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Abstract—A multi-modal multi-objective optimization problem
is a special kind of multi-objective optimization problem with
multiple Pareto subsets. In this paper, we propose an efficient
multi-modal multi-objective optimization algorithm based on the
widely used MOEA/D algorithm. In our proposed algorithm, each
weight vector has its own sub-population. With a clearing mech-
anism and a greedy removal strategy, our proposed algorithm
can effectively preserve equivalent Pareto optimal solutions (i.e.,
different Pareto optimal solutions with same objective values).
Experimental results show that our proposed algorithm can
effectively preserve the diversity of solutions in the decision
space when handling large-scale multi-modal multi-objective
optimization problems.

Keywords—Evolutionary multi-objective optimization; multi-
modal multi-objective optimization; diversity maintenance;
MOEA/D

I. INTRODUCTION

A multi-objective optimization problem (MOP) is an op-
timization problem which has multiple objective functions.
Usually, these objective functions are conflicting and cannot be
optimized simultaneously. For convenience, all objective func-
tions should be converted into minimization functions. The
following equation formulates an MOP without constraints:

minF (x) = (f1(x), . . . , fM (x))T , (1)

where x is a D-dimensional decision vector, and F is a map-
ping from a D-dimensional domain Ω to an M -dimensional
range RM .

In the past three decades, researchers have developed a
variety of multi-objective evolutionary algorithms (MOEAs).
For example, the well-known NSGA-II [1] and MOEA/D [2]
can efficiently solve various types of MOPs.

In this paper, we mainly focus on a special type of
MOPs called multi-modal multi-objective optimization prob-
lems (MMOPs). In MMOPs, the function F in Eq. (1) can
be a many-to-one mapping from Ω to RM . That is, for a
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Fig. 1. The two equivalent Pareto subsets (A and B in (a))
and the Pareto front (the blue curve in (b)) of the SUF3 test
problem. Solution y has two inverse images x1 and x2 in the
decision space.

Pareto optimal solution in the objective space, there may
exist multiple inverse images in the decision space. Formally,
solutions x1 and x2 are equivalent iff F (x1) = F (x2) and
x1 6= x2. As reported in [3], local optimal solutions is not
well-defined for MOPs. Therefore, we only consider global
Pareto optimal solutions. Due to the existence of equivalent
solutions, an MMOP may have multiple equivalent Pareto
subsets, each of which is mapped to the whole Pareto front. For
example, in Fig. 1, the SUF3 test problem [4] has two equiv-
alent Pareto subsets A and B and each of them is mapped to
the whole Pareto front in the objective space. When handling
MMOPs, all equivalent Pareto subsets should be covered. A
wide variety of real-world problems are MMOPs. For instance,
the space mission design problems [5] and the multi-objective
knapsack problems [6] are MMOPs. Solving MMOPs is very
useful since equivalent Pareto optimal solutions offer more
alternatives for the decision maker [7].

As pointed out in the literature [4], [8], MOEAs can-
not efficiently solve MMOPs since they do not consider
the diversity of solutions in the decision space. Therefore,
several multi-modal multi-objective optimization evolution-
ary algorithms (MMEAs) are proposed such as DNEA [9],
MO Ring PSO SCD [10] and MOEA/D-AD [8]. As reported
in [11], these algorithms perform well on MMOPs with low-
dimensional decision spaces. However, only a few of them
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Fig. 2. Explanation of MOEA/D based on the sub-population
framework.

can obtain a diverse solution set in the decision space when
handling MMOPs with high-dimensional decision spaces (i.e.,
large-scale MMOPs). To alleviate this issue, we propose an
efficient algorithm for large-scale MMOPs.

The rest of the paper is organized as follows. We briefly
review related studies on decomposition-based MOEAs and
MMEAs in Section II. In Section III, the proposed MMEA
is outlined. Then we compare the proposed MMEA with
representative state-of-the-art algorithms on several MMOPs
in Section IV. Finally, we summarize the paper and suggest
some future research topics in Section V.

II. RELATED WORK

A. Decomposition-based MOEAs

In 2007, Zhang and Li proposed MOEA/D [2], the first
decomposition-based MOEA. MOEA/D convert an MOP
into a set of scalar optimization problems. For this reason,
MOEA/D can maintain a strong search ability when handling
MOPs with many objectives (i.e., many-objective optimization
problems). In addition, MOEA/D is capable of obtaining a
uniformly distributed solution set if the given weight vectors
uniformly intersect with the Pareto front. Several efficient
methods such as MOEA/D-AWA [12] are proposed for the
adaptive adjustment of weight vectors.

B. MOEA/D variants based on the sub-population framework

Although MOEA/D shows promising performance on vari-
ous types of MOPs, it is not suitable for solving MMOPs as
reported in [8]. The main reason is that only one solution
is assigned to each weight vector which guides a search
direction to a Pareto optimal solution on the Pareto front. Thus,
MOEA/D cannot preserve multiple equivalent solutions, i.e.,
is unable to solve MMOPs. A very straightforward remedy
is to assign multiple solutions to each weight vector. In
this way, each weight vector is assigned a sub-population
instead of a single solution. In Fig. 2, each weight vector has
a sub-population containing four solutions. Solutions in the
same sub-population search toward equivalent Pareto optimal
solutions. To our best knowledge, three MOEA/D variants use

this sub-population framework: MOEA/D-AD [8], MOEA/D-
M2M [13], and an algorithm from [14]. MOEA/D-M2M is a
standard MOEA while the other two algorithms are MMEAs.
MOEA/D-M2M lacks a mechanism to preserve equivalent
Pareto optimal solutions, which means that it is not suitable
for solving MMOPs. Here we briefly introduce MOEA/D-AD
and the algorithm from [14].

In MOEA/D-AD, the sub-population size of each weight
vector changes adaptively. The mechanism of MOEA/D-AD
can be briefly described as follows. In each iteration,

1) An offspring y is generated and assigned to the closest
weight vector wi in the objective space. The sub-
population of wi is denoted as Pi

2) The closest L solutions (denoted as Q) to y in the
decision space are selected from the whole population.

3) The offspring y will be added to Pi if one of the
following two conditions is met:
• If Pi ∩ Q 6= ∅, and at least one solution in Pi ∩
Q has the worse scalarizing function value than y.
Solutions worse than y will be removed from Pi

• If Pi ∩Q = ∅.
The niching structure in the decision space is maintained by
the procedures described in step 3). The offspring y only
competes with solutions in the current sub-population that
are its neighbors in the decision space. In this way, the sub-
population of a weight vector can keep multiple equivalent
solutions. Since MOEA/D-AD uses an unbounded population,
the size of the whole population may become very large after
many iterations.

In the algorithm from [14], each weight vector is assigned
k solutions. In this way, a population is separated into k grids,
each of which contains one solution from each weight vector.
For each grid, the fitness of a solution x which is assigned to a
weight vector w is evaluated based on the following equation:

f(x) = w1g(w,x) + w2dmin + w3davg, (2)

where g is an aggregation function, dmin is the minimum
Euclidean distance from x to other solutions assigned to w,
and davg is the average Euclidean distance from x to solutions
assigned to other weight vectors. These three functions are
composed using weights w1, w2 and w3.

III. PROPOSED ALGORITHM

A. Basic ideas
Let us consider solving an MMOP with k equivalent Pareto

subsets. Suppose that a weight vector w intersects with the
Pareto front of the given MMOP at p∗. As shown in Eq.
(3), we can find at most k different Pareto optimal solutions
{x∗1,x∗2 . . .x∗k} in the decision space that are corresponding to
p∗. In addition, the scalarizing function values g (with respect
to w) of these k solutions are also equal to the minimum value
(i.e., 0).

F (x∗1) = F (x∗2) = . . . = F (x∗k) = p∗,

g(w,x∗1) = g(w,x∗2) = . . . = g(w,x∗k) = 0,

s.t. ∀x∗i ,x∗j ,x∗i 6= x∗j if i 6= j.

(3)



According to the above equations, for each weight vector
w, Eq. (4) is a multi-modal single-objective optimization
problem with k global optimal solutions. In this way, the
original MMOP is decomposed into a set of multi-modal
single-objective optimization sub-problems.

min
x
g(w,x). (4)

Any multi-modal single-objective optimization algorithm
can be used to optimize Eq. (4). In our proposed algorithm, we
apply a greedy iterative algorithm to optimize it. The detailed
implementation of the proposed MMEA will be discussed in
the next section.

Our proposed algorithm uses a similar sub-population
framework to the above mentioned algorithms in Section II-B.
In our algorithm, each weight vector has a sub-population
containing the same number of solutions. In real-world ap-
plications, it is challenging to specify the sub-population size
in prior since usually the number of equivalent Pareto subsets
is unknown. In Section IV-B3, we will further examine the
performance of our proposed MMEA with different specifica-
tions of the sub-population size.

B. Implementation

Algorithm 1 shows the framework of our decomposition
based MMEA called MOEA/D-MM (MOEA/D for Multi-
modal Multi-objective optimization). At the beginning, λ =
bN/µc weight vectors are generated with the same method
as MOEA/D. In line 3, µ solutions are randomly assigned
to each weight vector. With this settings, each weight vector
can preserve at most µ equivalent solutions. For convenience,
solutions assigned to wi are denoted as Pi.

In each iteration, every sub-population is updated based on
the (µ + 1) scenario. For a sub-population Pi, an offspring
solution is generated by the procedures described in Algorithm
2. Firstly, we randomly select a solution from Pi as the
first parent. To generate more diverse offspring solutions, the
second parent is randomly selected from the union of neigh-
borhood weight vectors’ sub-populations. Then the generated
offspring is added to Pi. In line 14, a solution is removed from
Pi based on the environmental selection procedure described
in Algorithm 4.

In the environmental selection process, the clearing [15]
method is introduced to create a niching structure in the
decision space. The main idea of clearing is that within a
given clearing radius σ, the best solution takes all resources,
i.e., other solutions will be removed. In MOEA/D-MM, the
clearing radius is estimated using Algorithm 3. Before updat-
ing any sub-population, the clearing radius is set to the average
Euclidean distance from each solution in the whole population
to its L-th nearest neighbor in the decision space. In this paper,
L is set to bN/10c.

Unlike the original clearing method, MOEA/D-MM only
applies the clearing once in order to keep the sub-population
size unchanged. In line 2 of Algorithm 4, a pair of points

Algorithm 1: Proposed MOEA/D-MM
Parameters: N : population size;

µ: sub-population size;
g: scalarizing function;

Output: Found solutions
/* The number of weight vectors */

1 λ = bN/µc;
2 Generate λ weight vectors W = {w1,w2, . . . ,wλ};
3 Randomly generate and assign µ solutions to each

weight vector, i.e., P = {P1, . . . , Pλ} ;
4 Ideal point z = {z1, z2, . . . , zM}T where

zi = minx∈P fi(x);
5 T = bλ/10c;
6 repeat
7 σ = Estimate-Clearing-Radius(P );
8 foreach wi ∈W do

/* Mating */
9 y = Mating(wi);

/* Update the ideal point z */
10 foreach j = 1 . . .M do
11 zj ← min{fj(y), zj};
12 end
13 S = Pi ∪ {y};

/* Environmental selection */
14 Pi = Environmental-Selection(wi, S, σ);
15 end
16 until Termination criteria are met;
17 P ′ ← non-dominated solutions in P ;
18 return P ′;

Algorithm 2: Mating
Parameters: wi: input weight vector;
Output: Generated offspring;

1 W ′ ← T neighborhood weight vectors of wi;
2 B ← the union of sub-populations of weight vectors in

W ′;
3 x1 ← a randomly selected individual from Pi;
4 x2 ← a randomly selected individual from B;
5 return y ← an offspring generated from {x1,x2};

with the smallest distance between them in the current sub-
population are found. If the Euclidean distance between them
in the decision space is smaller than the clearing radius, the
one with the better scalarizing function value will survive.
Otherwise, the solution with the worst scalarizing function
value in the current sub-population is removed.

C. Effectiveness of MOEA/D-MM

In this section, we give some examples to illustrate the
environmental selection mechanism in MOEA/D-MM. Fig. 3
shows a multi-polygon test problem [16] with four equivalent
Pareto subsets. In this test problem, any solution inside the four
hexagons (including solutions on the boundaries) is Pareto op-
timal. We assume that the sub-population size of each weight



Algorithm 3: Estimate-Clearing-Radius
Parameters: P : population;
Output: Clearing radius;
/* Neighborhood size */

1 L = bN/10c;
2 D ← {distance from x to its L-th nearest

neighborhood solution in the decision space|x ∈ P };
3 return σ = D;

Algorithm 4: Environmental-Selection
Parameters: w: weight vector;

S: candidate solutions;
σ: clearing radius;

Output: Surviving solutions;
/* scalarizing function value */

1 G = {g(w,x)|x ∈ S};
2 xi,xj ← the closest pair of points in S;
3 if d(xi,xj) < σ then

/* Clearing in decision space */
4 x← the solution with the worst G value in

{xi,xj};
5 else

/* Greedy strategy */
6 x← the solution with the worst G value in S;
7 end
8 S ← S\{x};
9 return S;

vector for MOEA/D-MM is µ = 4. For clarity, we focus on
the sub-population of the weight vector w whose scalarizing
function value is minimized at the center of each hexagon.
Therefore, solutions in this sub-population are searching to-
ward the four equivalent Pareto optimal solutions located at
the centers of the hexagons. In each generation, an offspring is
generated and added to the sub-population of w, and a solution
in this sub-population is removed. In each figure in Fig. 3,
one of the five solutions (denoted by (A,B,C,D,E)) will
be removed by the environmental selection mechanism. The
dashed circle(s) in each figure represent the clearing radius.

In Fig. 3 (a), the distance between solutions A and B is
smaller than the clearing radius σ. Therefore, A is removed
since it is worse than B. In some cases, the clearing does
not remove any solution since all solutions in the current sub-
population are not close to each other. Then the environmental
selection is based on the greedy removal strategy, i.e., remove
the worst solution in the current sub-population. For example,
in Fig. 3 (b), solution C is removed. However, the greedy
removal strategy cannot always make the best decision. In Fig.
3 (c), solutions D and E are searching toward the same Pareto
optimal solution in the right bottom hexagon. Although one
of them is expected to be removed, the clearing mechanism
does not work because the distance between solutions D
and E is larger than σ. As opposed to our expectation, a

potentially good solution C is removed. Although the greedy
strategy may make some mistakes, the clearing method can
recover from the situation that several solutions in the same
sub-population converge to the same Pareto optimal solution.
After a number of iterations, the distance between solutions
D and E will eventually become smaller than σ, then one
of them will be removed. In Fig. 3 (d), solution D will be
removed by the clearing mechanism. Notice that solution C
is Fig. 3 (d) is a newly generated solution. With the clearing
mechanism and the greedy removal strategy, MOEA/D-MM
can efficiently preserve equivalent Pareto optimal solutions in
sub-populations.

IV. EXPERIMENTAL STUDIES

A. Experimental settings

1) Test problems: The following four MMOPs are used
to benchmark the performance of MMEAs: the SYM-PART
problems [17], the SSUF1 and SUF3 test problems [4] and
the multi-polygon test problems [16]. Similar to [11], we
use the multi-polygon test problems to test the scalability of
MOEA/D-MM regarding the dimension of the decision space.
Parameters of the selected test problems are listed in Table
I. In this table, xi denotes the ith decision variable, and the
dimension of the objective space and the decision space of
each test problem are denoted by M and D, respectively. For
the SYM-PART test problem, the length of each Pareto subset
is 2a, and the vertical and horizontal distances between the
centers of two adjacent Pareto subsets are specified by b and
c, respectively.

2) Performance indicators: In our experiments, we use
the modified inverted generational distance (IGD+) [18] and
the IGDX [19] indicators for performance comparison. These
two indicators are used to assess the quality of the obtained
solution set in the objective and decision space, respectively.
The IGD+ indicator improves the original IGD [20] indicator
by using a special distance function. In contrast to the original
IGD indicator, the IGD+ indicator is weakly Pareto compliant.
Formally, given a reference point set P in the objective space,
the IGD+ value of a set A can be calculated using Eq. (5).

d+(z,a) =

√√√√ m∑
i=1

(max{ai − zi, 0})2,

IGD+(A) =
1

|P |
∑
p∈P

min{d+(p,a)|∀a ∈ A}.
(5)

The IGDX value of a set A for a reference point set S in
the decision space is given by Eq. (6).

IGDX(A) =
1

|S|
∑
x∈S

min{d(x,a)|∀a ∈ A}, (6)

where d is the Euclidean distance function.
For the IGDX indicator, the reference point set S is gener-

ated by uniformly sampling 10,000 points on the Pareto sets
of each test problem. Then, the image of S in the objective
space (i.e., P ) is used to calculate the IGD+ indicator.



(a) A is removed. (b) C is removed.

(c) C is removed. (d) D is removed.

Fig. 3. Illustration of the effect of the environmental selection mechanism of MOEA/D-MM on multi-polygon test problem.

TABLE I. PARAMETER SETTINGS FOR SELECTED TEST PROBLEMS.

Parameters

Problems M D Search Space Special Parameters Number of Pareto subsets

SYM-PART 2 2 xi ∈ [−100, 100]2 a = 2, b = 10, c = 10 9
SSUF1 2 2 x1 ∈ [1, 3] and x2 ∈ [−1, 1] - 2
SUF3 2 2 x1 ∈ [0, 1] and x2 ∈ [1, 2] - 2

Multi-polygon 6 {2, 4, 6, 8, 10} xi ∈ [−100, 100]D centers: (0, 0), (0, 5), (5, 0), (5, 5)
polygon radius = 1 4

3) Selected algorithms: To verify the effectiveness of
MOEA/D-MM on solving MMOPs, we compare its per-
formance with the original MOEA/D with Tchebycheff
and PBI scalarizing functions as well as three recently-
proposed MMEAs: MOEA/D-AD [8], DNEA [9] and
MO Ring PSO SCD [10]. All algorithms are implemented
on the PlatEMO [21] platform. Parameters for each algorithm
are set to the suggested values in the original paper. In our
experiments, each algorithm is evaluated with population size
300 and 100, 000 evaluations. All algorithms are examined
on each test problem for 31 times in order to obtain reliable
comparison results. For each algorithm on each test problem,
a single run with the median HV over the 31 runs is selected
for visualization.

B. Experimental results

1) Comparison with MOEA/D: In this section, we compare
the performance of MOEA/D-MM and MOEA/D on the SUF3
test problem. Both of them use the Tchebycheff scalarizing

function. In Fig. 4, most solutions obtained by MOEA/D are
located in one of the two Pareto subsets. However, MOEA/D-
MM successfully locates all Pareto subsets. The simulation re-
sults clearly show that MOEA/D-MM can effectively preserve
equivalent Pareto optimal solutions with the sub-population
framework.

2) Benchmark results on MMOPs: In this section we
specify the sub-population size as 4 in MOEA/D-MM. This
specification is further discussed in the next section.

Figs. 5 and 6 visualize the non-dominated solutions in the fi-
nal population of MOEA/D-MM with Tchebycheff (MOEA/D-
MM-TCH) and PBI (MOEA/D-MM-PBI) scalarizing func-
tions in the decision space on each test problem, respectively.
The black lines in Figs. 5 (a)-(c) and Figs. 6 (a)-(c) represent
the Pareto set of the corresponding test problem. In Figs. 5
(d) and 6 (d), the four hexagons are equivalent Pareto subsets.
From the visualization results, we can see that MOEA/D-MM
is able to obtain solution sets with very good coverage on all
Pareto subsets.



(a) MOEA/D (b) MOEA/D-MM

Fig. 4. Comparison of MOEA/D-MM and MOEA/D on the
SUF3 test problem. In each figure, the thin lines denote the
equivalent Pareto subsets, and the dark circles represent the
obtained solutions.

Tables II and III present the numerical comparison re-
sults among the seven algorithms. In each table, we use the
Wilconxon rank-sum test with p < 0.05 to compare each
algorithm with MOEA/D-MM-TCH. The symbols +, ≈ and −
indicate that the corresponding algorithm is significantly better
than, no significant difference from, and significantly worse
than the performance of MOEA/D-MM-TCH, respectively.
Best results in each table are highlighted.

As shown in Table II, MOEA/D-MM-TCH has the best
performance among the tested algorithms regarding the IGDX
indicator, especially on the multi-polygon test problems with
higher dimensional decision spaces, e.g. D = 4, 6, 8, 10. No-
tice that MOEA/D-MM and MOEA/D with the PBI function
perform worse than the Tchebycheff function almost on all
test problems. Numerical results indicate that the Tchebycheff
function can obtain more uniform solutions than the PBI
function on selected test problems. The main reason is that
these four test problems are all convex test problems. The
PBI scalarizing function does not work well on such kind
of problems. In particular, MO Ring PSO SCD performs
the best on the SUF3, SSUF1 test problems and DNEA
outperforms others on the SYM-PART test problem.

Table III shows the average IGD+ indicator value of each
algorithm on each test problem. As observed in the literature
[4] [8], the IGD values of MMEAs are usually worse than
MOEAs. This is because equivalent solutions are the same in
the objective space, which means that they do not contribute to
the IGD indicator. Since IGD+ is similar to IGD, MMEAs are
expected to have worse IGD+ indicator values than MOEAs.
Among all algorithms, MOEA/D with the Tchebycheff func-
tion achieves the best performance with respect to the IGD+

indicator. Among tested MMEAs, MO Ring PSO SCD and
DNEA have the best performance on MMOPs with the 2-
dimensional decision space while MOEA/D-MM-TCH outper-
forms other MMEAs with higher dimensional decision spaces
in terms of the IGD+ indicator.

3) Influence of sub-population size: In this section, we
investigate the influence of the sub-population size on the
performance of MOEA/D-MM. In MOEA/D-MM, the sub-
population size determines the maximum number of equivalent

solutions that a weight vector can preserve. Suppose we are
handling an MMOP with k equivalent Pareto subsets, and
the sub-population size is µ. Since the population size is N ,
the number of weight vectors is bN/µc. When µ = k, all
equivalent solutions can be covered. When µ < k, each weight
vector can only preserve at most µ equivalent solutions. In this
case, the decision maker has less choices when selecting a final
solution. However, MOEA/D-MM may have a better search
ability in the objective space since more weight vectors are
used. When µ > k, the performance of MOEA/D-MM will be
deteriorated mainly due to the following two reasons. Firstly,
the maximum number of equivalent solutions in each sub-
population is not changed, which means that some solutions
in the sub-population of each weight vector may have no
contribution to the quality of the solution set. Secondly, a
larger sub-population size means that less weight vectors are
used, which will also reduce the search ability.

Fig. 7 shows the average IGDX and IGD+ indicator values
obtained by MOEA/D-MM-TCH on the multi-polygon test
problems with four equivalent Pareto subsets. Five specifi-
cations of µ (µ = 2, 3, 4, 5, 6) are examined for the multi-
polygon test problems in five decision spaces (D-dimensional
decision space for D = 2, 4, 6, 8, 10). In Fig. 8, we show the
final populations of MOEA/D-MM-TCH on the polygon test
problem with two-dimensional decision space for two settings
of µ: µ = 2 and µ = 6. From Fig. 7 (a), when µ < 4,
IGDX values do not change too much. Because the IGDX
indicator only measures the coverage of the Pareto set instead
of the number of equivalent solutions. As shown in Fig. 8
(a), when µ = 2, although a weight vector can only preserve
two equivalent solutions, the coverage of Pareto subsets are
almost the same as Fig. 5 (d). This is because the number
of weight vectors is two times as large as in the case of
µ = 4. According to Fig. 7 (b), when µ > 4, the performance
of the algorithm degrades in terms of the IGDX and IGD+

indicators. In Fig. 8 (b), we can also observe that compared to
µ = 2 and µ = 4, fewer non-dominated solutions are obtained
when µ = 6 although all Pareto subsets are covered. The
experimental results indicate that a smaller sub-population size
is preferred in MOEA/D-MM.

V. CONCLUDING REMARKS

In this paper, we proposed MOEA/D-MM, a simple yet
efficient multi-modal multi-objective optimization algorithm
based on MOEA/D. We introduce a clearing mechanism and
a greedy removal strategy to MOEA/D with the sub-population
framework. The proposed algorithm shows promising per-
formance in comparison with recently-proposed MMEAs on
various MMOPs, especially on large-scale test problems.

Several interesting research topics are left for future work.
For example, a dynamic sub-population size adjustment strat-
egy is needed for the handling of real-world optimization
problems without knowledge about the number of Pareto sets.
The development of new test problems and new performance
indicators in the decision space is also an interesting research
topic in the filed of multi-modal multi-objective optimization.



(a) SYM-PART. (b) SSUF1. (c) SUF3. (d) Multi-polygon(D = 2).

Fig. 5. Visualization of non-dominated solutions in the final population of MOEA/D-MM with the Tchebycheff function in
the decision space on each test problem.

(a) SYM-PART. (b) SSUF1. (c) SUF3. (d) Multi-polygon(D = 2).

Fig. 6. Visualization of non-dominated solutions in the final population obtained by MOEA/D-MM with the PBI function in
the decision space on each test problem.

TABLE II. AVERAGE IGDX VALUES OVER 31 RUNS. BEST RESULTS ARE HIGHLIGHTED.

MOEA/D-MM MOEA/D

Problems M D TCH PBI MO Ring PSO SCD MOEA/D-AD DNEA TCH PBI

SUF3 2 2 1.2359e-2 2.0712e-2 − 7.3534e-3 + 1.2853e-2 ≈ 1.2541e-2 ≈ 2.1853e-1 − 2.5902e-1 −
SSUF1 2 2 4.2628e-2 6.0374e-2 − 3.3075e-2 + 4.8514e-2 − 3.5394e-2 + 1.3177e-1 − 1.4571e-1 −

SYM-PART 2 2 1.5503e-1 1.9154e-1 − 1.1212e-1 + 5.9621e-2 + 5.7180e-1 − 1.8686e+0 − 9.7947e-1 −

Multi-polygon

6 2 1.0902e-1 2.1422e-1 − 1.1658e-1 − 1.7744e-1 − 1.0430e-1 + 1.7188e-1 − 2.4330e-1 −
6 4 2.4670e-1 3.7535e-1 − 3.8229e-1 − 2.9541e-1 − 3.7152e+0 − 4.4101e+0 − 5.2624e+0 −
6 6 4.5473e-1 5.9612e-1 − 1.0294e+0 − 5.0676e-1 − 6.5989e+0 − 6.4156e+0 − 7.0966e+0 −
6 8 7.3573e-1 8.3894e-1 − 2.8267e+0 − 8.9567e-1 − 7.8238e+0 − 7.5401e+0 − 8.3309e+0 −
6 10 1.1849e+0 1.1283e+0 ≈ 6.4177e+0 − 2.5597e+0 − 8.9284e+0 − 8.5160e+0 − 9.4045e+0 −
6 100 3.0347e+1 3.2792e+1 − 2.9945e+2 − 8.0263e+1 − 2.9788e+1 + 3.0377e+1 − 3.1208e+1 ≈

+/− / ≈ Baseline 0/8/1 3/6/0 1/7/1 3/5/1 0/9/0 0/8/1

(a) IGDX versus µ. (b) IGD+ versus µ.

Fig. 7. The average of IGDX and IGD+ indicator values with
respect to sub-population size µ.

(a) µ = 2 (b) µ = 6

Fig. 8. The final populations of MOEA/D-MM-TCH with two
settings of µ: µ = 2 and µ = 6.



TABLE III. AVERAGE IGD+ VALUES OVER 31 RUNS. BEST RESULTS ARE HIGHLIGHTED.

MOEA/D-MM MOEA/D

Problems M D TCH PBI MO Ring PSO SCD MOEA/D-AD DNEA TCH PBI

SUF3 2 2 4.1228e-3 6.5426e-3 − 2.8444e-3 + 5.0655e-3 − 1.8247e-3 + 2.3882e-3 + 8.4060e-3 ≈
SSUF1 2 2 2.4583e-3 3.2304e-3 − 1.6090e-3 + 2.9579e-3 − 1.4054e-3 + 8.5769e-4 + 1.0541e-3 +

SYM-PART 2 2 4.2798e-2 8.9186e-2 − 2.3064e-2 + 1.7412e-2 + 1.0714e-2 + 1.3249e-2 + 7.3563e-2 −

Multi-polygon

6 2 9.0390e-2 1.8361e-1 − 6.6848e-2 + 1.6209e-1 − 5.0966e-2 + 7.1261e-2 + 1.3933e-1 −
6 4 1.3741e-1 2.6096e-1 − 1.9312e-1 − 2.2258e-1 − 1.4665e-1 − 1.1396e-1 + 2.5126e-1 −
6 6 2.2770e-1 3.9712e-1 − 6.0390e-1 − 3.1566e-1 − 3.0919e-1 − 1.6600e-1 + 4.7236e-1 −
6 8 3.5604e-1 5.7543e-1 − 1.6849e+0 − 4.8743e-1 − 4.7776e-1 − 2.3664e-1 + 6.6033e-1 −
6 10 5.0716e-1 7.2597e-1 − 4.1616e+0 − 7.1944e-1 − 6.3330e-1 − 3.0650e-1 + 8.2931e-1 −
6 100 1.7306e+1 1.4175e+1 + 7.0584e+2 − 1.6153e+2 − 8.1872e+0 + 3.5356e+0 + 4.1586e+0 +

+/− / ≈ Baseline 1/8/0 4/5/0 1/8/0 5/4/0 9/0/0 2/6/1
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