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Abstract—Solving single objective constrained real-parameter 

optimization problems via population-based algorithms has 

attracted much attention. In this paper, a new self-tuning meta-

heuristic approach called Fuzzy Controlled Cooperative 

Heterogeneous Algorithm (FCHA), which was proposed for 

constrained optimization, is introduced. The developed approach 

combines competition and cooperation between biology-inspired 

and evolutionary algorithms, regulated by fuzzy controller. It 

should be noted, that the epsilon-constrained method is utilized 

to handle the constraints for the solved optimization problems. 

The performance of the proposed FCHA algorithm is evaluated 

on 57 real-world constrained problems submitted for CEC 2020 

special session. Its workability and usefulness are demonstrated; 

also ways of algorithm improvement are discussed.  

Keywords—constrained optimization, biology-inspired 

algorithms, evolutionary algorithms, self-tuning, fuzzy controller 

I. INTRODUCTION 

Many problems in science and engineering can be 
formulated as constrained optimization problems [1], which 
can be linear or non-linear, multimodal or rotated. The single-
objective constrained optimization problem can be described as 
follows:  

f(x)→opt, 

{
 
 
( )             ̅̅̅̅

  ( )               ̅̅ ̅̅ ̅̅ ̅
 

where x = (x1  …  xn), n is the number of space dimensions for 
a given problem, r is the number of inequality constraints and, 
finally, m is the total number of equality and inequality 
constraints, which define the feasible region for a problem in 
hand. 

 Evolutionary as well as biology-inspired algorithms have 
been successful for a wide range of constrained optimization 
problems, examples can be found in [2] or [3]. In the last years 
various modifications of algorithms such as Differential 
Evolution (DE) [4] or Particle Swarm Optimization (PSO) [5], 
for instance, have arisen as attractive optimization techniques 
due to their competitive results. 

Significant effort in the area of evolutionary computation 
and swarm intelligence has been made to find a balance 
between minimization of the objective function and finding 
feasible solutions. Early works on constrained optimization 

utilized penalty factors for every constraint, resulting in a 
group of methods, such as static penalty [6], with fixed factors, 
dynamic penalty [7], with factors changing as the optimization 
process proceeds, death penalty [8], where the infeasible 
solutions are eliminated and adaptive penalty approaches, with 
factors depending on the search successfulness, as well as self-
adaptive penalty approaches [9]. 

Another group of methods focuses on the superiority of 
feasible solutions  for example Deb’s rule described in [10], 
stochastic ranking [11] and epsilon-constraint (EC) technique 
[12]. In this study a new modification of the EC method, 
similar to the one introduced in [13], is used. 

Besides, mentioned constraint handling technique is 
applied to a new cooperative population-based algorithm with 
fuzzy controller as the self-tuning mechanism, called Fuzzy 
Controlled Cooperative Heterogeneous Algorithm (FCHA). Its 
basic idea is adopted from the meta-heuristic approach Co-
Operation of Biology Related Algorithms or shortly COBRA 
[14]. 

Generally, the FCHA approach consists of parallel work of 
several evolutionary and biology-inspired algorithms, 
therefore, population-based algorithms, which compete and 
cooperate with each other. Their population sizes are 
automatically determined by the fuzzy controller and change 
during the optimization process.  

Efficiency of the FCHA was examined on test problems 
taken from the CEC 2020 competition on real-world single 
objective constrained optimization [15]. Experimental results 
demonstrated the workability and usefulness of the proposed 
FCHA approach. 

Thus, this paper has the following structure. In Section II, 
the developed algorithm is described. In Section III, the fuzzy 
controller is introduced. Experimental setup and numerical 
results are presented in Section IV. Finally, in Section V, the 
main conclusions and several future works are summarized. 

II. COOPERATIVE ALGORITHM FOR CONSTRAINED 

OPTIMIZATION 

As was already mentioned, the proposed FCHA approach is 
based on the idea introduced in [14], namely it is based on the 
cooperative work of five biology-inspired and evolutionary 
algorithms (in other words components). In this study the 
following components were used: SHADE algorithm [16] with 
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two different mutation strategies (DE/rand/1 and DE/current-
to-best/1) [17], Particle Swarm Optimization (PSO) [5], 
Cuckoo Search Algorithm (CSA) [18] and Bat Algorithm (BA) 
[19]. All listed algorithms were chosen due to their high 
efficiency. Moreover, mentioned evolutionary as well as 
biology-inspired algorithms have similar schemes, so it was 
easier to implement them together.  

The originally proposed approach consists in generating 
one population for each component-algorithm, therefore five 
populations, which are then executed in parallel, cooperate 
with each other. The FCHA algorithm is a self-tuning meta-
heuristic, so there is no need to choose the population size for 
each component-algorithm.  

The number of individuals in the population of each 
algorithm can increase or decrease depending on the fitness 
values: if the overall fitness value was not improved during a 
given number of iterations, then the size of each population 
increased, and vice versa.  

There is also one more rule for population size adjustment, 
whereby a population can “grow” by accepting individuals 
removed from other populations. This happens if the 
corresponding component-algorithm has the highest success 
rate on a given step. Therefore  in this study the “winner 
algorithm” is determined as an algorithm whose population has 
the best currently found fitness value. Then fuzzy controller 
makes decision about the population size changes for each 
component-algorithm. 

It should be noted that the procedure of comparison of 
individuals is changed due to the necessity to take into account 
their feasibility. Thus, the individual x is considered to be 
better than the individual y (here it is denoted as [ ]x y ) in 

the following cases: 

( ) ( ), ( ), ( )

[ ] ( ) ( ), ( ) ( )

( ) ( ),otherwise

f x f y CV x CV y

x y f x f y CV x CV y

CV x CV y

  


  
 

 

Here f(x) and f(y) are function values, CV(x) and CV(y) are 
two constraint violations, calculated according to the formula 
given in [15]. This means that the solutions with small 
violations (less than ε) are considered as feasible  and ordered 
according to their fitness function values. In the case of ε      
CV(x) always precedes f(x). 

In this study ε was calculated on each iteration in the 
following way: 

θ = θp×NP, 

 
max

1 ,

0,otherwise

cp

c

NFE
CV NFE NFE

t NFE


  
    

    



 

where t is the iteration number, NFE is the current number of 
function evaluations, NFEmax is the total available resource, 
NFEc is the cut-off level set to  .8×NFEmax  θp is the control 
parameter from [ ;  ] set to  .8  θ is the index of an individual 
in an array sorted by constraint violation, thus, CVθ is the 
constraint violation of the θ-th individual, NP is the population 

size of the component, cp is another control parameter, which 
is equal to 3.    

Also populations interact with each other. The main goal of 
their communication is to prevent their preliminary 
convergence to their own local optimum. “Communication” 
was determined in the following way: populations exchange 
individuals in such a way that a part of the worst individuals of 
each population is replaced by the best individuals of other 
populations. Thus, the group performance of all algorithms can 
be improved. 

III. FUZZY CONTROLLER DESIGN 

The main idea of using a fuzzy controller is to implement a 
flexible tuning method to change the population sizes during 
the optimization process. Fuzzy controllers are well known for 
their ability to generate real-valued outputs using special 
fuzzification, inference and defuzzification schemes.  

In this work success rates were used as inputs and 
population size changes as outputs for the fuzzy controller. To 
be more specific, the fuzzy controller had 6 input variables, 
including 5 success rates, one for each component, and an 
overall success rate, and 5 output variables, i.e. the number of 
solutions to be added to or removed from each component.  

The success rate for all input variables except for the last 
one is evaluated as the best fitness value of its population. The 
last input variable was determined as the ratio of the number of 
iterations, during which the best found fitness value was 
improved, to the given number of iterations, which was a 
constant period. Thus, the process of population growth was 
automated by the fuzzy controller. 

The Mamdani-type fuzzy inference was used to obtain the 
output values, and the rules had the following form:  

 Rq: IF u1 is Aq1 …  up is Aqn THEN v1 is Bq1 … vk is Bqk 

where Rq is the q-th fuzzy rule, u = (u1  …  up) is the set of 
controller’s input values in p-dimensional space (in this study p 
is equal to 6), v = (v1  …  vk) is the set of controller’s outputs (k 
is set to 5), Aqi is the fuzzy set for the i-th input variable, Bqj is 
the fuzzy set for the j-th output variable.  

 The rule base contained 18 fuzzy rules, which had the 
following structure: each 3 rules described the case when one 
of the components gave better results than the others (as there 
were 5 components, 15 rules were established); the last 3 rules 
used the overall success of all components (variable 6) to add 
or remove solutions from all components, i.e. to regulate the 
computational resources. Example of the rule base is 
demonstrated in Table I. 

TABLE I.  PART OF THE RULE BASE 

№        

1 IF 
u1 is 

A3 

u2-u5 

is A4 
u6 is DC THEN 

v1 is 

B3 

v2-v5 is 

B1 

2 IF 
u1 is 
A2 

u2-u5 
is A4 

u6 is DC THEN 
v2 is 
B3 

v2-v5 is 
B1 

3 IF 
u1 is 

A1 

u2-u5 

is A4 
u6 is DC THEN 

v3 is 

B3 

v2-v5 is 

B1 

… … 



16 IF u1-u5 is DC u6 is A1 THEN v1 is B1 

17 IF u1-u5 is DC u6 is A2 THEN v1 is B2 

18 IF u1-u5 is DC u6 is A3 THEN v1 is B3 

The input variables were always in the range [0, 1], and 
fixed fuzzy terms of triangular shape were used for this case. In 
addition to the three classical fuzzy sets A1, A2 and A3, the 
“Don’t Care” (DC) condition and the A4 term with the meaning 
“larger than  ” (opposite to A1) were also used to decrease the 
number of rules and make them simpler. 

FCHA Algoritm  

begin 

Fix minimal population size (min_size) of populations all    

together; 

Fix maximal population size (max_size) of populations all 

together; 

Randomly initialize of five populations P, D1, D2, C, B;  

Initialize parameters of all component-algorithms; 

Find best solution and its fitness for each component;  

  Find global best solution and its fitness value GBest; 

   while (NFE < NFEmax)  

 Execute PSO for P; 

 Execute SHADE with rand/1 for D1; 

 Execute SHADE with current-to-best/1 for D2; 

 Execute CSA for population C;  

 Execute BA for population B;  

 Update best solution and its fitness for each 

component; 

Update global best solution and its fitness value 

GBest; 

if (Gen = 7k, k=1,2,…)  

Esti ate eac  co ponent’s success  ate; 

Estimate the last input variable for controller; 

Gene ate cont olle ’s outputs; 

Change population sizes and therefore 

populations; 

Migration of the best individuals of all 

populations; 

end if 

if (Gen = 10k, k=1,2,…)  

Migration of the best individuals of all 

populations; 

end if 

   end while 

   Post-processing of the obtained results;  

end 

Fig. 1. Pseudo-code of the Fuzzy Controlled Cooperative Heterogeneous 
Algorithm (FCHA). 

 For the outputs, three fuzzy terms of triangular shape were 
used. The output fuzzy terms were symmetrical, and the 
positions and shapes were determined by two values, encoding 
the left and right position of the central term, as well as the 
middle position of the side terms in one value, and the left and 
right positions of the side term in another value. These two 
values were optimized using the PSO algorithm.  

 The defuzzification procedure was performed by 
calculating the centre of mass of the shape received by fuzzy 

inference. FCHA algorithm’s pseudo-code is demonstrated in 
Fig. 1. 

IV. EXPERIMENTAL RESULTS  

A. Experimental Setup 

The FCHA algorithm’s performance was evaluated on the 
CEC 2020 Competition on Real-World Single Objective 
Constrained Optimization [15]. The benchmark contains 57 
real-world constrained optimization problems with various 
features such as large number of local optima, asymmetry, non-
separability and so on. Also all problems have different 
dimensions, which vary from 2 to 158, and contain a wide 
variety of constraints.  

As was mentioned, the FCHA approach is based on the 
cooperative work of five algorithms, which have their own 
parameters. Therefore, the initial values of the necessary 
parameters for all component-algorithms were taken from 
original papers dedicated to them and proposed by authors.  

Parameters of the fuzzy controllers for the FCHA approach 
were found by PSO as described in [20], namely the following 
parameters were obtained: [–3; –2; 0; 10]. The last input 
variable for fuzzy controller was determined as the ratio of the 
number of iterations, during which the currently best found 
fitness value was improved, to the given number of iterations, 
which was set to 7, according to the previously conducted 
experiments. Competition and communication between 
components were conducted each time after 10 iterations.  

To check the efficiency of the proposed algorithm, the 
maximum number of function evaluations varied depending on 
the problem in hand, namely the number of variables. To be 
more specific, the maximum number of function evaluations 
was set according to the CEC’2 2  competition’s rule. Also 
there were 25 program runs for each benchmark. 

For the cooperative meta-heuristic FCHA the minimum 
population size for each component was set to 0, but if the total 
sum of population sizes was equal to 0, then all population 
sizes increased to 10. Additionally, the maximum total sum of 
population sizes was set to 300. 

B. Numerical Results 

Currently best found value of the objective function f(x) 
and corresponding constraint violation CV(x) were recorded for 
the achieved best solution x after 0.1×NFEmax, 0.2×NFEmax, 
0.3×NFEmax, …    .9×NFEmax and NFEmax function evaluations 
for each problem. To calculate the CV(x) for solution x the 
formula from [15] was used.  

Also, the feasibility rate (FR) and a vector c for each 
problem over 25 trials were calculated. Feasibility rate was 
defined as the ratio of the number of program runs, where at 
least one feasible solution was found under NFEmax function 
evaluations, to the maximum number of trials (25). The vector 
c is the vector of number of violated constraints at the median 
solution that have three elements indicate the number of 
violations (including inequality and equality constraints) by 
more than 1.0, in the range [0.01, 1.0] and less than 0.01 
respectively. 



The simulation results obtained for the different 
optimization problems are demonstrated in Tables II-X. 

TABLE II.  OUTCOMES FOR PROBLEMS RC01-RC07 

  RC01 RC02 RC03 RC04 RC05 RC06 RC07 

Best 
f -1.36 42E+2 

-

22E+3 
-1.01 

-

39E+2 
1.00 0.49 

v 0 0.72 0.39 0 0 78.87 72.24 

Median 
f 1.78 70E+2 

-

20E+3 
-1.00 

-

20E+2 
1.00 0.49 

v 20E+5 65E+4 486.19 0 93.09 82.87 102.76 

Mean 
f 60.02 11E+4 

-
18E+3 

-0.80 
-

22E+2 
1.00 0.59 

v 14E+3 57E+4 393.69 0.12 73.34 90.93 110.19 

Worst 
f 334.22 26E+5 

-
37E+2 

-0.32 
-

736.48 
1.00 1.03 

v 20E+5 10E+5 563.72 0.69 199.86 262.24 191.44 

STD 
f 93.75 50E+3 44E+2 0.26 967.65 0 0.21 

v 87E+3 32E+3 181.03 0.23 60.05 35.54 26.22 

FR 12 0 0 72 36 0 0 

c 5;2;1 6;0;3 3;1;10 0;0;5 1;0;5 
2;10;2

0 

10;9;1

9 

TABLE III.  OUTCOMES FOR PROBLEMS RC08-RC14 

  RC08 RC09 RC10 RC11 RC12 RC13 RC14 

Best 
f -1.00 0 0 -13 -0.07 0 0 

v 0 0 0 0 0 0 0 

Median 
f -1 1.11 0.11 109.80 0 0 53E+3 

v 0 0 0 0.55 0 0 0 

Mean 
f -0.99 1.17 0.30 100.22 0.24 10E+3 47E+3 

v 0 0 0 0.73 0 0 0.59 

Worst 
f -0.83 2.63 0.90 179.87 3.15 27E+3 17E+3 

v 0 0 0 2.35 0 0 11.40 

STD 
f 0.03 0.96 0.30 41.69 0.83 13E+3 41E+3 

v 0 0 0 0.75 0 0 2.30 

FR 100 100 100 16 100 100 100 

c 0;0;2 0;0;2 0;0;3 0;5;3 0;0;9 0;0;3 0;0;10 

TABLE IV.  OUTCOMES FOR PROBLEMS RC15-RC21 

  RC15 RC16 RC17 RC18 RC19 RC20 RC21 

Best 
f 0 

-

1E+13 
0 0 0 -26.27 0 

v 0 0 0 0 0 0 0 

Median 
f 29E+2 -5.91 0 0 0 0 0 

v 0 0 0 0 0 0 0 

Mean 
f 20E+2 

-

5E+11 
0.001 16.78 0.06 -2.97 0 

v 0 0.09 0 0 0 0 0 

Worst 
f 30E+2 3.15 0.01 92.16 1.24 0 0 

v 0 1.24 0 0 0 0 0 

STD 
f 14E+2 2E+12 0.002 28.78 0.25 7.99 0 

v 0 0.31 0 0 0 0 0 

FR 100 96 100 100 100 100 100 

c 0;0;11 0,0;15 0;0;4 0;0;4 0;0;5 0;0;3 0;0;8 

TABLE V.  OUTCOMES FOR PROBLEMS RC22-RC28 

  RC22 RC23 RC24 RC25 RC26 RC27 RC28 

Best f 0 0 0 
-

59E+9 
0 -40.68 71E+2 

  RC22 RC23 RC24 RC25 RC26 RC27 RC28 

v 0 0 0 0 10.29 0 0 

Median 
f 0 5.89 0 

-

32E+3 
16.67 0 12E+3 

v 0 0 0 0 41.95 0 0 

Mean 
f 0.21 9.26 0.31 

-

26E+9 
25.53 0.96 12E+3 

v 0 0.003 0 0.002 44.26 0 0 

Worst 
f 0.54 19.65 2.59 71E+2 63.38 53.81 15E+3 

v 0 0.01 0 0.04 91.62 0 0 

STD 
f 0.26 8.27 0.84 12+E9 19.42 15.72 24E+2 

v 0 0.005 0 0.007 24.21 0 0 

FR 100 72 100 100 0 100 100 

c 0;0;11 0;0;11 0;0;7 0;0;7 5;1;80 0;0;3 0;0;9 

TABLE VI.  OUTCOMES FOR PROBLEMS RC29-RC35 

  RC29 RC30 RC31 RC32 RC33 RC34 RC35 

Best 
f 0 0 0 

-
32E+3 

0 0.17 
-

738.79 

v 0 0 0 0 0 80.64 31E+2 

Median 
f 13E+5 0.0004 0 

-

31E+3 
0 6.57 

-

425.16 

v 0 0 0 0 0 134.65 46E+2 

Mean 
f 12E+5 0.13 0 

-

31E+3 
0 14.84 

-

334.04 

v 0 0 0 0 0 131.44 49E+2 

Worst 
f 30E+5 2.71 0 

-

31E+3 
0 50.75 159.55 

v 0 0 0 0 0 163.53 93E+2 

STD 
f 12E+5 0.53 0 435.99 0 15.48 287.10 

v 0 0 0 0 0 18.67 13E+2 

FR 100 100 100 100 100 0 0 

c 0;0;1 0;0;8 0;0;2 0;0;6 0;0;30 
30;77;

1 
72;75;

1 

TABLE VII.  OUTCOMES FOR PROBLEMS RC36-RC42 

  RC36 RC37 RC38 RC39 RC40 RC41 RC42 

Best 
f 

-

359.53 
-48.79 -31.91 -48.27 19.55 0.07 

-

25E+2 

v 26E+2 116.16 127.75 89.91 214.21 643.58 52E+2 

Median 
f 

-

217.37 
-28.80 -30.14 -46.37 636.41 1.09 

-

20E+2 

v 50E+2 187.58 176.93 196.12 645.91 21E+2 64E+2 

Mean 
f 

-

171.14 
-29.49 -26.27 -40.26 714.65 23E+2 

-

20E+2 

v 50E+2 199.19 180.46 185.73 664.88 17E+2 68E+2 

Worst 
f 221.30 -8.48 -11.62 0.23 16E+2 57E+3 

-
15E+2 

v 82E+2 322.03 267.50 258.27 10E+2 22E+2 99E+2 

STD 
f 166.18 13.38 6.73 13.11 396.10 11E+3 329.45 

v 15E+2 50.31 36.43 38.94 178.23 678.87 11E+2 

FR 0 0 0 0 0 0 0 

c 
74;71;

3 

35;79;

2 

39;74;

3 

51;34;

31 

63;13;

0 

15;58;

1 
73;3;0 

TABLE VIII.  OUTCOMES FOR PROBLEMS RC43-RC49 

  RC43 RC44 RC45 RC46 RC47 RC48 RC49 

Best 

f 
-

18E+2 
-

62E+2 
0.19 0.12 

5.21E-
16 

0.11 0.04 

v 56E+2 0 0.00 
1.61E-

5 
0.00 0.00 0.67 



  RC43 RC44 RC45 RC46 RC47 RC48 RC49 

Median 
f 

-

16E+2 

-

60.E+
2 

0.65 0.31 0.28 0.34 0.2 

v 73E+2 0 38.28 29.03 1.92 80.53 69.43 

Mean 
f 

-

14E+2 

-

60E+2 
0.78 0.38 0.30 0.35 0.23 

v 71E+2 0 39.04 26.90 25.28 65.12 67.46 

Worst 
f 

-

670.61 

-

58E+2 
3.64 0.98 0.84 0.89 0.66 

v 80E+2 0 90.00 83.88 90.00 97.16 130.43 

STD 
f 299.06 110.06 0.65 0.22 0.17 0.19 0.12 

v 703.81 0 26.00 23.69 29.08 34.64 28.05 

FR 0 100 16 20 16 8 0 

c 76;0;0 0;0;91 7;1;17 6;6;13 1;0;24 
13;2;1

5 

15;4;1

1 

TABLE IX.  OUTCOMES FOR PROBLEMS RC50-RC53 

  RC50 RC51 RC52 RC53 

Best 
f 0.05 24E+2 31E+2 25E+2 

v 0.08 0.23 0.01 0.04 

Median 
f 0.21 34E+2 44E+2 48E+2 

v 65.05 1.81 0.12 0.60 

Mean 
f 0.21 35E+2 47E+2 46E+2 

v 66.07 1.69 0.40 1.06 

Worst 
f 0.48 52E+1 96E+2 58E+2 

v 91.56 3.47 5.68 2.36 

STD 
f 0.12 708.53 14E+2 878.70 

v 23.36 0.64 1.09 0.88 

FR 0 0 0 0 

c 6;6;18 1;3;11 0;2;13 0;3;12 

TABLE X.  OUTCOMES FOR PROBLEMS RC54-RC57 

  RC54 RC55 RC56 RC57 

Best 
f 18E+2 646.53 18E+2 968.99 

v 0.18 0.03 0.11 0.03 

Median 
f 29E+2 15E+2 37E+2 18E+2 

v 1.31 0.09 3.64 0.06 

Mean 
f 33E+2 23E+2 46E+2 24E+2 

v 1.10 0.45 3.99 0.69 

Worst 
f 58E+2 55E+2 12E+3 88E+2 

v 1.94 3.75 9.73 2.51 

STD 
f 12E+2 15E+2 24E+2 19E+2 

v 0.64 0.85 2.44 0.97 

FR 0 0 0 0 

c 1;1;13 0;2;4 1;4;1 0;2;4 

 
The obtained results were compared with the ones 

presented in [15], to be more specific, in [15] results of three 
algorithms (IUDE [21], εMAgES [22] and iLSHADEε [23]) are 
given. Comparison was conducted in the following way: 

 firstly, the feasibility rates FR were compared, namely 
algorithm with higher value of FR was considered as 
the better one in comparison; 

 if algorithms had the same value of FR for a given 
problem, then the Student’s t-test with significance 
level p = 0.05 was applied to mean values of the 
objective function (this test was used due to the fact that 

only mean and standard deviation values are known for 
mentioned algorithms). 

Comparison results are demonstrated in the Table XI. In 
this table “better” and “worse” mean that the proposed 
approach won and lost respectively compared to a given 
algorithm  “equal” means that there was no significant 
difference between results. Thus, each cell in the Table XI 
contains the number of times results, obtained by the proposed 
approach FCHA, were better, worse or statistically the same. 

TABLE XI.  COMPARISON BETWEEN FCHA AND OTHER METHODS 

 IUDE εMAgES iLSHADEε 

Better 34 28 35 

Equal 4 5 2 

Worse 19 24 20 

 

Finally, the FCHA algorithm’s complexity was estimated. 
The algorithmic complexity is calculated using the benchmark 
suite proposed in [15]. Besides, the procedures described in 
[15] were adopted to calculate the algorithmic complexity, 
namely the following values were calculated: 

 the average time required to evaluate all functions for 
100000 times (T1); 

 the average computation time required by algorithm for 
100000 function evaluations for each problem (T2); 

 the algorithmic complexity T3 = (T2 – T1) / T1. 

TABLE XII.  ALGPRITHM’S COMPLEXITY 

T1 T2 T3 

74.99 107.97 0.44 

 

Thus, it was established that the proposed approach FCHA 
is capable to solve complex constrained optimization problems 
and outperforms alternative algorithms in most cases, and, 
therefore, it can be used instead of them. 

V. CONCLUSIONS  

In this study a new self-tuning approach called Fuzzy 
Controlled Cooperative Heterogeneous Algorithm or FCHA 
for solving constrained optimization problems was proposed. 
Its basic idea consists in the cooperative work of five 
evolutionary and bionic algorithms, whose population sizes are 
defined by the fuzzy controller.  

The FCHA algorithm’s performance was evaluated on the 
57 constrained optimization problems submitted for the CEC 
2020 Competition on Real-World Single Objective 
Constrained Optimization. Obtained results were compared 
with the ones provided by the competition organizers. Also 
algorithm’s computational complexity was estimated. 

Experimental results confirmed workability and usefulness 
of the proposed FCHA approach: it outperformed other 
algorithms on most of the problems according to the statistical 
test. However, still there were cases when feasible solutions 
weren’t found. Thus  its ability to find feasible solutions can be 
improved. Moreover, the developed FCHA algorithm can be 



modified for solving multi-objective constrained optimization 
problems.   

ACKNOWLEDGMENT 

This work was supported by the internal grant of Reshetnev 
Siberian State University of science and technology for the 
support of young researchers.  

REFERENCES 

[1] F. Rossi  P. van Beek  T. Walsh  “Chapter   – Introduction ” 
Foundations of Artificial Intelligence, Handbook of Constraint 
Programming, Elsevier, vol. 2, pp. 3–12, 2006.  

[2] Z. Michalewicz  N. Attia  “Evolutionary optimization of constrained 
problems ” Proc. of the 3rd Annual Conference on Evolutionary 
Programming, pp. 98–108, 1994.  

[3] C. Coello Coello  “Theoretical and numerical constraint-handling 
techniques used with evolutionary algorithms: a survey of the state of 
the art ” Computer Methods in Applied Mechanics and Engineering, vol. 
191 (11-12), pp. 1245-1287, 2002. 

[4] R. Storn  K. Price  “Differential Evolution – a Simple and Efficient 
Heuristic for Global Optimization over Continuous Spaces”  Journal of 
Global Optimization, vol. 11(4), pp. 341–359, 1997. 

[5] J. Kennedy  R. Eberhart  “Particle Swarm Optimization ” Poceedings of 
IEEE International Conference on Neyral networks, pp. 1942–1948 
1995. 

[6] A. Homaifar  C. X. Qi  S. H. Lai  “Constrained optimization via genetic 
algorithms ” SIMULATION  vol. 62(4)  pp. 242–253 , 1994. 

[7] J. A. Joines  C. R. Houck  “On the use of nonstationary penalty 
functions to solve nonlinear constrained optimization problems with 
GA’s ” Proc. of the first IEEE Conference on Evolutionary 
Computation, IEEE World Congress on Computational Intelligence, vol. 
2, pp. 579–584, 1994. 

[8] T. Back, F. Homeister, H.-P. Schwefel, “A survey of evolution 
strategies ” Proc. of the Fourth International Conference on Genetic 
Algorithms, pp. 2–9, 1991. 

[9] R. Farmani  J. A. Wright  “Self-adaptivetness formulation for 
constrained optimization ” IEEE Trans. Evolutionary Computation  vol. 
7,  pp. 445–455, 2003. 

[10] K. Deb  “An efficient constraint handling method for genetic 
algorithms ” Computer Methods in Applied Mechanics and Engineering  
vol. 186(2), 311–338, 2000. 

[11] T. P. Runarsson  X. Yao  “Stochastic ranking for constrained 
evolutionary optimization ” IEEE Transactions on Evolutionary 
Computation, vol. 4(3), pp. 284–294, 2000. 

[12] T. Takahama  S. Sakai  “Constrained optimization by the ε constrained 
differential evolution with gradient-based mutation and feasible elites ” 
IEEE International Conference on Evolutionary Computation, pp. 1–8, 
2006. 

[13] V. Stanovov  Sh. Akhmedova  E. Semenkin  “Selective pressure in 
constrained differential evolution ” Proc. of the 2  9 Genetic and 
Evolutionary Computation Conference Companion, pp. 83–84, 2019. 

[14] Sh. Akhmedova  E. Semenkin  “Co-Operation of Biology Related 
Algorithms”  Proc. of the IEEE Congress on Evolutionary Computation 
(CEC 2013), June 20-23, 2013, pp. 2207–2214. 

[15] A. Kumar, G. Wu, M. Z. Ali, R. Mallipeddi, P. N. Suganthan, S. Das, 
“A test-suite of non-convex constrained optimization problems from the 
real-world and some baseline results ” Swarm and Evolutionary 
Computation, 100693, 2020. 

[16] R. Tanabe  A. Fukunaga  “Success-History Based Parameter Adaptation 
for Differential Evolution ” Proc. of the IEEE Congress on Evolutionary 
Computation, pp. 71–78, 2013. 

[17] S. Das  S. S. Mullick  P. N. Suganthan  “Recent Advances in 
Differential Evolution ‒ an Updated Survey ” Swarm and Evolutionary 
Computation  vol. 27  pp.  ‒3   2  6. 

[18] X. S. Yang and S. Deb  “Cuckoo Search via Levy flights ” Proc. of the 
World Congress on Nature & Biologically Inspired Computing (NaBic 
2009), IEEE Publications, USA, pp. 210–214, 2009. 

[19] X. S. Yang  “A new metaheuristic bat-inspired algorithm ” Proc. of the 
Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), 
Springer, SCI 284, pp. 65–74, 2010. 

[20] Sh. Akhmedova  E. Semenkin  V. Stanovov  S. Vishnevskaya  “Fuzzy 
logic controller design for tuning the cooperation of biology-inspired 
algorithms ” Tan  Y.  Takagi  H.  Shi  Y.  Niu  B. (eds.) ICSI 2  7  
LNCS  vol.   386  Springer  2  7  pp. 269‒276. 

[21] A. Trivedi  K. Sanyal  P. Verma  D. Srinivasan  “A unified differential 
evolution algorithm for constrained optimization problems ” Proc. of the 
2  7 IEEE Congress on Evolutionary Computation (CEC)  pp.  23 ‒
1238, 2017. 

[22] L. Huang  W. Zhao  B. R. Abidi  M. A. Abidi  “A Constrained 
Optimization Approach for Image Gradient Enhancement ” IEEE 
Transactions on Circuits and Systems for Video Technology, vol. 28, 
no. 8  pp.  7 7‒ 7 8  2  8. 

[23] J. Brest  M. S. Maučec  B. Bošković  “iL-SHADE: Improved L-SHADE 
algorithm for single objective real-parameter optimization ” Proc. of the 
IEEE Congress on Evolutionary Computation (CEC), pp. 1 88‒  95  
2016. 

 




