

Self-tuning Co-Operation of Biology-Inspired and

Evolutionary Algorithms for Real-World Single

Objective Constrained Optimization

Shakhnaz Akhmedova

Dept. of Higher Mathematics

Reshetnev Siberian State University of Science and Technology

Krasnoyarsk, Russian Fedeatiom

shahnaz@inbox.ru

Vladimir Stanovov

Dept. of Higher Mathematics

Reshetnev Siberian State University of Science and Technology

Krasnoyarsk, Russian Federation

vladimirstanovov@yandex.ru

Abstract—Solving single objective constrained real-parameter

optimization problems via population-based algorithms has

attracted much attention. In this paper, a new self-tuning meta-

heuristic approach called Fuzzy Controlled Cooperative

Heterogeneous Algorithm (FCHA), which was proposed for

constrained optimization, is introduced. The developed approach

combines competition and cooperation between biology-inspired

and evolutionary algorithms, regulated by fuzzy controller. It

should be noted, that the epsilon-constrained method is utilized

to handle the constraints for the solved optimization problems.

The performance of the proposed FCHA algorithm is evaluated

on 57 real-world constrained problems submitted for CEC 2020

special session. Its workability and usefulness are demonstrated;

also ways of algorithm improvement are discussed.

Keywords—constrained optimization, biology-inspired

algorithms, evolutionary algorithms, self-tuning, fuzzy controller

I. INTRODUCTION

Many problems in science and engineering can be
formulated as constrained optimization problems [1], which
can be linear or non-linear, multimodal or rotated. The single-
objective constrained optimization problem can be described as
follows:

f(x)→opt,

{

() ̅̅̅̅

 () ̅̅ ̅̅ ̅̅ ̅

where x = (x1 … xn), n is the number of space dimensions for
a given problem, r is the number of inequality constraints and,
finally, m is the total number of equality and inequality
constraints, which define the feasible region for a problem in
hand.

 Evolutionary as well as biology-inspired algorithms have
been successful for a wide range of constrained optimization
problems, examples can be found in [2] or [3]. In the last years
various modifications of algorithms such as Differential
Evolution (DE) [4] or Particle Swarm Optimization (PSO) [5],
for instance, have arisen as attractive optimization techniques
due to their competitive results.

Significant effort in the area of evolutionary computation
and swarm intelligence has been made to find a balance
between minimization of the objective function and finding
feasible solutions. Early works on constrained optimization

utilized penalty factors for every constraint, resulting in a
group of methods, such as static penalty [6], with fixed factors,
dynamic penalty [7], with factors changing as the optimization
process proceeds, death penalty [8], where the infeasible
solutions are eliminated and adaptive penalty approaches, with
factors depending on the search successfulness, as well as self-
adaptive penalty approaches [9].

Another group of methods focuses on the superiority of
feasible solutions for example Deb’s rule described in [10],
stochastic ranking [11] and epsilon-constraint (EC) technique
[12]. In this study a new modification of the EC method,
similar to the one introduced in [13], is used.

Besides, mentioned constraint handling technique is
applied to a new cooperative population-based algorithm with
fuzzy controller as the self-tuning mechanism, called Fuzzy
Controlled Cooperative Heterogeneous Algorithm (FCHA). Its
basic idea is adopted from the meta-heuristic approach Co-
Operation of Biology Related Algorithms or shortly COBRA
[14].

Generally, the FCHA approach consists of parallel work of
several evolutionary and biology-inspired algorithms,
therefore, population-based algorithms, which compete and
cooperate with each other. Their population sizes are
automatically determined by the fuzzy controller and change
during the optimization process.

Efficiency of the FCHA was examined on test problems
taken from the CEC 2020 competition on real-world single
objective constrained optimization [15]. Experimental results
demonstrated the workability and usefulness of the proposed
FCHA approach.

Thus, this paper has the following structure. In Section II,
the developed algorithm is described. In Section III, the fuzzy
controller is introduced. Experimental setup and numerical
results are presented in Section IV. Finally, in Section V, the
main conclusions and several future works are summarized.

II. COOPERATIVE ALGORITHM FOR CONSTRAINED

OPTIMIZATION

As was already mentioned, the proposed FCHA approach is
based on the idea introduced in [14], namely it is based on the
cooperative work of five biology-inspired and evolutionary
algorithms (in other words components). In this study the
following components were used: SHADE algorithm [16] with

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

two different mutation strategies (DE/rand/1 and DE/current-
to-best/1) [17], Particle Swarm Optimization (PSO) [5],
Cuckoo Search Algorithm (CSA) [18] and Bat Algorithm (BA)
[19]. All listed algorithms were chosen due to their high
efficiency. Moreover, mentioned evolutionary as well as
biology-inspired algorithms have similar schemes, so it was
easier to implement them together.

The originally proposed approach consists in generating
one population for each component-algorithm, therefore five
populations, which are then executed in parallel, cooperate
with each other. The FCHA algorithm is a self-tuning meta-
heuristic, so there is no need to choose the population size for
each component-algorithm.

The number of individuals in the population of each
algorithm can increase or decrease depending on the fitness
values: if the overall fitness value was not improved during a
given number of iterations, then the size of each population
increased, and vice versa.

There is also one more rule for population size adjustment,
whereby a population can “grow” by accepting individuals
removed from other populations. This happens if the
corresponding component-algorithm has the highest success
rate on a given step. Therefore in this study the “winner
algorithm” is determined as an algorithm whose population has
the best currently found fitness value. Then fuzzy controller
makes decision about the population size changes for each
component-algorithm.

It should be noted that the procedure of comparison of
individuals is changed due to the necessity to take into account
their feasibility. Thus, the individual x is considered to be
better than the individual y (here it is denoted as []x y) in

the following cases:

() (), (), ()

[] () (), () ()

() (),otherwise

f x f y CV x CV y

x y f x f y CV x CV y

CV x CV y

Here f(x) and f(y) are function values, CV(x) and CV(y) are
two constraint violations, calculated according to the formula
given in [15]. This means that the solutions with small
violations (less than ε) are considered as feasible and ordered
according to their fitness function values. In the case of ε
CV(x) always precedes f(x).

In this study ε was calculated on each iteration in the
following way:

θ = θp×NP,

max

1 ,

0,otherwise

cp

c

NFE
CV NFE NFE

t NFE

where t is the iteration number, NFE is the current number of
function evaluations, NFEmax is the total available resource,
NFEc is the cut-off level set to .8×NFEmax θp is the control
parameter from [;] set to .8 θ is the index of an individual
in an array sorted by constraint violation, thus, CVθ is the
constraint violation of the θ-th individual, NP is the population

size of the component, cp is another control parameter, which
is equal to 3.

Also populations interact with each other. The main goal of
their communication is to prevent their preliminary
convergence to their own local optimum. “Communication”
was determined in the following way: populations exchange
individuals in such a way that a part of the worst individuals of
each population is replaced by the best individuals of other
populations. Thus, the group performance of all algorithms can
be improved.

III. FUZZY CONTROLLER DESIGN

The main idea of using a fuzzy controller is to implement a
flexible tuning method to change the population sizes during
the optimization process. Fuzzy controllers are well known for
their ability to generate real-valued outputs using special
fuzzification, inference and defuzzification schemes.

In this work success rates were used as inputs and
population size changes as outputs for the fuzzy controller. To
be more specific, the fuzzy controller had 6 input variables,
including 5 success rates, one for each component, and an
overall success rate, and 5 output variables, i.e. the number of
solutions to be added to or removed from each component.

The success rate for all input variables except for the last
one is evaluated as the best fitness value of its population. The
last input variable was determined as the ratio of the number of
iterations, during which the best found fitness value was
improved, to the given number of iterations, which was a
constant period. Thus, the process of population growth was
automated by the fuzzy controller.

The Mamdani-type fuzzy inference was used to obtain the
output values, and the rules had the following form:

 Rq: IF u1 is Aq1 … up is Aqn THEN v1 is Bq1 … vk is Bqk

where Rq is the q-th fuzzy rule, u = (u1 … up) is the set of
controller’s input values in p-dimensional space (in this study p
is equal to 6), v = (v1 … vk) is the set of controller’s outputs (k
is set to 5), Aqi is the fuzzy set for the i-th input variable, Bqj is
the fuzzy set for the j-th output variable.

 The rule base contained 18 fuzzy rules, which had the
following structure: each 3 rules described the case when one
of the components gave better results than the others (as there
were 5 components, 15 rules were established); the last 3 rules
used the overall success of all components (variable 6) to add
or remove solutions from all components, i.e. to regulate the
computational resources. Example of the rule base is
demonstrated in Table I.

TABLE I. PART OF THE RULE BASE

№

1 IF
u1 is

A3

u2-u5

is A4
u6 is DC THEN

v1 is

B3

v2-v5 is

B1

2 IF
u1 is
A2

u2-u5
is A4

u6 is DC THEN
v2 is
B3

v2-v5 is
B1

3 IF
u1 is

A1

u2-u5

is A4
u6 is DC THEN

v3 is

B3

v2-v5 is

B1

… …

16 IF u1-u5 is DC u6 is A1 THEN v1 is B1

17 IF u1-u5 is DC u6 is A2 THEN v1 is B2

18 IF u1-u5 is DC u6 is A3 THEN v1 is B3

The input variables were always in the range [0, 1], and
fixed fuzzy terms of triangular shape were used for this case. In
addition to the three classical fuzzy sets A1, A2 and A3, the
“Don’t Care” (DC) condition and the A4 term with the meaning
“larger than ” (opposite to A1) were also used to decrease the
number of rules and make them simpler.

FCHA Algoritm

begin

Fix minimal population size (min_size) of populations all

together;

Fix maximal population size (max_size) of populations all

together;

Randomly initialize of five populations P, D1, D2, C, B;

Initialize parameters of all component-algorithms;

Find best solution and its fitness for each component;

 Find global best solution and its fitness value GBest;

 while (NFE < NFEmax)

 Execute PSO for P;

 Execute SHADE with rand/1 for D1;

 Execute SHADE with current-to-best/1 for D2;

 Execute CSA for population C;

 Execute BA for population B;

 Update best solution and its fitness for each

component;

Update global best solution and its fitness value

GBest;

if (Gen = 7k, k=1,2,…)

Esti ate eac co ponent’s success ate;

Estimate the last input variable for controller;

Gene ate cont olle ’s outputs;

Change population sizes and therefore

populations;

Migration of the best individuals of all

populations;

end if

if (Gen = 10k, k=1,2,…)

Migration of the best individuals of all

populations;

end if

 end while

 Post-processing of the obtained results;

end

Fig. 1. Pseudo-code of the Fuzzy Controlled Cooperative Heterogeneous
Algorithm (FCHA).

 For the outputs, three fuzzy terms of triangular shape were
used. The output fuzzy terms were symmetrical, and the
positions and shapes were determined by two values, encoding
the left and right position of the central term, as well as the
middle position of the side terms in one value, and the left and
right positions of the side term in another value. These two
values were optimized using the PSO algorithm.

 The defuzzification procedure was performed by
calculating the centre of mass of the shape received by fuzzy

inference. FCHA algorithm’s pseudo-code is demonstrated in
Fig. 1.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The FCHA algorithm’s performance was evaluated on the
CEC 2020 Competition on Real-World Single Objective
Constrained Optimization [15]. The benchmark contains 57
real-world constrained optimization problems with various
features such as large number of local optima, asymmetry, non-
separability and so on. Also all problems have different
dimensions, which vary from 2 to 158, and contain a wide
variety of constraints.

As was mentioned, the FCHA approach is based on the
cooperative work of five algorithms, which have their own
parameters. Therefore, the initial values of the necessary
parameters for all component-algorithms were taken from
original papers dedicated to them and proposed by authors.

Parameters of the fuzzy controllers for the FCHA approach
were found by PSO as described in [20], namely the following
parameters were obtained: [–3; –2; 0; 10]. The last input
variable for fuzzy controller was determined as the ratio of the
number of iterations, during which the currently best found
fitness value was improved, to the given number of iterations,
which was set to 7, according to the previously conducted
experiments. Competition and communication between
components were conducted each time after 10 iterations.

To check the efficiency of the proposed algorithm, the
maximum number of function evaluations varied depending on
the problem in hand, namely the number of variables. To be
more specific, the maximum number of function evaluations
was set according to the CEC’2 2 competition’s rule. Also
there were 25 program runs for each benchmark.

For the cooperative meta-heuristic FCHA the minimum
population size for each component was set to 0, but if the total
sum of population sizes was equal to 0, then all population
sizes increased to 10. Additionally, the maximum total sum of
population sizes was set to 300.

B. Numerical Results

Currently best found value of the objective function f(x)
and corresponding constraint violation CV(x) were recorded for
the achieved best solution x after 0.1×NFEmax, 0.2×NFEmax,
0.3×NFEmax, … .9×NFEmax and NFEmax function evaluations
for each problem. To calculate the CV(x) for solution x the
formula from [15] was used.

Also, the feasibility rate (FR) and a vector c for each
problem over 25 trials were calculated. Feasibility rate was
defined as the ratio of the number of program runs, where at
least one feasible solution was found under NFEmax function
evaluations, to the maximum number of trials (25). The vector
c is the vector of number of violated constraints at the median
solution that have three elements indicate the number of
violations (including inequality and equality constraints) by
more than 1.0, in the range [0.01, 1.0] and less than 0.01
respectively.

The simulation results obtained for the different
optimization problems are demonstrated in Tables II-X.

TABLE II. OUTCOMES FOR PROBLEMS RC01-RC07

 RC01 RC02 RC03 RC04 RC05 RC06 RC07

Best
f -1.36 42E+2

-

22E+3
-1.01

-

39E+2
1.00 0.49

v 0 0.72 0.39 0 0 78.87 72.24

Median
f 1.78 70E+2

-

20E+3
-1.00

-

20E+2
1.00 0.49

v 20E+5 65E+4 486.19 0 93.09 82.87 102.76

Mean
f 60.02 11E+4

-
18E+3

-0.80
-

22E+2
1.00 0.59

v 14E+3 57E+4 393.69 0.12 73.34 90.93 110.19

Worst
f 334.22 26E+5

-
37E+2

-0.32
-

736.48
1.00 1.03

v 20E+5 10E+5 563.72 0.69 199.86 262.24 191.44

STD
f 93.75 50E+3 44E+2 0.26 967.65 0 0.21

v 87E+3 32E+3 181.03 0.23 60.05 35.54 26.22

FR 12 0 0 72 36 0 0

c 5;2;1 6;0;3 3;1;10 0;0;5 1;0;5
2;10;2

0

10;9;1

9

TABLE III. OUTCOMES FOR PROBLEMS RC08-RC14

 RC08 RC09 RC10 RC11 RC12 RC13 RC14

Best
f -1.00 0 0 -13 -0.07 0 0

v 0 0 0 0 0 0 0

Median
f -1 1.11 0.11 109.80 0 0 53E+3

v 0 0 0 0.55 0 0 0

Mean
f -0.99 1.17 0.30 100.22 0.24 10E+3 47E+3

v 0 0 0 0.73 0 0 0.59

Worst
f -0.83 2.63 0.90 179.87 3.15 27E+3 17E+3

v 0 0 0 2.35 0 0 11.40

STD
f 0.03 0.96 0.30 41.69 0.83 13E+3 41E+3

v 0 0 0 0.75 0 0 2.30

FR 100 100 100 16 100 100 100

c 0;0;2 0;0;2 0;0;3 0;5;3 0;0;9 0;0;3 0;0;10

TABLE IV. OUTCOMES FOR PROBLEMS RC15-RC21

 RC15 RC16 RC17 RC18 RC19 RC20 RC21

Best
f 0

-

1E+13
0 0 0 -26.27 0

v 0 0 0 0 0 0 0

Median
f 29E+2 -5.91 0 0 0 0 0

v 0 0 0 0 0 0 0

Mean
f 20E+2

-

5E+11
0.001 16.78 0.06 -2.97 0

v 0 0.09 0 0 0 0 0

Worst
f 30E+2 3.15 0.01 92.16 1.24 0 0

v 0 1.24 0 0 0 0 0

STD
f 14E+2 2E+12 0.002 28.78 0.25 7.99 0

v 0 0.31 0 0 0 0 0

FR 100 96 100 100 100 100 100

c 0;0;11 0,0;15 0;0;4 0;0;4 0;0;5 0;0;3 0;0;8

TABLE V. OUTCOMES FOR PROBLEMS RC22-RC28

 RC22 RC23 RC24 RC25 RC26 RC27 RC28

Best f 0 0 0
-

59E+9
0 -40.68 71E+2

 RC22 RC23 RC24 RC25 RC26 RC27 RC28

v 0 0 0 0 10.29 0 0

Median
f 0 5.89 0

-

32E+3
16.67 0 12E+3

v 0 0 0 0 41.95 0 0

Mean
f 0.21 9.26 0.31

-

26E+9
25.53 0.96 12E+3

v 0 0.003 0 0.002 44.26 0 0

Worst
f 0.54 19.65 2.59 71E+2 63.38 53.81 15E+3

v 0 0.01 0 0.04 91.62 0 0

STD
f 0.26 8.27 0.84 12+E9 19.42 15.72 24E+2

v 0 0.005 0 0.007 24.21 0 0

FR 100 72 100 100 0 100 100

c 0;0;11 0;0;11 0;0;7 0;0;7 5;1;80 0;0;3 0;0;9

TABLE VI. OUTCOMES FOR PROBLEMS RC29-RC35

 RC29 RC30 RC31 RC32 RC33 RC34 RC35

Best
f 0 0 0

-
32E+3

0 0.17
-

738.79

v 0 0 0 0 0 80.64 31E+2

Median
f 13E+5 0.0004 0

-

31E+3
0 6.57

-

425.16

v 0 0 0 0 0 134.65 46E+2

Mean
f 12E+5 0.13 0

-

31E+3
0 14.84

-

334.04

v 0 0 0 0 0 131.44 49E+2

Worst
f 30E+5 2.71 0

-

31E+3
0 50.75 159.55

v 0 0 0 0 0 163.53 93E+2

STD
f 12E+5 0.53 0 435.99 0 15.48 287.10

v 0 0 0 0 0 18.67 13E+2

FR 100 100 100 100 100 0 0

c 0;0;1 0;0;8 0;0;2 0;0;6 0;0;30
30;77;

1
72;75;

1

TABLE VII. OUTCOMES FOR PROBLEMS RC36-RC42

 RC36 RC37 RC38 RC39 RC40 RC41 RC42

Best
f

-

359.53
-48.79 -31.91 -48.27 19.55 0.07

-

25E+2

v 26E+2 116.16 127.75 89.91 214.21 643.58 52E+2

Median
f

-

217.37
-28.80 -30.14 -46.37 636.41 1.09

-

20E+2

v 50E+2 187.58 176.93 196.12 645.91 21E+2 64E+2

Mean
f

-

171.14
-29.49 -26.27 -40.26 714.65 23E+2

-

20E+2

v 50E+2 199.19 180.46 185.73 664.88 17E+2 68E+2

Worst
f 221.30 -8.48 -11.62 0.23 16E+2 57E+3

-
15E+2

v 82E+2 322.03 267.50 258.27 10E+2 22E+2 99E+2

STD
f 166.18 13.38 6.73 13.11 396.10 11E+3 329.45

v 15E+2 50.31 36.43 38.94 178.23 678.87 11E+2

FR 0 0 0 0 0 0 0

c
74;71;

3

35;79;

2

39;74;

3

51;34;

31

63;13;

0

15;58;

1
73;3;0

TABLE VIII. OUTCOMES FOR PROBLEMS RC43-RC49

 RC43 RC44 RC45 RC46 RC47 RC48 RC49

Best

f
-

18E+2
-

62E+2
0.19 0.12

5.21E-
16

0.11 0.04

v 56E+2 0 0.00
1.61E-

5
0.00 0.00 0.67

 RC43 RC44 RC45 RC46 RC47 RC48 RC49

Median
f

-

16E+2

-

60.E+
2

0.65 0.31 0.28 0.34 0.2

v 73E+2 0 38.28 29.03 1.92 80.53 69.43

Mean
f

-

14E+2

-

60E+2
0.78 0.38 0.30 0.35 0.23

v 71E+2 0 39.04 26.90 25.28 65.12 67.46

Worst
f

-

670.61

-

58E+2
3.64 0.98 0.84 0.89 0.66

v 80E+2 0 90.00 83.88 90.00 97.16 130.43

STD
f 299.06 110.06 0.65 0.22 0.17 0.19 0.12

v 703.81 0 26.00 23.69 29.08 34.64 28.05

FR 0 100 16 20 16 8 0

c 76;0;0 0;0;91 7;1;17 6;6;13 1;0;24
13;2;1

5

15;4;1

1

TABLE IX. OUTCOMES FOR PROBLEMS RC50-RC53

 RC50 RC51 RC52 RC53

Best
f 0.05 24E+2 31E+2 25E+2

v 0.08 0.23 0.01 0.04

Median
f 0.21 34E+2 44E+2 48E+2

v 65.05 1.81 0.12 0.60

Mean
f 0.21 35E+2 47E+2 46E+2

v 66.07 1.69 0.40 1.06

Worst
f 0.48 52E+1 96E+2 58E+2

v 91.56 3.47 5.68 2.36

STD
f 0.12 708.53 14E+2 878.70

v 23.36 0.64 1.09 0.88

FR 0 0 0 0

c 6;6;18 1;3;11 0;2;13 0;3;12

TABLE X. OUTCOMES FOR PROBLEMS RC54-RC57

 RC54 RC55 RC56 RC57

Best
f 18E+2 646.53 18E+2 968.99

v 0.18 0.03 0.11 0.03

Median
f 29E+2 15E+2 37E+2 18E+2

v 1.31 0.09 3.64 0.06

Mean
f 33E+2 23E+2 46E+2 24E+2

v 1.10 0.45 3.99 0.69

Worst
f 58E+2 55E+2 12E+3 88E+2

v 1.94 3.75 9.73 2.51

STD
f 12E+2 15E+2 24E+2 19E+2

v 0.64 0.85 2.44 0.97

FR 0 0 0 0

c 1;1;13 0;2;4 1;4;1 0;2;4

The obtained results were compared with the ones

presented in [15], to be more specific, in [15] results of three
algorithms (IUDE [21], εMAgES [22] and iLSHADEε [23]) are
given. Comparison was conducted in the following way:

 firstly, the feasibility rates FR were compared, namely
algorithm with higher value of FR was considered as
the better one in comparison;

 if algorithms had the same value of FR for a given
problem, then the Student’s t-test with significance
level p = 0.05 was applied to mean values of the
objective function (this test was used due to the fact that

only mean and standard deviation values are known for
mentioned algorithms).

Comparison results are demonstrated in the Table XI. In
this table “better” and “worse” mean that the proposed
approach won and lost respectively compared to a given
algorithm “equal” means that there was no significant
difference between results. Thus, each cell in the Table XI
contains the number of times results, obtained by the proposed
approach FCHA, were better, worse or statistically the same.

TABLE XI. COMPARISON BETWEEN FCHA AND OTHER METHODS

 IUDE εMAgES iLSHADEε

Better 34 28 35

Equal 4 5 2

Worse 19 24 20

Finally, the FCHA algorithm’s complexity was estimated.
The algorithmic complexity is calculated using the benchmark
suite proposed in [15]. Besides, the procedures described in
[15] were adopted to calculate the algorithmic complexity,
namely the following values were calculated:

 the average time required to evaluate all functions for
100000 times (T1);

 the average computation time required by algorithm for
100000 function evaluations for each problem (T2);

 the algorithmic complexity T3 = (T2 – T1) / T1.

TABLE XII. ALGPRITHM’S COMPLEXITY

T1 T2 T3

74.99 107.97 0.44

Thus, it was established that the proposed approach FCHA
is capable to solve complex constrained optimization problems
and outperforms alternative algorithms in most cases, and,
therefore, it can be used instead of them.

V. CONCLUSIONS

In this study a new self-tuning approach called Fuzzy
Controlled Cooperative Heterogeneous Algorithm or FCHA
for solving constrained optimization problems was proposed.
Its basic idea consists in the cooperative work of five
evolutionary and bionic algorithms, whose population sizes are
defined by the fuzzy controller.

The FCHA algorithm’s performance was evaluated on the
57 constrained optimization problems submitted for the CEC
2020 Competition on Real-World Single Objective
Constrained Optimization. Obtained results were compared
with the ones provided by the competition organizers. Also
algorithm’s computational complexity was estimated.

Experimental results confirmed workability and usefulness
of the proposed FCHA approach: it outperformed other
algorithms on most of the problems according to the statistical
test. However, still there were cases when feasible solutions
weren’t found. Thus its ability to find feasible solutions can be
improved. Moreover, the developed FCHA algorithm can be

modified for solving multi-objective constrained optimization
problems.

ACKNOWLEDGMENT

This work was supported by the internal grant of Reshetnev
Siberian State University of science and technology for the
support of young researchers.

REFERENCES

[1] F. Rossi P. van Beek T. Walsh “Chapter – Introduction ”
Foundations of Artificial Intelligence, Handbook of Constraint
Programming, Elsevier, vol. 2, pp. 3–12, 2006.

[2] Z. Michalewicz N. Attia “Evolutionary optimization of constrained
problems ” Proc. of the 3rd Annual Conference on Evolutionary
Programming, pp. 98–108, 1994.

[3] C. Coello Coello “Theoretical and numerical constraint-handling
techniques used with evolutionary algorithms: a survey of the state of
the art ” Computer Methods in Applied Mechanics and Engineering, vol.
191 (11-12), pp. 1245-1287, 2002.

[4] R. Storn K. Price “Differential Evolution – a Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces” Journal of
Global Optimization, vol. 11(4), pp. 341–359, 1997.

[5] J. Kennedy R. Eberhart “Particle Swarm Optimization ” Poceedings of
IEEE International Conference on Neyral networks, pp. 1942–1948
1995.

[6] A. Homaifar C. X. Qi S. H. Lai “Constrained optimization via genetic
algorithms ” SIMULATION vol. 62(4) pp. 242–253 , 1994.

[7] J. A. Joines C. R. Houck “On the use of nonstationary penalty
functions to solve nonlinear constrained optimization problems with
GA’s ” Proc. of the first IEEE Conference on Evolutionary
Computation, IEEE World Congress on Computational Intelligence, vol.
2, pp. 579–584, 1994.

[8] T. Back, F. Homeister, H.-P. Schwefel, “A survey of evolution
strategies ” Proc. of the Fourth International Conference on Genetic
Algorithms, pp. 2–9, 1991.

[9] R. Farmani J. A. Wright “Self-adaptivetness formulation for
constrained optimization ” IEEE Trans. Evolutionary Computation vol.
7, pp. 445–455, 2003.

[10] K. Deb “An efficient constraint handling method for genetic
algorithms ” Computer Methods in Applied Mechanics and Engineering
vol. 186(2), 311–338, 2000.

[11] T. P. Runarsson X. Yao “Stochastic ranking for constrained
evolutionary optimization ” IEEE Transactions on Evolutionary
Computation, vol. 4(3), pp. 284–294, 2000.

[12] T. Takahama S. Sakai “Constrained optimization by the ε constrained
differential evolution with gradient-based mutation and feasible elites ”
IEEE International Conference on Evolutionary Computation, pp. 1–8,
2006.

[13] V. Stanovov Sh. Akhmedova E. Semenkin “Selective pressure in
constrained differential evolution ” Proc. of the 2 9 Genetic and
Evolutionary Computation Conference Companion, pp. 83–84, 2019.

[14] Sh. Akhmedova E. Semenkin “Co-Operation of Biology Related
Algorithms” Proc. of the IEEE Congress on Evolutionary Computation
(CEC 2013), June 20-23, 2013, pp. 2207–2214.

[15] A. Kumar, G. Wu, M. Z. Ali, R. Mallipeddi, P. N. Suganthan, S. Das,
“A test-suite of non-convex constrained optimization problems from the
real-world and some baseline results ” Swarm and Evolutionary
Computation, 100693, 2020.

[16] R. Tanabe A. Fukunaga “Success-History Based Parameter Adaptation
for Differential Evolution ” Proc. of the IEEE Congress on Evolutionary
Computation, pp. 71–78, 2013.

[17] S. Das S. S. Mullick P. N. Suganthan “Recent Advances in
Differential Evolution ‒ an Updated Survey ” Swarm and Evolutionary
Computation vol. 27 pp. ‒3 2 6.

[18] X. S. Yang and S. Deb “Cuckoo Search via Levy flights ” Proc. of the
World Congress on Nature & Biologically Inspired Computing (NaBic
2009), IEEE Publications, USA, pp. 210–214, 2009.

[19] X. S. Yang “A new metaheuristic bat-inspired algorithm ” Proc. of the
Nature Inspired Cooperative Strategies for Optimization (NICSO 2010),
Springer, SCI 284, pp. 65–74, 2010.

[20] Sh. Akhmedova E. Semenkin V. Stanovov S. Vishnevskaya “Fuzzy
logic controller design for tuning the cooperation of biology-inspired
algorithms ” Tan Y. Takagi H. Shi Y. Niu B. (eds.) ICSI 2 7
LNCS vol. 386 Springer 2 7 pp. 269‒276.

[21] A. Trivedi K. Sanyal P. Verma D. Srinivasan “A unified differential
evolution algorithm for constrained optimization problems ” Proc. of the
2 7 IEEE Congress on Evolutionary Computation (CEC) pp. 23 ‒
1238, 2017.

[22] L. Huang W. Zhao B. R. Abidi M. A. Abidi “A Constrained
Optimization Approach for Image Gradient Enhancement ” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 28,
no. 8 pp. 7 7‒ 7 8 2 8.

[23] J. Brest M. S. Maučec B. Bošković “iL-SHADE: Improved L-SHADE
algorithm for single objective real-parameter optimization ” Proc. of the
IEEE Congress on Evolutionary Computation (CEC), pp. 1 88‒ 95
2016.

