined and the iteration starts. Step 4 was
introduced to allow the algorithm to avoid local optimum.
In step 4, new solution is found in relation to the firefly j
where the movement of the firefly is further away than usual
movement of firefly i closer to best solution as in standard FA.
The term which we have given to this approach is Stepping
Ahead. 1t is further explained in the following subsection.

A. Stepping Ahead

The notion behind stepping ahead is to allow the firefly
to journey ahead to look for better solutions. This allows for
a better exploration of the wider search space. The distance
is calculated beside on current position of firefly (FFi) and
firefly (FFj). The firefly (FFi) is moved in front of firefly
(FF3) to search for a better position, and if a better position
is found, the light intensity of firefly (FFi) increases to attract



Algorithm 1: modified Firefly Algorithm

Step 1: Initialize population of fireflies
Random partition z;(i = 1,2, ...,n)
Step 2: Formulate light intensity I so that it is associated with f(x)
Step 3: Define absorption coefficient 7
while t < MaxGeneration do
foreach i = I: n (all n fireflies) do
foreach j = I: i (n fireflies) do
if 1 5 < I; then
Vary attractiveness with distance r via exp(—=2'r );
Step 4: Stepping ahead
move firefly i further than j that is j distance plus
distance difference j and i;
Evaluate new solutions and update light intensity;
if new solution not better then
move firefly i in relation to j that is i
distance plus distance difference j and i;
Evaluate new solutions and update light
intensity;
end

else
| nothing
end

end
end
Rank fireflies and find the current best;

end
Post-processing the results and visualization;

Fig. 1. Firefly stepping ahead

more fireflies to that position. If firefly (FF1i) fails to search
for a better solution another chance is given where search is
closer to firefly (FFJ) is in standard FA algorithm. This gives
a chance of any algorithm to move out from local optimum
as quiet often it was seen that local optimum hinders best
algorithms to find global optimum. The stepping ahead feature
for the firefly can be seen in Figure 1. The figure shows how
a firefly travels from the current best position to new best
position in terms of the best firefly position. It is normal for
an algorithm to attract to the best solution, for exploration
there need to be a smart technique that can produce even better
results in terms of optimal solutions when the problem in hand
is difficult to solve.

III. ALGORITHM OVERVIEW: HYBRIDIZATION OF
MODIFIED FIREFLY ALGORITHM WITH CMAES

In this section, modified FA is combined with CMAES.
To avoid increasing the time complexity of the algorithm, the
implementation of the CMAES is done within the second
For loop of the firefly algorithm. The original algorithm

is incorporated with CMAES to allow for better search and
exploitation.
The proposed algorithm is shown in Algorithm 2.

Algorithm 2: Proposed hybrid Firefly algorithm

Step 1: Initialize population of fireflies and initialize state variables
Random partition z;(i = 1,2, ...,n)
Step 2: Formulate light intensity I so that it is associated with f(z)
Step 3: Define absorption coefficient 7" and update M
while t < MaxGeneration do
foreach i = I: n (all n fireflies) do
foreach j = I: i (n fireflies) do
if 1 j S Iz then
Vary attractiveness with distance r via exp(—71r );
Step 4: Stepping ahead
move firefly i further than j that is j distance plus
distance difference j and i;
Evaluate new solutions and update light intensity;
if new solution not better then
move firefly i in relation to j that is i
distance plus distance difference j and i;
Evaluate new solutions and update light
intensity;

end

Step 5: CMAES

sample new solutions in terms of CMAES and
evaluate them;

sample multivariate normal and fitness;

else
|  nothing
end

end

end

Rank fireflies and find the current best; (sort solutions)
move mean to better solutions;

update isotropic evolution path;

update anisotropic evolution path;

update covariance matrix;

update step-size using isotropic path length;

end
Post-processing the results and visualization;

Steps 1 to 4 are same as in the previous section. The step-
ping ahead modification is the Step 4. The new introduction is
Step 5. In Step 5, the algorithm CMAES is integrated with FA.
Here the CMAES algorithm is implemented in the same cycle
to avoid extra time complexity. Later, the entire population
is ranked and the current best is found. The variables of
CMAES are updated. This is done until the maximum iteration
is reached. Finally, post-processing of the results is carried out
and visualization are stored.

1V. EXPERIMENTS AND RESULTS

This section shows the experimental setup and results anal-
ysis of the proposed hybrid algorithm. The experimental setup
highlights the parameters used in each of the algorithm and
the objective function. Results section shows the mean, median
and best and worst results from the experiment. The hybrid
model is referred to as FACmaes in this section.

A. Experimental Setup

To keep a controlled environment, it is assumed that the
functions are a blackbox. The bounds are not modified and
kept at -10 and 10 for all the functions as in the literature.
There are only a few parameters that need to be set up for



TABLE I
PARAMETER SETTING

Parameter FACmaes
Initial Population size 25
Maximum iterations 1000
No. of Runs 30
Lambda 25
Damping Ratio 0.98
Light Absorption Coefficient 1
Attraction Coefficient Base Value 2
Mutation Coefficient 0.2

TABLE I

BENCHMARK FUNCTIONS
No. Name No. Name
FO1 ackleyfcn F14 schwefel222fcn
F02 alpinenlfcn F15 schwefel223fcn
FO03 alpinen2fcn Fl16 shubert3fcn
F04  exponentialfcn  F17 shubert4fcn
FO5 griewankfcn F18 shubertfcn
F06 periodicfcn F19  styblinskitankfcn
FO07 powellsumfcn F20 sumsquaresfcn
FO8 quarticfcn F21  xinsheyangnlfcn
F09 rastriginfcn F22  xinsheyangn2fcn
F10 rosenbrockfcn F23  xinsheyangn3fcn
F11 salomonfcn F24  xinsheyangn4fcn
F12  schwefel220fcn  F25 zakharovfcn

F13  schwefel221fcn

FACmaes and these have been described in Table I. The
experiments are conducted on the 25 functions taken from
[46] including two real world functions taken from CEC 2011
[47]. The subsection gives deals about the functions.

Benchmark and Real world Functions

Table IT shows 25 benchmark functions used while Table III
shows 2 real world problems that have been taken out from
CEC 2011 to show the performance of the proposed algorithm
on real world problems.

The 25 benchmark functions (Table II) are same as the ones
used in [48]. The classification done in the research was based
on four group types, which gave the motivation to use these
25 functions. The groups were based on non-convex, convex,
continuous, differentiable, non-differentiable, separable, non-
separable, multimodal and uni-modal attributes. A complete
formulation and optimal values of functions can be accessed
from [46]. The details about real world functions are shown
in Table III.

B. Results

This subsection reports on analysis of the algorithms. Tables
IV and V show the results obtained on benchmark functions

TABLE III
CEC 2011 REAL WORLD OPTIMIZATION PROBLEM
No. Name
CEC4 Optimal control of a non-linear stirred tank reactor
CEC7 Spread Spectrum Radar Polly phase Code Design

while Table VI shows results obtained on CEC functions to
validate the effectiveness of the algorithm.

In Table IV, the performance of standalone methods to-
gether with the proposed method is shown on 25 benchmark
problems. The best, median, and the worst of the 30 runs are
shown in this table. The best results were seen for FACmaes
model where from 25 functions, it was able to give the best
results in 19 functions. That is, the minimum of the functions.
The two standalone methods, FA and CMAES, were able to
give the best results in 8 and 7 functions, respectively. Similar
results can be seen for median and worst values obtained for
each of the algorithms.

Looking at Table IV, a lot of information can be gathered
regarding the three algorithms. Any of the algorithms did not
reach the optimal value of F1, however, CMAES and FACmaes
were closer to the optimal compared to FA method. For F2,
the optimal value was reached by FACmaes method only.
As for F3 function, none of the methods are closer to the
optimal result, the closer result was found by FA method. All
the methods were able to find the optimal value for the F4
function. F5 optimal value was possible by CMAES method
in best, median and worst results.

Moving on, FA and FACmaes had close results to F6
function’s optimal when compared to CMAES method. For
function F7, FACmaes was the only algorithm to obtain the
optimal result of 0. For F8, the proposed method got the closed
result whereby FA got the second best. For function F9, all
the three methods were able to find the optimal value of 0.
FACmaes got the closest result in function F10. For function
F11, all the three methods got the same result of 0.099. For
functions F12 to F14, again it was FACmaes method that was
able to get the best results compared to FA and CMAES
methods. This clearly shows the strength of combining two
methods together. The stepping ahead strategy has worked well
as it provides a better search path.

For function 15, again FACmaes was able to find the optimal
value together with CMAES method. In this case, FA was not
able to find the optimal. As for the functions F16 to F19, none
of the methods are able to find the optimal values. In F16, FA
had a close result, in F17, FACmaes method had close result
as for F18 and F19, again FA method had better results. From
function F20 to F25, FACmaes and CMAES were two methods
that performed well where FACmaes was able to find optimal
values for function F20, F21, F23 and F25. Similar results can
be seen on the same Table IV for median and worst results,
where in 17 out of 25 functions and 14 out of 25 functions,
the proposed method FACmaes has outperformed in median
and worst results, respectively.

Table V shows the mean results obtained by the algorithms
for the benchmark functions. In most cases the proposed
method has better solution than the other two methods. An
interesting note is that, in just 1 out of 25 functions, all the
three methods were able to produce same results.

In Table VI, the results are compared with selective al-
gorithms from literature based on best results obtained for
FACmaes. It can be seen that, the proposed algorithm was



TABLE IV
BEST, MEDIAN, WORST RESULTS ON BENCHMARK FUNCTIONS

[ Fun. [ Optimal ] Best [ Median [ Worst |
FA CMAES FACmaes FA CMAES FACmaes FA CMAES FACmaes
FO1 0 7.56E-11 -8.88E-16 -8.88E-16 1.63E-10 -8.88E-16 -8.88E-16 2.36E-10 -8.88E-16 -8.88E-16
F02 0 9.87E-12 1.19E-21 0.00E+00 1.71E-11 1.23E-19 4.18E-321 2.51E-11 1.89E-19 1.22E-15
FO3 -6.1295 -7.85E+01 -1.80E+03 -2.48E+02 -5.35E+01 -1.80E+03 -1.87E+02 | -3.23E+01 -5.15E+02 -1.62E+02
FO4 -1 -1.00E+00 | -1.00E+00 | -1.00E+00 | -1.00E+00 | -1.00E+00 | -1.00E+00 | -1.00E+00 | -1.00E+00 | -1.00E+00
FO5 0 7.40E-03 0.00E+00 9.86E-03 2.71E-02 0.00E+00 3.20E-02 5.17E-02 0.00E+00 5.42E-02
FO6 0.9 1.00E+00 1.33E+00 1.00E+00 1.00E+00 1.90E+00 1.00E+00 1.00E+00 2.28E+00 1.00E+00
FO07 0 5.28E-26 2.14E-12 0.00E+00 4.92E-25 1.34E-10 0.00E+00 5.44E-24 4.57E-10 1.34E-294
FO8 0 2.51E-05 1.51E-04 2.06E-05 1.07E-04 1.41E-03 1.04E-04 5.72E-04 4.32E-03 2.76E-04
F09 0 0.00E+00 0.00E+00 0.00E+00 9.95E-01 3.84E+00 2.98E+00 3.98E+00 2.91E+01 9.95E+00
F10 0 2.01E-15 9.89E-03 3.18E-27 6.16E-07 2.34E-02 4.18E-10 3.21E-05 4.05E-02 1.15E-05
F11 0 9.99E-02 9.99E-02 9.99E-02 9.99E-02 9.99E-02 9.99E-02 9.99E-02 1.15E-01 9.99E-02
F12 0 5.90E-11 7.99E-47 3.95E-240 1.67E-10 2.66E-46 1.88E-236 2.05E-10 1.06E-45 5.77E-235
F13 0 3.88E-11 3.09E-44 2.15E-176 6.03E-11 1.19E-43 2.86E-173 8.35E-11 2.80E-43 1.22E-169
F14 0 9.25E-11 1.53E-46 5.63E-240 1.63E-10 4.11E-46 4.88E-237 2.52E-10 2.38E-45 1.96E-235
F15 0 2.13E-104 0.00E+00 0.00E+00 2.40E-102 0.00E+00 0.00E+00 7.64E-101 0.00E+00 0.00E+00
F16 -29.6733337 -7.42E+01 -8.29E+01 -8.90E+01 -7.42E+01 -7.34E+01 -8.90E+01 -6.28E+01 -6.51E+01 -6.11E+01
F17 -25.740858 -1.91E+01 -2.26E+01 -2.30E+01 -1.91E+01 -1.95E+01 -2.00E+01 -1.91E+01 -1.72E+01 -1.64E+01
F18 -186.7309 -5.70E+05 -5.29E+09 -8.27E+06 -5.70E+05 -7.57TE+08 -6.51E+06 -4.49E+05 -1.99E+08 -1.12E+06
F19 -39.16599 -1.96E+02 -3.92E+02 -2.35E+02 -1.96E+02 | -3.92E+02 -2.35E+02 -1.82E+02 | -3.78E+02 -2.21E+02
F20 0 4.66E-21 4.20E-97 0.00E+00 2.18E-20 2.13E-96 0.00E+00 5.05E-20 1.26E-95 0.00E+00
F21 0 1.10E-14 2.32E-07 0.00E+00 3.77E-14 2.14E-06 0.00E+00 6.80E-08 2.51E-05 1.72E-73
F22 0 4.18E-02 5.66E-04 1.85E-02 4.18E-02 5.66E-04 1.85E-02 4.18E-02 7.52E-04 3.74E-02
F23 -1 9.17E-01 0.00E+00 -1.00E+00 9.17E-01 0.00E+00 9.01E-01 9.17E-01 0.00E+00 9.01E-01
F24 -1 7.45E-24 1.02E-35 -6.04E-29 6.98E-23 5.67E-35 -6.04E-29 1.42E-22 2.10E-04 4.19E-16
F25 0 2.53E-21 8.04E-01 0.00E+00 1.34E-20 3.83E+00 0.00E+00 2.64E-20 2.05E+01 1.47E-315
TABLE V TABLE VII
MEAN RESULTS ON BENCHMARK FUNCTIONS CEC REAL WORLD PROBLEM
[ Fun. ] Mean | [ [ [ FA [ CMAES [ FACmaes |
FA CMAES FACmaes Best 1.43E+01 1.92E+01 1.38E01
FO1 1.64E-10 -8.88E-16 -8.88E-16 CECO04 Median 1.76E+01 2.11E+01 1.43E+01
F02 1.69E-11 1.20E-19 2.28E-16 Worst 2.10E+01 2.18E+01 1.48E+01
FO03 -5.41E+01 -8.15E+02 -1.89E+02 Mean 1.76E+01 2.11E+01 1.42E+01
FO4 -1.00E+00 | -1.00E+00 | -1.00E+00 Best 5.52E-01 1.62E+00 5.00E-01
FO5 2.53E-02 0.00E+00 3.08E-02 CECO7 Median 9.90E-01 1.95E+00 7.95E-01
F06 1.00E+00 1.89E+00 1.00E+00 Worst 1.31E+00 | 2.29E+00 1.11E+00
FO7 9.09E-25 1.53E-10 1.34E-295 Mean 9.83E-01 1.95E+00 7.92E-01
FO8 1.30E-04 1.72E-03 1.06E-04
F09 1.29E+00 9.34E+00 3.38E+00
F10 4.04E-06 2.54E-02 3.25E-06
F11 9.99E-02 1.01E-01 9.99E-02
1}2 }% éggg}? ?ﬁg-ﬁg }gggigg CECO07 functions. FA method has second best in terms of
Fla L64E-10 54046 | 3.66E-236 best, median, worst and mean results in both. The stepping
F15 | 7.10E-102 | 0.00E+00 | 0.00E+00 ahead method was able to outperform both FA and CMAES
F16 | -7.38E+01 | -7.31E+01 | -8.30E+01 methods. The best result in CEC04 of 13.77 and in CECO7 of
Ei; ;g&g:g; '91.'3755:8; ggzg;gg 0.5 by FACmaes is the known optimal of the functions.
F19 | -1.93E+02 | -3.90E+02 | -2.31E+02 In Table VIII, the comparison of two CEC 2011 function
F20 2.26E-20 3.65E-96 0.00E+00 . .
1 2.37E-09 3.55E-06 L72E-74 results of FACmaes are done with methods from one previous
F22 | 4.18E-02 | 5.80E-04 | 2.30E-02 research. It can be seen that FACmaes algorithm has best re-
F23 | 9.17E-01 | 0.00E+00 | 7.11E-01 sults in both CEC04 and CECO7. While Moth search algorithm
F24 7.18E-23 7.01E-06 4.19E-17 .
E25 1.42E-20 584F+00 | 1.48E-316 comes second best compared to other five algorithms. It can

able to outperform in all the five functions. The five functions
are the common functions between this paper and [49]. The
functions are FO1, FO5, F13, F14 and F25.

Table VII displays results on CEC real world problems.
It can be seen that FACmaes have best results in terms of
best, median, worst and mean results in CEC04 and also

also be seen that FACmaes has outperformed all the methods
it was compared to in terms of best and mean.

The Figs. 2-5 display how the solution for functions con-
verges with number of iterations with proposed method and the
counterparts. Fig. 2 shows how fast the solution is reached on
F11 for FACmaes method while Figs. 3-5 shows convergence
on function F20 for the, FA, CMAES and FACmaes method
respectively.



TABLE VI
COMPARISON OF THE BEST FUNCTION RESULTS ON BENCHMARK FUNCTIONS WITH LITERATURE [49]

1

Best Results |

ABC BBO DE MS PSO | SGA | FACmaes
FO1 13.35 2.51 16.48 2.1E-8 17.05 2.51 -8.90E-16
FO5 30.93 1.79 10.96 1 34.86 1.37 9.86E-03
F13 55 22 37.39 9.4E-8 33.69 13 2.15E-176
F14 20.12 2.2E-16 14.93 1.3E-7 28.14 1 5.63E-240
F25 137.57 39 151.77 | 7.6E-16 | 9298 | 68.31 0
TABLE VIII

COMPARISON OF BEST AND MEAN OF FACMAES WITH LITERATURE [49] ON CEC REAL WORLD PROBLEM

[ Best

[ Mean |

ABC BBO DE MS PSO SGA | FACmaes | ABC BBO DE MS PSO SGA | FACmaes
CEC04 | 19.81 | 2393 | 2093 | 13.79 | 14.39 | 23.93 13.77 21.43 | 2393 | 2222 | 18.22 | 2047 | 23.93 14.21
CECO07 1.62 1.73 1.88 1.45 1.95 1.62 0.50 2.34 2.13 2.44 2.06 2.42 2.17 0.79
10° R
o 50 100 150 200 250 300 3s0

1071
o 50
Iteration

Fig. 2. Typical convergence on F11 for FACmaes method

Best Cost

10712

10°1%

10720
o 100 200 300 400 500 600 70O
Iteration

Fig. 3. Typical convergence on F20 for FA method

Best Cost

10-100

10°150

10-200
o 100 200 300 400 500 600 700
Iteration

Fig. 4. Typical convergence on F20 for CMAES method

lteration

Fig. 5. Typical convergence on F20 for FACmaes method

V. DISCUSSION

It was seen that in 19 out of 25 benchmark functions, the
newly proposed algorithm in this research paper FACmaes
model performed better in comparison to the two standalone
methods. For all the benchmark functions, the performance of
the algorithms converged towards the known optimal values.
This shows that the proposed method is capable enough to
search at the optimal search space of any function. The newly
proposed method firstly modifies the FA by introducing a new
stepping ahead strategy, which provides better solution hunt,
i.e. exploration. The wider search space is looked at in this
case. Then the hybrid of the method with CMAES takes care
of exploitation. The original FA is good at exploitation but
sometimes fails to perform in global search as it gets stuck
into some local optima [50].

Table V, shows mean results of the three algorithms on the
benchmark functions discussed earlier. Again, the proposed
method has performed better than the other two methods that is
in 15 out of 25 functions. The mean value suggests that out of
the 30 runs still the newly proposed stepping ahead FACmaes
method outperformed its counterparts. In three cases, the mean
obtained for the proposed method is same as the optimal value
of that function.

In addition, five of the function results obtained for FAC-
maes are compared with a research from literature in Table



VI. The author in [49], compares ones result on five other
algorithms. In our research, we are comparing our proposed
method’s result with those algorithms together with the one
proposed in research from [49]. It is evident from the table VI
that the proposed method FACmaes has outperformed in all
the functions compared to the six algorithms. This indicates
that the newly proposed algorithm is a better solution to
optimization problems.

Table VII shows the result of the proposed method and the
other two methods on two real world functions. FACmaes is
the only method that has performed well as these functions
are hard to solve. FA is the second best in both functions
while the stepping ahead proposed method is better in both
CECO04 and CECO7. The best results for FACmaes are the
known optimal results of the two functions which was done
with higher iteration count than what we have used.

The results of FACmaes on CEC04 and CECO7 were
compared to other methods in literature in Table VIII. Again,
it was seen that the proposed method did better in both cases
in terms of the best value and mean.

By looking at Figs. 2-5, further analysis can be done on
the performance of individual methods. It can be seen that for
function F11 the proposed method converges faster that is in
50 iterations while for F20, it is a constant drop to optimal for
the proposed method while FA and CMAES try to look for
optimal till the last iteration. Especially for F11, it can be seen
that in just 50 iterations, the method was able to converge. The
notion to modify the FA before the integration with CMAES
method has proved statistically sound. This is evident from the
fact, where individual methods were not able to find solutions,
the proposed method was able to. Fig. 3 shows that FA method
struggles to find the solution and the graph is not smooth while
Fig. 4 shows a smooth graph which converges to the optimal.
As for the Fig. 5 it has constant convergence, which is only
possible if the method is able to find the best fitness in first
instance.

The results are carefully reconsidered, in three cases, the
worst case values are optimal results as well. These results
indicate, that irrespective of running the algorithm many times,
the method is able to converge close to optimal value. The
results are proof of concept at the preliminary level and more
in-depth analysis needs to be carried out to allow the best
algorithm to solve such problems faster with better at most
optimal results.

The results are compared to the existing literature as bench-
mark functions are available, and more importantly, the source
code of the existing literature is available as well. However,
comparison to more algorithms needs to be carried out, which
would give more insight into algorithm structure together with
problem type.

VI. CONCLUSIONS

This paper employed the Firefly Algorithm (FA) to-
gether with covariance matrix adaptation evolution strategy
(CMAES) to solve the optimization problem. Firstly, the FA
method was modified by introducing a new technique called

stepping ahead and later it was combined with CMAES in
the same cycle to avoid increasing the time complexity of the
new proposed algorithm. The stepping ahead hybrid algorithm
was used to find the optimal solution of benchmark problems
extracted from the literature. Experimental results showed
that the proposed algorithm has potential to do better than
standalone algorithms and some methods from literature. The
25 objective functions were treated as blackbox problems to
see if the algorithm is smart enough to search in the optimal
search space or not.

The proposed method using a newly designed stepping
ahead feature and combination of CMAES method has proved
that this algorithm can get better solutions in terms of iteration,
runs and even complexity of the problem. The modification
gives a chance to search further for better results for the firefly.
Applying another method within the loop without iterating the
second method further, allows to reduce the running time in
terms of time complexity.

The results obtained are proof of concept at the preliminary
stage since it is based on benchmark functions and two
real-world CEC problems. Future research would focus on
parameter tuning to further improve the convergence and
success rates. The research can be extended to cater for other
optimization functions with in-depth analysis on the use of the
algorithms. The results have given scope to test the algorithm
in other optimization areas such as combinatorial problems
and scheduling.
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