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Abstract—This study updates a novel technique for evolving
parameters that specify fractal images. Example parameter sets
are provided as an information resource to evolution, following
an earlier study. Instead of choosing parameters with high
average compatibility with all other parameters, this study
clusters the parameters using a graph clustering algorithm
within a network where the adjacency relation of the network
is derived from co-fertility, i.e. genetic compatibility values.
The result of using the new types of sets of parameters as
information resources is studied and compared to evolution
that uses the previous type of information resource. The new
technique of selecting information resources presented here
yields higher fitness values. The new results are on the high
end of the fitness distribution, and so the new information
resources tested give similar improvements in fitness. However,
their variability vary substantially and the resulting fractals
have different appearances.

I. INTRODUCTION

Evolved art is a subfield of evolutionary computation in
which digital evolution, in some form, is used to create
an appealing image. The two most critical components to
determine in evolved art are:

1) a representation that encodes images in a compact,
evolvable form; and

2) an objective function that denotes an acceptable ap-
proximation to what human observers may consider
appealing.

Fractals [19] are a natural target for evolved art as they
are objects with fractional dimension and complex structure.
Many classes of fractals such as Mandelbrot sets, Julia sets,
or fractals generated with Newton’s method [17] are all
specified by a short list of numerical parameters and thus
have a choice of representations that are well-studied in the
literature of evolutionary computation.

An earlier study [5] adopted a real parameter optimization
approach to locating appealing Julia sets, which are carefully
defined in Section II using a fitness function that measures
the complexity of the resulting fractal. The iteration numbers,
defined in II, at a grid of sample points within the image
were taken; the fitness was defined as the Shannon entropy
of the distribution of these values. The focus of the paper
was fertility.

Informally, two sets of parameters are fertile if the ex-
pected fitness of their potential crossover is high. In order
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to enhance evolution, 1000 sets of Julia parameters were
produced via independent runs of an evolutionary algorithm.
These parameter sets were evaluated for their average fertility
fav with one another, and the 50 with the highest values of
fav were used as sources of genetic information. This was
done using single-parent crossover [10], a novel variation
operator in which population members are crossed over with
copies of example genes. This technique provides continuous
injection of the alleles in the examples back into the evolving
population.

This study re-examines the choice of parameters with high
average fertility as genetic information sources. Two genes
that have high average fertility with other genes in a group of
1000 genes may not have high fertility with one another. This
means that the single-parent crossover techniques may be
constantly injecting counterproductive information into the
population. In this study we use diffusion characters [11] to
create a map of the compatibility of the example parameter
sets from their pairwise fertility values, and then apply multi-
clustering [18] to find small groups of co-fertile genes to use
in evolution based on single-parent crossover. The hypothesis
is that using small groups of mutually fertile examples will
outperform the types of examples used in the earlier study.

Computer generated fractals are early foci for compu-
tational creativity in art. Mandelbrot [20] highlights the
development of mathematical algorithms into images and
then links them into artistic structures. A number of artistic
works prior to the discovery of fractals have been found
to have fractal properties. For example, the paintings of
Katsushika Hokusai, such as The Great Wave off Kanagawa
[19], and Jackson Pollock [22] have been found to incor-
porate fractal elements. Artists’ and researchers’ works use
or have been inspired by fractals for the creation of poetry
[15], photomosaics [16], and song lyrics winning the 2014
Academy Award and 2015 Grammy [1]. The technique of
generative adversarial networks [21] can be used to learn a
style or type of image and generate new examples of images
with a similar style.

A number of other studies have evolved fractals in the past.
These include other techniques for evolving Julia sets [7], [5],
and several attempts to search the Mandelbrot set for inter-
esting fractal views [6], [3], [8], [4]. Genetic programming
has been used to search for fractal iterator functions that
generalize Mandelbrot and Julia sets [12]. An attempt has
been made to use on-demand fractal generation as a method
of providing an open-ended photo library for photomosaic
generation [16]. Evolved iterated function system fractals
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have also been used in bioinformatics to create sequence
visualizers [13], [14], [9].

The remainder of this study is organized as follows:
section II will give the mathematical background and define
the objective function and the notion of fertility used in this
study. Section III will explain how the information resource
parameter sets were chosen and give the experimental design
for evaluating their effectiveness. Section IV will give and
discuss results, and Section V will draw conclusions and
outline possible next steps.

Fig. 1. An evolved generalized Julia set with three complex parameters.

II. BACKGROUND

This study attempts to locate parameter sets for fractals
known as generalized Julia sets [7]. Figure 1 gives an
example of a rendering of one of these fractals. The actual
fractal is approximated by the white regions of the picture
and is comprised of a subset of the complex plane. The fractal
depends on N complex parameters, z0, z1, . . . , zN−1, each of
which has a real and imaginary part (thus 2N real parameters
are used). For N = 1, the generalized Julia set is a standard
Julia set.

For any complex number w in the complex plane, the
following sequence is generated:

w0 = w

wk+1 = w2
k + zk mod N

If the sequence associated with the complex number w
contains an element |wi| ≥ 2, then w is not a part of the
fractal; the smallest such index i is returned as the iteration
number I of w. Otherwise, if there is no index i with
|wi| ≥ 2, then w is part of the fractal.

In practice, an upper bound of 120 iterations is imposed.
Points whose corresponding sequences satisfy |wi| < 2 for

all i < 120 are considered to be part of the fractal, and must
in fact be very close to points in the fractal. The iteration
number of these points are reported as I = 120.

A. The objective function

As stated in the introduction, finding a fitness function that
appropriately evaluates whether or not a photo is “appealing”
or “beautiful” is one of the substantial problems in evolved
art. The fitness function used in this study starts with an
equally-spaced 11-by-11 grid of points in a square with
corners −1.6 − 1.6i and 1.6 + 1.6i in the complex plane.
Then, each of the 121 points is assigned to one of 16 bins,
numbered from 0 to 15. A point whose iteration number
is I is assigned to bin number b16I/121c. At the end, bin
k contains some number ck of points, and we normalize
these values to form an empirical probability distribution
(p0, p1, . . . , p15) given by pk = ck/121.

The objective function is

E = −
15∑
k=0

pk log2(pk), (1)

which is the Shannon entropy of the distribution of the
iteration numbers. Shannon entropy is maximized when a
probability distribution is as close to uniform as possible.
Hence, this objective function rewards an even distribution
of the sample points over the different iteration-number bins.
This does not guarantee beauty or appeal, but it does ensure
complexity and therefore enriches the set of fractals located
with interesting and potentially appealing fractals.

B. Selection of example fractals

Section III requires a method of selecting fractal param-
eters that will be used as sources of genetic information.
Using uniform crossover on chromosomes with N loci each
yield 2N possible offspring, two of which are clones of the
parents.

Definition 1: Given a fitness function, the fertility of two
genes, each with N loci, is the average fitness of the 2N −2
offspring which are not clones of the two genes themselves.

In the earlier study [5], the selection used was high average
fertility with all other genes among 1000 best-of-run sets
of genes (fractal parameters) with N = 3, selected with
an evolutionary algorithm using the entropy-based objective
function (1).

C. Rendering the fractals

To render the fractal, the square in the complex plane with
corners −1.6− 1.6i and 1.6+ 1.6i is mapped onto a square
image. At each pixel, the complex number corresponding to
the centre of the pixel is computed and its iteration number I
is calculated. This value I is then mapped to a color using the
RGB values R,G,B ∈ [0, 255] determined by the following



Fig. 2. All 30 images generated by the re-evolved genes using cluster twelve, with five members, from the λ = 0.7 extraction as the information resource.

equations, with 0 representing no color and 255 the most
intense shade available:

R = 127 cos(0.138 · I + 0.8) + 128

G = 127 cos(0.127 · I + 0.8) + 128

B = 127 cos(0.092 · I + 0.2) + 128

These values are rounded to the nearest integer. Varying the
period and phase shift by changing the two numerical values
inside the cosine function permits an easy way to select from
of a wide range of coloring palettes for the fractals.

Figure 1 gives an example of a rendering of one of these
fractals.

III. DESIGN OF EXPERIMENTS

Compared to [5], a more elaborate procedure was used
to select the information source from the same set of 1000
evolved fractal parameters used in the earlier study.

First, an unweighted, undirected graph was constructed
where each node represented a gene, i.e. a set of Julia
parameters. The fertility of all

(
1000
2

)
= 499500 pairs of

parameter sets was computed and an edge was added between

two nodes whenever their corresponding genes had a fertility
value exceeding a threshold τ . Selection of effective values
of τ is a part of the research.

The diffusion character algorithm (detailed below) was
then applied to this graph to yield a new association measure
indicating closeness or fertility similarity in the fertility space
of fractal parameters. Finally, K-means multiclustering [18]
was applied to the fertility similarity relationship, yielding a
set of clusters. The number of clusters obtained depends on
the association strength λ used as the cut value for K-means
multiclustering. These clusters of genes are the information
resource for the evolutionary algorithm in this study.

Diffusion characters [11] are computed as follows: each
vertex is associated with a different gas. In each time step,

• one unit of each gas is added to its home vertex;
• all gas at each vertex is divided evenly between its

neighbours;
• the total amount of gas of each type at each vertex is

multiplied by a decay factor ω < 1.
Since gas is added arithmetically and decays exponentially
(as the decay factor is ω < 1), this process converges to a



Fig. 3. All 30 images generated by the re-evolved genes using cluster sixteen, with three members, from the λ = 1.0, τ = 0.701 parameter experiment
as the information resource.

stable distribution of the gasses on the vertices. This vector
of stable gas concentrations at each vertex is transformed by
applying the map x 7→ − lnx to each coordinate. The result
is an injection of the vertices of the graph into Euclidean
space so that the distance between points corresponding to
vertices is proportional to the ease of moving between those
vertices along any path; the gas analogy traces out those
paths.

K-means multiclustering [18] operates as follows: the K-
means algorithm is applied to a data set, in this case sets
of fractal parameters with similarity measured as co-fertility,
a large number of times. The value of K, the number of
clusters, is varied in the range 10 to 60. Each time two sets
of fractal parameters are in a cluster together as the result
of K-means clustering, their association strength is increased
by one. These strengths start at zero. After all the associa-
tion strengths have been computed, they are normalized by
dividing by the number of K-means clusterings performed,
yielding association values in the range [0, 1]. A cut value λ
is then used to build a second undirected graph in which there

are edges only between pairs of fractal parameters whose
association strength exceeds λ. The clusters are the connected
components of this graph.

The hypothesis tested in this study is that taking the
information source to be clusters generated from the diffusion
character algorithm and multiclustering, i.e. sets of relatively-
highly co-fertile genes, will yield a higher average fitness
than taking the fifty highest average fertility sets of fractal
parameters, which was the procedure followed in the earlier
study. This method of selecting the information resource sets
of fractal parameters was conjectured to yield higher-fitness
fractals because the co-fertility of genes close to one another
in the fertility graph would yield more focused search than
purely high-average fertility sets of fractal parameters.

To keep the members of an information resource relatively
co-fertile, only clusters with between 3 and 60 sets of
Julia parameters were tested. An example of a collection of
renderings of thirty fractals evolved with a highly co-fertile
information resource is shown in Figure 2; another is shown
in Figure 3.



A. The evolutionary algorithm

The evolutionary algorithm used in this study is a sim-
ple real parameter estimation algorithm. It operates on a
population of ten sets or Julia parameters. The mutation
operator adds a normally-distributed value with a variance
of σ = 0.1 and mean µ = 0.0 to from one to three of
the six real parameters that define the fractal. The number
of positions modified by mutation is selected uniformly at
random. Relevant complex numbers v for determining Julia
sets satisfy |v| < 2, so the small value for the variance of
the mutation operator is sensible.

Two crossover operators are used.
• For crossover between members of the population, two-

point crossover is employed.
• Otherwise, a uniform single-parent crossover with a

copy of one of the information-resource parameter sets
is performed. In this case, the information resource used
is selected uniformly at random from those available to
the algorithm.

Selection and replacement are performed with single tour-
nament selection of size seven [2]. This model of evolution
selects seven members of the population. The two best are
copied over the two worst and then the copies are subjected
to crossover and mutation. A run of the algorithm consists of
100,000 instances of tournament selection and the algorithm
is run 30 times with distinct random number seeds for
each set of algorithm parameters tested. The frequency of
single-parent crossover is a novel parameter is 0.05, adopted
based on the parameter study in the first fertility study. The
rate of single-parent crossover controls the degree to which
evolution is directed toward members of the information
resource. The relatively low rate is intended to reduce the
likelihood of cloning of one of the information resources.

Fig. 4. Shown are the distribution of fitness for fractals evolved using
ancestors from clusters 12, 7, 2, 16, and 1. The clustering was performed
with an graph creation threshold of τ = 0.676 and a cut value of λ = 0.7
for selecting clusters. The baseline fitness from using the 50 ancestors with
highest fertility is shown at the left in each plot.

IV. RESULTS AND DISCUSSION

Figure 4 compares the fitness of the technique from the
original study with the fitness resulting from using differ-
ent clusters as information resources. These clusters were
selected from the 20 available to demonstrate the range of
fitness variation. While the authors expected more variation
between the results arising from different clusters, these
results support the hypothesis that the method of selecting
information resources in this study yield higher fitness. The
expectation is that this improved fitness results because of
better co-fertility within the information resources.

Fig. 5. The range of fitness values when varying the square size used for the
grid of sample points in the fitness function. A set of 30 fractal parameters
was used as an information resource while generating these fitness values;
to generate this set, the graph threshold was τ = 1.0 and the extraction
bound was set to λ = 0.676.

Figure 6 also compares the results of the original study
with fractals evolved using eleven different clusters as infor-
mation resources. While there is a modest increase of vari-
ability of the fitness ranges for the runs using distinct clusters
as information resources, the only significant difference is
between the original study and all the runs performed with
the new method of assembling information resources. The
difference between the results obtained with distinct clusters
is largely in their variability, not as much their fitness level.

Several values were adjusted during the course of the
study:

• the square size used to contain the 11-by-11 grid of
sampling points;

• the threshold for generating the graph on which the
diffusion algorithm was run τ ; and

• the boundary λ for association strength, used as the cut
value in multiclustering.

Varying the sampling square size (side length) caused
substantial changes to the resulting fitness of the re-evolved
fractals. The graph threshold τ had virtually no effect on the
fitness values. The cluster extraction bound λ was adjusted to
control the number of clusters found and, as a consequence,
their size.



A. The sampling square

The square side length s was the largest determining factor
in the average fitness fav of evolving fractals. Figure 5
shows the fitness vs. the square size s. The value chosen
for the results shown throughout this paper is side length
s = 0.8, which yielded a relatively high value of fav
while maintaining a fairly high diversity of fitness values.
In comparison, the square size used in the earlier paper was
side length 3.2. These higher fitness values are the result
of tuning the fitness function to be more effective (higher
resolution), but they are not salient to the hypothesis being
tested. All fractals evolved in this study use the square length
0.8.

The Figure 5 shown contains the data for square sizes
s ∈ {0.6, 0.8, . . . , 2.4}. The fitness values when the square
size ranged from s = 0.6 to s = 1.4 were relatively
constant, with large drops from s = 1.6 onward. The majority
of the 121 sampled points have a relatively high iteration
number when the square is small as the sampled points are
concentrated near the centre of the fractal. Since the fitness
function groups these iteration numbers into bins, the bin
with the lowest iteration numbers (bin 0) will necessarily
contain fewer points than the other bins. Thus, on average,
the bins will be less evenly-distributed resulting in a lower
Shannon entropy, i.e. a lower fitness. Tuning the square yields
a fitness function with a greater resolution.

B. The fertility threshold

The diffusion network is run on an graph that is generated
based on the pairwise fertility of the 1000 genes. The
threshold τ is the minimum fertility value between two genes
that will place an edge in the graph between the nodes
corresponding to the genes. Thus, if a gene has high fertility
with many other genes, its corresponding node will have a
high degree in the fertility network.

Fig. 6. Results from 11 runs of different clusters as information resources
with τ = 0.701 and τ = 1.0. The baseline fifty highest average fitness
results are shown at the left.

Cut values λ ∈ {0.5, 0.6, . . . , 1.5} were tested with the
extraction bound of fertility τ = 0.676. This extraction bound
was selected because it yielded a total of 20 clusters. This
parameter is not being optimized; it was merely chosen to
yield a reasonable number and size of clusters of co-fertile
fractal parameters. Only clusters with between 3 and 60
sets of Julia parameters (inclusive) were used as information
resources.

C. Cut values for multiclustering

The cut value λ controls the number of clusters that
form: a higher boundary yielded more clusters that are, on
average, smaller. Varying this parameter did not result in
much variation in the resulting average fitness fav , but all
runs similarly resulted in a higher value of fav compared
to the previous study’s technique, where the information
resource was taken to be the 50 genes with the highest
average fertility.

D. Downstream use of the fractal parameters evolved

The renderings of fractals in Figures 2 and 6 are rendered
with a bulk, generic method chosen to permit difference in
structure to be seen easily. Once interesting fractal shapes
are obtained, they can be rendered with greater care to
make more engaging images. Examples of this are shown
in Figures 7 and 8.

V. CONCLUSIONS AND NEXT STEPS

This study applied a complex method to cluster a set of
1000 fractal parameters in a manner that depended on the co-
fertility of those parameters. In accordance with the study’s
hypothesis, using these clusters of highly co-fertile fractal
parameters as information resources indeed yielded higher
fitness results.

Unexpectedly, different information resources, while all
superior to the information resource derived in [5], did
not exhibit noticeable variation in the average fitness of
the sets of fractal parameters evolved. Different information
resources located in this study did exhibit substantially
different variability of fitness.

The contact sheets, exemplified by Figures 2 and 3,
were examined and there was minimal dependence of the
appearance of the resulting fractals on their information
resource. High fertility means that many of the crossovers
of a pair of fractal parameters are also high fitness, but it
does not mean they are in a region of the parameter space
with a fairly standard appearance. It is a classical result of
Mandelbrot that arbitrarily small regions of the parameter
space can contain an infinite variety of different appearances.
This result implies that the co-fertile information resources,
while they enhance fitness, do not give much control over
the details of the appearance of the fractals that evolve.

A. Varying fitness functions

Throughout the study, an 11-by-11 grid centred at the
origin was used to sample the points that determined the



Fig. 7. One of the fractals from Figure 6 rendered with non-generic settings.

fitness of a fractal. Varying the sampled data, by chang-
ing the boundaries of the sampling square or by changing
the number or arrangement of sampling points, effectively
changes the fitness function and can provide control over
the locations of the busy regions of the fractal. Sampling
from disjoint regions may result in fractals which have a
more appealing look. Additionally, the density function or
weight of each sampled point need not be uniform. This study
used the simplest function in the author’s experience that
reliably yields interesting fractals and, having selected that
function, investigated fertility effect in managing information
resources. It may be that fertility effects are different for
different fitness functions, an area for future work.

The number of bins used in the fitness function was 16.
This places the fitness f in the range 0 ≤ f ≤ 4 and, in
general, if n bins were used, into the range 0 ≤ f ≤ log2(n).
In our case, with 121 samples, we have around 121/16 ≈ 7.6
samples per bin. If too many bins are used, fitness values
would flatten toward the high end because there would be
many bins with almost equal (small) numbers of samples.
If we increased the number of sample points the algorithm
would slow down in direct proportion to the number of

sample points, but this would also create the potential for
a higher resolution fitness function using more bins. The
fractal space being searched is highly rugose and increasing
the number of sample points would also act to smooth the
fitness landscape to a modest degree.

A large number of fitness functions other than the one
based on Shannon entropy are possible. Maximizing the
variance of the iteration numbers Ik has been tried, but this
fitness function has the problem that there is a maximum
in which many Ik are equal to 120 (nearly all points are
considered to be in the fractal), and another maximum in
which many Ik are close to 0 (all points have very low
iteration numbers). Both of these cases yield boring fractals.
However, this works well if points with the maximum
iteration numbers are excluded.

Another possible fitness function modifies either the stan-
dard deviation or entropy-based fitness functions by re-
warding the situation where the number of points actually
estimated to be in the fractal are near some fraction, e.g.
20%, of the pixels in the picture.



Fig. 8. Two of the fractals from Figure 6 rendered with non-generic settings.
They both use different palettes and the upper bound on the iteration number
was changed.

B. Simplifying the information set selection method

The procedure in this study for selecting information
resources is fairly complex. It may be profitable to find a sim-
pler technique for selecting these ancestors. An evolutionary
set selection algorithm that picks sets of fractal parameters
and scores them on mutual co-fertility or minimal co-fertility
is a good candidate. The somewhat ornate system used in the
current study was chosen in an effort to use global fertility
information, a goal that may not be valuable enough to justify
continuing to use the current multi-step procedure.
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