
Improving an Optical Flow Estimator Inspired by
Insect Biology using Adaptive Genetic Algorithms

Phillip S.M. Skelton
Defence and Systems Institute
University of South Australia

Mawson Lakes, 5095
South Australia, Australia

phillip.skelton@mymail.unisa.edu.au

Anthony Finn
Defence and Systems Institute
University of South Australia

Mawson Lakes, 5095
South Australia, Australia

anthony.finn@unisa.edu.au

Russell S.A. Brinkworth
Centre for Maritime Eng., Control, and Imaging

Flinders University
Tonsley, 5042

South Australia, Australia
russell.brinkworth@flinders.edu.au

Abstract—Computer vision algorithms that make use of optical
flow are constantly increasing in complexity, especially in the
context of elaborated algorithms that are heavily inspired by
biology. To develop upon and utilise these algorithms for real-
world tasks, their extensive parameter sets need to be tuned. Due
to algorithmic complexity, and non-linearities present throughout
their parameter set, this is no small task. Using an adaptive
genetic algorithm, which itself is biologically-inspired, we look at
the performance and behaviour of the tuning when significant
changes have been made to a low speed rotational velocity optical
flow estimation algorithm. We validate that previously reported
changes to the optical flow estimator yielded a fitness increase of
over 30% when compared to the baseline model the changes were
made to, and a 15% increase once that baseline model was also
tuned. This improvement would be extremely unlikely without
the aid of evolutionary computation algorithms. This shows
that even an extremely complex computer vision algorithm with
many parameters, 36 in this case, can be tuned to an operating
point, facilitating the continued development work on the vision
algorithm by allowing for the validation and quantification of
algorithmic changes.

Index Terms—Optical flow, genetic algorithm, computer vision,
evolutionary computation, biologically inspired

I. INTRODUCTION

As computer vision algorithms increase in complexity, so
too do the parameter sets required for their optimal operation
[1]–[3]. While manual tuning of these parameters is suffi-
cient for simple algorithms with few parameters, once non-
linearities appear in the relationships between parameters, this
quickly becomes a challenging task. While many methods
exist for automating the tuning of these parameters, evolu-
tionary computation algorithms are of particular interest due to
their mimicry of biology [4], something that computer vision
algorithms are also increasingly deploying [5], [6].

This paper looks at the application of an adaptive genetic
algorithm for developing upon and tuning a highly-elaborated,
biologically-inspired optical flow estimation algorithm. Due to

Corresponding author: Phillip S.M. Skelton
Extensive computational resources were donated by the University of South

Australia’s High Performance Computing cluster. PSMS was supported by an
Australian Government Research Training Program Scholarship.

the biologically-inspired nature of the optical flow algorithm,
high levels of non-linear adaptation are present. This results in
the algorithm functioning adequately in a degraded state, but
not optimally, even when the parameter set is far from optimal.
Thus if the parameter set is not optimal it is impossible to
quantify changes to the algorithm. If the baseline model is not
optimised then changes to the model may simply be the result
of moving the system towards a more optimised condition,
rather than representing true algorithmic improvement. Con-
versely, if changes to the model push the system away from
its optimal operating point, then the changes may erroneously
be seen as detrimental. Only if the parameter sets, both before
and after the proposed changes, are in a close-to-optimal state
can the changes be reliably quantified.

Full details of the algorithmic changes made to the existing
algorithm from literature, BIV091 [7], to form the updated
algorithm, BIV19, can be found in [8]. The work previously
presented includes both comparisons to other state-of-the-art
optical flow algorithms, and input response characterisation
of those algorithms. The reader is directed to [8] for that
information as it is outside of the scope of this paper.

II. PREVIOUS WORK

Research into biological vision systems and their implemen-
tation as engineered functions has shown that these models
often contain a large quantity of parameters that can be
tuned to produce different operating behaviours depending
on the situation tested [7], [9]–[12]. When searching for
the optimal set of parameters, there are two fundamentally
different methods for obtaining that solution: classical search
methods, which encompass basic techniques such as exhaus-
tive search (enumerative) or iterative methods; and modern
heuristic methods, which find a global solution based on some
fitness function that is driving the optimisation [13].

Iterating through multiple variables that have non-linear
interactions with one another is a computationally expensive
process to gauge how the non-linear interactions between the

1BIV is an acronym of Biologically Inspired Vision.

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

https://orcid.org/0000-0001-6192-8193
https://orcid.org/0000-0002-2690-0838
https://orcid.org/0000-0003-0270-3538

variables affect the model output as a whole. Even a simple 3-
value approach to each variable (for example, an initial guess
and initial guess plus and minus an offset), would require no
less than 3n iterations, where n represents the population size
of variables. This also does not guarantee that the 3 values
selected for each variable are optimal, or even close to it.

Classical search methods, also known as direct search
methods, have been used to optimise algorithms since the early
1960’s [14]–[16]. These methods are characterised by the lack
of a differential approach to the problem. That is, they are
‘derivative-free’, and operate without a cohesively constructed
model of the output of the system [17]. The Nelder-Mead
simplex method is not only one of the most widely used, but
arguably the foundation direct search method [18], [19]. It
attempts to minimise the non-linear, scalar-valued function of
variables using only function values. That is, it does not require
implicit or explicit derivative information, but the function is
assumed differentiable. These techniques were largely rejected
by the mathematical and scientific community in the 1970’s
due to slow solution times, the tendency to get stuck in
local optima, and a lack of mathematical proof behind their
convergences [20]. However, they regained popularity in the
1990’s due to the advent of parallel/distributed computing
technologies that overcame the extensive solving times. Much
stronger mathematical convergence analyses also gave credi-
bility to the algorithms [21].

Modern heuristic methods can also be classified depending
on the nature of the problem that the algorithm is simulating;
for example evolutionary algorithms, and swarm intelligence
based algorithms [22], [23]. Evolutionary algorithms are suited
to real-world problems that feature multiple, and quite often
competing, optimisation objectives [24]. Genetic algorithms,
a subset of evolutionary algorithms, operate on the principal
of natural selection. A population of possible outcomes is
spawned and the fitness of each member of that population
is quantified against a user-specified fitness function, with the
most suitable child going on to seed the next generation [25].
Determining the fitness of a generation to the problem at hand
can be approached in a multitude of ways depending upon the
desired outcome of the problem, such as maximising profit,
minimising solution time, minimising travel time, etc. [26].

There exists numerous strategies for approaching both
single-objective and multi-objective problems. While single-
object problems are typically less complex than multi-
objective, they are still the source of constant development
of strategies to improve their efficacy, such as the adaptive
probabilities widely used from [27] or adaptive traits specific
to an application [28]. The extremely popular nondominated
sorting genetic algorithm II (NSGA-II) [29], [30] has been a
staple of solving multi-objective algorithms for many years,
and has been the focus of attempts at reducing the run-time
complexity of multi-objective tuning [31].

For these problems, there is often no single clear solution.
Instead, these algorithms aim to achieve what is known as
a Pareto-optimal solution [30]. Pareto-optimality infers that
there are no other combinations of parameters in which the

improvement of one individual within the population (in this
case, a model parameter) would not adversely affect at least
one other individual, with no net benefit to the system as a
whole [32]. However, it has been shown that arriving at the
final Pareto-optimal solution from a large number of Pareto-
optimal possibilities, even after ruling out the non-Pareto-
optimal solutions, is a largely subjective process based on the
scaling that each individual has been given by the user [33];
or, more specifically, by the fitness function used to evaluate
the suitability of any given child [34], [35].

Although optimisation algorithms are an extremely diverse
and mature field, there does not appear to be a set standard
researchers can follow for selecting an optimisation algorithm
for their specific problem. Instead, there exist multiple ap-
proaches towards finding optimal solutions, with key factors
such as time-to-solution, solution accuracy, ability to handle
multi-objective, multi-constraint, and multi-modal parameter
sets key factors that drive algorithm selection.

A. Background

The visual processing algorithm tuned in this paper is a
highly-elaborated biologically-inspired optical flow estimation
algorithm that is heavily inspired by the visual pathways of
insects such as flies, bees, and dragonflies. It has applications
in autonomous vehicle localisation and navigation [8], and
derivatives have applications in target detection [36]. The
original baseline algorithm, known as BIV09, can be seen in
Fig. 1(a). Several alterations have previously been made to
BIV09 to form BIV19 (Fig. 1(b)), as reported in [8]. Both of
these algorithms contain models of the photoreceptors (PR),
lamina monopolar cells (LMC), elementary motion detectors
(EMD), medulla-lobular interneurons (MLI), and lobula plate
tangential cells (LPTC), modelled as H1-H5 horizontally-
selective cells. The base algorithm, BIV09, has been shown to
have a synergistic relationship. That is, the performance as a
whole is greater than the sum of the individual components [7].
It has also been shown to have excellent noise rejection
characteristics [37]. It is worth noting that these algorithms are
non-stochastic. That is, for a given input data and parameter
set, the algorithms will produce the same results. Therefore,
in mathematical terms, it is said to be deterministic.

Both BIV09 and BIV19 were applied as rotational velocity
estimators. The dataset on which these algorithms were tuned
consisted of 12-bit monochrome panoramic videos of 16
different scenes captured at 11 different rotational velocities
by a single degree-of-freedom (rotation/yaw about Z axis)
robotic platform. For each velocity and scene pair, the input
frames were processed by both algorithms, and each algorithm
estimates the amount of optic flow energy that was present for
that combination. The full dataset consists of 1001 frames per
recording, and was captured at a nominal frame rate of 100.027
frames per second. Examples of indoor and outdoor scenes
featuring both sparse (large image areas with no information,
such as the sky) and dense feature distributions throughout
the scenes can be seen in Fig. 2. See [8], [38] for full dataset
methodological information.

(a)

A
1

-1
A

Σ

Σ

LPTC

A

A

A
1

-1
A

A

F

MLI

A

F

A

F

A
1

-1
A

A
1

-1
A

EMD

LMC

C
A

F

A
1

-1
A

LMC

C
A

F

A
1

-1
A

PR

A

A

F F

A

A

PR

A

A

F F

A

A

Optics

Optics
Angular
Energy

All
MLI's

All
MLI's

Neighbouring
EMD's

Neighbouring
EMD's

Neighbouring
LMC's

Neighbouring
LMC's

Neighbouring
PR's

Neighbouring
PR's

(b)

x A

F
C x

Σ

Σ
A

A

LPTC

A

F

A

A A

A

A

MLIEMD

A

F

A

F

LMC

C
A

F
C

LMC

C
A

F
C

PR

A

A

F F

A

A

PR

A

A

F F

A

A

Optics

Optics
Angular
Energy

All
MLI's

All
MLI's

Neighbouring
EMD's

Neighbouring
EMD's

Neighbouring
LMC's

Neighbouring
LMC's

Neighbouring
PR's

Neighbouring
PR's

(c)
A

F

F

A

A

A

Variable Temporal Low-Pass Filter

Low-Pass Filtered Divisive Feedback

Exponential Divisive Feedback

Saturating Non-Linearity (Naka-Rushton)

C

A

F

C

Constant Removal

Variable Temporal High-Pass Filter

Spatial High-Pass Filter

Contant Gain

A

F
Temporal Low-Pass Filter

Multiplication

Subtraction

Absolute Value

A

A

A

x

Spatial Low-Pass Filter

Variable Gain

Non-Linearity (Power)

Mean Value

x
Σ

A
1

-1
A

Variable Threshold

Summation

Saturating Non-Linearity (tanh)

Division

Fig. 1. Diagrammatic representation of: (a) The existing biologically-inspired vision algorithm from [7], BIV09; (b) Our further elaborated biologically-
inspired vision algorithm from [8], BIV19; and (c) The legend associated with these diagrammatic representations. The algorithm contains models of the
photoreceptors (PR), lamina monopolar cells (LMC), elementary motion detectors (EMD), medulla-lobula interneurons (MLI), and lobula plate tangential cells
(LPTC) modelled as H1-H5 horizontally-selective cells.2

III. METHODOLOGY

A. Tuning Algorithm Being Used

This work used an Adaptive Genetic Algorithm (AGA) as
outlined in [27]. Due to the non-linear relationship between
each gene, which themselves have a non-linear impact on
model performance, it was entirely expected that this model
would be multi-modal within the solution space.

1) Fitness Function: Arguably the most important aspect of
evolutionary computation algorithms is the fitness function to
which it adheres. We have used a published metric [8], known
as an adjusted geometric score, or Gadj, that quantifies the
ability of an algorithm to statistically discriminate between
optical flow outputs across different scene and velocity pairs.
First, the distinctiveness of a response is calculated:

Di = PPDi ∗
(P50i − P50i−1)

(P50i − P5i) + (P95i−1 − P50i−1)
(1)

Where i is the index of the current rotational velocity, i-1 is
the previous index, D is the distinctiveness score, P5 is the
5th percentile, P50 is the 50th percentile (median), P95 is the
95th percentile, and the goal is max (Di). The PPDi term is
the number of test points per decade, calculated using:

PPDi =
1

log10 (νi) − log10 (νi−1)
(2)

Where νi is the rotational velocity at index i, and νi−1 is the
rotational velocity at index i-1. This correction was required to
account for unevenly spaced sampling velocities. To account
for non-Gaussian distributions of the data, the raw geometric
mean of D, Ḡraw, was calculated across the entire dataset by
means of a natural logarithm transform:

Ḡraw = exp

(
1

Nv − 1

Nv∑
i=2

(
ln (Di)

))
(3)

Where Nv is the number of velocities. Ḡraw is thus a measure
of how the statistical distribution of motion energy responses
differ between test velocities. The geometric confidence inter-
vals were also calculated using a natural logarithm transform
and are used to demonstrate the variability of Ḡraw throughout
the range of tested velocities. The final metric, the adjusted
geometric score Gadj, accounts for the confidence range:

Gadj = Ḡraw − (GU −GL) (4)

Where GU and GL are the upper (95%) and lower (5%)
geometric confidence intervals, respectively. Gadj is a measure

2Adapted from Image and Vision Computing, Volume 92, Phillip S.M.
Skelton, Anthony Finn, Russell S.A. Brinkworth, Consistent estimation of
rotational optical flow in real environments using a biologically-inspired vision
algorithm on embedded hardware, Copyright (2019), with permission from
Elsevier.

Fig. 2. Example scenes from the panoramic rotational motion dataset used
from [8] after they have been processed by the BIV19 photoreceptor model
and adjusted for display purposes. Please see online version for full details in
the images, specifically the pixelation caused by the low optical resolution of
180x36. The density of the scenes, namely sparse (large areas of no structure)
and dense (mostly structured), refers to the Local Contrast Factor (LCF)
measurement shown in [8]. Row 1: Sparse outdoor scene (large sections of
sky). Row 2: Dense outdoor scene. Row 3: Sparse indoor scene (large sections
of blank walls). Row 4: Dense indoor scene.

of not only how well an algorithm can discriminate between
test velocities, but also the consistency of those discriminations
across the dataset. It is scale and unit invariant and thus
requires no standardisation of algorithm outputs, allowing for
direct statistical comparison between numerous algorithms.

2) Parent Selection: Stochastic Universal Sampling
(SUS) [39] was used for parent selection. The SUS
method, shown in Fig. 3, samples the population at evenly
spaced intervals with a random starting offset. This method
gives weaker children a chance to become parents, which
may produce a stronger child in the following generation. As
the children were all hermaphroditic, parent selection was
only constrained to being unique between each pair. The
number of children selected as parents using the SUS method
was empirically set to 10% of the population size.

3) Crossover Operation: The probability of the crossover
operation being applied to a parental pair was implemented
as per the work of [27]:

pc =

{
k1 (fmax − f ′) /

(
fmax − f̄

)
, f ′ ≥ f̄

k3, f ′ < f̄
(5)

Where pc is the probability of crossover, k1 and k3 are user-
defined constants, fmax is the maximum population fitness for
that generation, f ′ is the largest fitness of the parental pair, and
f̄ is the mean population fitness. As per the recommendations
in [27], k1 = k3 = 1.0.

The crossover operation was implemented as a 2-parent
uniform crossover where each parent contributed equally to the

0

R

FT

FT / N

F0 F1 F2 F3 F4 F5

Fig. 3. Diagrammatic representation of Stochastic Universal Sampling, where
FT is the total population fitness, Fi denotes the fitness of the ith child in
a list sorted by descending fitness, N is the number of stochastic parents to
be selected, and the random starting point R ∈ R[0, FT /N]. The lower dots
represent the parent selection points.

genome of the child. The crossover points, or k-points, were
calculated using a uniform integer distribution with a pseudo-
random number generator generating an array of binary flags
the length of the genome. If the number of k-points generated
was equal to the number of k-points required — half the
length of the genome in this work — those k-points were used.
This method generated a random set of k-points without bias
towards the higher-order genes that would be present when
trying to force a fixed number of k-points sequentially.

4) Mutation Operation: The mutation operation was imple-
mented in two distinct ways. First, the probability of the
mutation operation being applied to a child was implemented
as per the work of [27]:

pm =

{
k2 (fmax − f) /

(
fmax − f̄

)
, f ≥ f̄

k4, f < f̄
(6)

Where f is the fitness of the child being mutated. As per [27],
k2 = k4 = 0.5 drove the probability of a genome being mutated.
Parents with weaker phenotypes within their generation would
possess a mutation probability that approaches k4, whereas
stronger parents are capped at k2. To disrupt the gene pool, a
global mutation of 0.5% probability was applied.

5) Premature Termination: For a child to be a valid member
of the population, it must phenotype to a positive, non-zero
fitness. To optimise the processing throughput of the tuning
process, the suitability of each child is periodically examined.
After all scenes at a given velocity have been processed by
the child, the percentiles of the responses, which forms a part
of (1) which is a component of the fitness score calculated
using (4), can be used to validate the continued existence of
that child. If the 5th percentile of the responses falls below
0, then the child is terminated. A child could be prematurely
terminated anywhere from iv = 1 through to iv = Nv , but was
most likely to occur at iv = 1, as shown later in Sec. IV-F.

B. Genome

The genome for this study consisted of 36 unique genes
that represented different parameters of the computer vision
algorithm being tuned. These genes were all represented as
IEEE-754 32-bit floating-point numbers to match the com-
puter vision algorithm implementation. Genes were encoded

to fixed-point numbers and decoded back to floating-point
numbers similarly to Alg. 1 for all gene generation and
uniqueness checking operations.

1) Genome Boundaries: The majority of genes, although
presenting varying levels of epistasis with other genes, did
not have strongly linked boundary conditions with other
genes. This was due to the non-linear relationships between
the individual component models within the algorithm; and
even within the individual component models there are non-
linear relationships between mathematical functions. However,
certain genes have direct relationships to surrounding genes,
such as a maximum gain following a minimum gain, where
the maximum gain must be a higher value than the minimum
gain to avoid signal inversion or exponential runaway.

For each gene in the genome, the boundaries were set in
one of two ways. First, the majority of boundaries were set
based on known mathematical limitations, such as that which
occurs in a temporal low-pass filter:

yi = αxi + (1 − α) yi−1 (7)

Where yi is the filtered output at frame index i, xi is the
measured value of the system being filtered at frame index i,
yi−1 is the filtered output at the previous frame index, and α
is the smoothing factor given by:

α =
2πfc

2πfc + fs
(8)

Where fs is the sampling frequency (in this case frame rate)
and fc is the cut-off frequency of the filter. By definition
0 ≤ α ≤ 1, however, the gene boundaries were set to
0.001 ≤ α ≤ 1.251 as α = 0 is contextually inappropriate,
α > 1.0 was clamped to 1.0 as this provided a 20% chance
that the filtering would be disabled, and this provided equal
spacing between boundaries (human readability). See results
in Sec. IV-E, specifically Fig. 8a, for representation of this.

Another mathematical constraint is a linear gain. It may
be desirable to attenuate (g <1.0), maintain (g = 1.0), or
amplify (g >1.0) a signal. While exact signal magnitude is
often less important than the mean or median in the floating-
point domain, follow-on mathematical operations, such as an
offset removal or Naka-Rushton non-linearity transform, have
specific signal operating ranges required for correct operation.

The second kind of boundary condition is arbitrary values.
Unlike mathematical boundaries, an offset removal or interme-
diate gain are generally not mathematically bounded. Instead,
their boundaries are set based on an understanding of the
behaviour of the computer vision algorithm, and are constantly
adjusted based on the behaviour of the tuning.

While the specific alleles of some genes could be informed
based on biological recordings, as was the case with many of
the photoreceptor values used in historical models [40], this
assumes 100% mimicry of the biological system; something
that is not currently technologically possible.

2) Genome Seeding: For studies where the genomes of all
children within the first generation are randomly generated,

Algorithm 1: Generation of uniformly distributed random
floating-point number between boundaries.

Input : BL,F - Floating-point lower boundary.
Input : BU,F - Floating-point upper boundary.
Input : S - Number of uniform steps.
Input : P - Precision of float-to-int conversion.
Output : RF - Random float uniformly distributed in

[BL,F , BU,F]

1 Convert boundaries to integer representations:
BL,I , BU,I ← P ∗ (BL,F , BU,F)

2 Generate uniformly random integer: XI ∈ N [0, S]
3 Calculate integer representation of random float:

RI ← BL,I +XI ∗ (BU,I −BL,I) /S
4 Convert back to float representation: RF ← RI/P

each gene had a random value assigned using Alg. 1. Certain
studies, discussed later, may have used the genome of a child
from a previous study as the seed.

3) Child Uniqueness: Uniqueness of each child was enforced
both within the current generation, and against all previ-
ous children that failed to phenotype to a positive fitness3.
Although elitism was not directly implemented, it was not
explicitly forbidden, so the genome of a child that phenotyped
to a positive fitness can appear in a later generation.

4) Gene Behaviour Types: Throughout the tuning process,
there are different types of behaviour that genes can express.
In this research, these are defined as 3 distinct types.

Type A responses occur when a gene prefers a value that
is comfortably within the boundaries, ensuring that sufficient
room for exploration exists around the operating point that has
been determined to be appropriate for that specific genome.

Type B responses occur when a gene has strict mathematical
boundaries. For these genes, having a preferential value that
is close to, or even on, a boundary is perfectly valid. For
example, when the leakiness of a high-pass filter, that is an
intentionally non-perfect filter that allows some percentage of
DC to pass-through, has been removed (gene = 0.0).

Type C responses occur when a gene has very little, or no,
impact on algorithm performance. This tends to occur in situ-
ations where parameter sections in components of the model
render a particular gene irrelevant. For example, removal of a
constant DC offset is inconsequential if a following high-pass
filter is ideal and removes all DC components.

C. Tuning Phases

Three distinct phase of work were undertaken for this paper.
Each population in each phase consisted of 2000 children.
Phase 1 consisted of extensive open-ended tuning of the
existing baseline BIV09 algorithm to provide a foundation
against which the improvements made to form BIV19 could
be gauged. Phase 2 consisted of 30 unique studies, each

3There may be machine-specific errors in IEEE-754 representations, for ex-
ample 15.2001 can be represented as 15.20009994..., but genome uniqueness
was implemented in the integer domain as 15.20009994... rounds to 152001
after integer promotion (10E3 promoter) irrespectively.

containing 2000 children per generation. Due to the significant
algorithmic changes implemented on BIV09 to form BIV19,
the initial population of all 30 studies were randomised.
Finally, Phase 3 consisted of an open-ended continuation of
the strongest child from Phase 2, using it as the seed for a
longitudinal study. This provided the means to analyse the
steady-state behaviour of our tuning algorithm, as well as tune
the maximum fitness from the BIV19 algorithm.

The computational resources required for Phase 1 were
satisfied by a 24-core computational server over the course
of ∼6 weeks. The extensive resources required to undertake
Phase 2 were provided by the University of South Australia’s
High Performance Computing cluster, where an allocation of
280 computational cores for 336 hours walltime (14 days) was
provided. Several study parameters, shown in Table I, were set
around this allocation. Finally, Phase 3 was again undertaken
on a local server over ∼4 weeks. While the dataset analysed
has 1001 frames available for each scene and velocity pair,
only frames 0 to 200 were used as, from previous work, ∼200
frames are known to provide sufficient duration for the short-
term adaptive elements within BIV19 to stabilise [8].

D. Software Libraries

The C++ API of the OpenCV computer vision library
(version 4.1.0), was used for both BIV09 and BIV19. The
genetic algorithm was implemented from scratch in C++11-
compliant code, with OpenMPI 4.0.1 providing the means to
utilise distributed computing resources.

IV. RESULTS

A. Tuning Phase 1

Phase 1 commenced with BIV09 having a baseline fitness
of 5.6 from previous work [8]. BIV09 was then tuned for 350
generations in total. Study termination was manually deter-
mined by ensuring all genes were exhibiting the appropriate
type of behaviour, and by analysing the maximum fitness

TABLE I
SEVERAL PARAMETERS USED THROUGHOUT THE WORK PRESENTED IN

THIS PAPER. PHASE 2, THE EXTENSIVE WIDESPREAD STUDY, HAD
ADDITIONAL PARAMETERS RELATING TO RESOURCE ALLOCATIONS.

Description Key Value

Number of Genes per Child Ngenes 36

Number of Velocities per Child Nv 11
Number of Scenes per Velocity Nsc 16
Number of Frames per Scene Nf,sc 201
∴ Maximum Frames per Child Nf,c 35,376

Number of Children per Generation Nc 2,000
∴ Maximum Frames per Generation Nf,g 70,752,000

Number of Generations per Study Ng 200
∴ Maximum Frames per Study Nf,st 14,150,400,000

Parameters Specific to Phase 2

Number of Studies Nst 30
∴ Maximum Frames Studied Nf,tot 424,512,000,000

Number of CPU Cores Available Ncpu 280
Walltime Available tw 336 hours

∴ Total CPU Time Available tcpu 94,080 hours

(a)

0.0

0.5

1.0

M
ot

io
n

En
er

gy
 (A

U
) A

B
C
D
E
F
G
H

I
J
K
L
M
N
O
P

(b)

1 10 100
Rotational Speed (deg/s)

0.0

0.5

1.0

M
ot

io
n

En
er

gy
 (A

U
) A

B
C
D
E
F
G
H

I
J
K
L
M
N
O
P

Fig. 4. Characteristic algorithm response curves for: (a) Baseline model
performance for the existing biologically inspired vision algorithm, BIV09,
using default parameters from literature [7], producing a fitness of 5.600; and
(b) Tuned output of BIV09, producing a fitness of 6.515. Legend entries (A-P)
denote anonymous scenes within the dataset of [8].

progression over time. The maximum fitness once tuned was
6.515; an improvement of 16.3%. Comparing the fitness of
ig = 350 to ig = 330, a change of ∆f20 = -0.032 was
observed. Looking further into the past, changes of ∆f40 = -
0.015, ∆f60 = -0.025, ∆f80 = 0.039, and ∆f100 = 0.053 were
observed. These two factors — suitable genome boundaries
and stability of the fitness over time — resulted in termination
of this phase. The characteristic response curve for the baseline
BIV09 model can be seen in Fig. 4(a), and BIV09 at the
completion of Phase 1 is shown in Fig. 4(b). Visually compar-
ing the shape of the responses between the default and tuned
BIV09 outputs, it can be seen that the tuned BIV09 output
presents as more of a linear response on the lin-log graph
shown. The distribution of the responses at each velocity are
also tighter, which is reflected in the improved fitness score.

B. Tuning Phase 2

Phase 2 commenced with 30 independent and randomly
generated populations. The fitness response of each study over
time can be seen in Fig. 5. From their random starting popula-
tions at ig = 1, each study rapidly transitioned to a landscape of
higher fitness. By ig = 11, all populations achieved a fitness
greater than 4.0. By ig = 50, all populations exceeded 5.0.
At the end of ig = 200, the minimum fitness was 5.991, the
mean was f̄max = 6.794 ± 0.460, and the maximum was
7.449. Comparing the mean fitnesses at ig = 200 to ig = 180,
∆f̄20 = 0.025, shows only minor improvements. Looking
further back, ∆f̄40 = 0.092, ∆f̄60 = 0.163, ∆f̄80 = 0.256,
and ∆f̄100 = 0.362, the fitness improvement is slowing, but
has not reached steady-state. The mean of the population at
each generation can also be seen to be increasing, showing
that diversity throughout the population is being maintained.

0 25 50 75 100 125 150 175 200
Generation (#)

0.0

2.5

5.0

7.5
Fi

tn
es

s (
A

U
)

Max Mean Max-Mean

Fig. 5. Strongest child fitness (Max), mean population fitness (Mean), and
distance of the mean fitness to the maximum fitness (Max-Mean) for Tuning
Phase 2. A total of 30 independent studies were undertaken, all of which had
random starting genomes for all 2000 children in each study population. Each
independent study rapidly transitions from a low fitness at ig = 1 through to
a continually improving fitness by ig = 200. The mean population fitness
tracks the maximum, showing that we are maintaining diversity throughout
the entire population.

C. Tuning Phase 3

Phase 3 commenced with the strongest child from Phase
2 (strongest child from Study #24) as the initial seed. The
characteristic response curve of the strongest genome from
Phase 3, and thus the most optimal response of this paper,
can be seen in Fig. 6, which produced a fitness of 7.547.
Comparing the fitness at ig = 200 to ig = 180, ∆f20 = -
0.007, shows no meaningful change in fitness. Looking further
back, ∆f40 = 0.029, ∆f60 = -0.064, ∆f80 = -0.039, and
∆f100 = -0.027, it can be seen that the fitness has reached
Pareto-optimality, where no change to one gene can improve
the overall fitness. The fitness of 7.547 is a 15.8% increase
over the tuned BIV09, and a 2.68% increase on the previously
published methodological paper for BIV19 [8] which used a
single longitudinal study to loosely tune the genome, but did
not elaborate on the tuning or take the tuning to steady-state
as this paper has done. This difference is within an acceptable
error for repeated independent studies of an algorithm this
complex, with factors such as genome boundaries and stepping
the cause. Looking at the shape of the BIV19 response, it can
be seen that a sigmoidal response on a lin-log graph is present,
with both minimum and maximum responses being asymptotic
with maximal slope in the middle of the range.

D. Genomic Landscapes

Due to the significant algorithmic changes between BIV09
and BIV19, the genomic landscape for BIV09 will not be
shown as it bears no meaningful relationship nor direct
comparison to the landscapes of BIV19. For BIV19, looking
at the genomes of the strongest child from each individual
study from Phase 2 (Fig. 7(a)), it can be seen that each
independent study tended towards a very similar genomic
landscape. Some variability in the genome was expected from
a highly-elaborated biologically-inspired algorithm, where
multi-modality of the solutions was an expected response.

The landscape of the strongest child from each gener-
ation of the strongest study from Phase 2, Study #24, is
shown in Fig. 7(b). The older generations (darker colour) had
genomes that were quite different from the younger genera-
tions (brighter colour). Certain genes expressed very strong

1 10 100
Rotational Speed (deg/s)

0.0

0.5

1.0

M
ot

io
n

En
er

gy
 (A

U
) A

B
C
D
E
F
G
H

I
J
K
L
M
N
O
P

Fig. 6. Characteristic algorithm response curves for the tuned output of our
BIV19 algorithm, producing a fitness of 7.547. Legend entries (A-P) denote
anonymous scenes within the dataset of [8].

preferences for a given value. For example, Gene #31 has
a strong preference regardless of the immediately preceding
gene (#30), and the immediately following gene (#32).

Lastly, the landscapes from Phase 3 are shown in Fig. 7(c).
These used the strongest child from Phase 2 (Study #24) as
the initial population seed. It should be noted that the genome
boundaries from Phase 2 were adjusted to improve resolution
on certain genes, so the genomic landscape appears slightly
different. The initial seed, which had a fitness of 7.449, had a
couple of genes (8 and 9, for example) that further improved
on the subsequent study, peaking at a fitness of 7.547.

E. Gene Behaviour

Critically analysing the responses of 36 genes is outside the
scope of this paper. Instead, 4 individual genes that display
one of the characteristic behaviours shown in Sec. III-B4 will
be shown. Exact mathematical and algorithmic explanations,
including in-depth analyses of all 36 genes and their operating
ranges, will be reported at a later date.

The first gene, gene 03 (Fig. 8(a)), represents the smoothing
factor α of a filter. This is a perfect example of the adaptability
of the biologically-inspired algorithm. While there is a clear
allele peak (∼0.24), there is a wide range of alleles (0 to
∼0.8) that allow the algorithm to function correctly, albeit in
a sub-optimal state. Once the filter reaches the point where it
is no longer enabled (shaded section from 0.8 to 1.0, refer to
Sec. III-B1), the algorithm enters a drastically degraded state.

The second gene, gene 16 (Fig. 8(b)), represents the amount
of DC pass-through that a high-pass filter will allow. As per
Sec. III-B4, this gene exhibits Type B behaviour, where the
preferential allele is on the lower boundary (0.0), meaning a
perfect high-pass filter is preferred. However, as can be seen,
several of the older generations had a different response, where
the filter allowed varying levels of DC to pass through while
still maintaining high operational fitness.

The third gene, gene 20 (Fig. 8(c)), represents the mid-
point of a Naka-Rushton non-linearity adjustment on the
DC component allowed through a high-pass filter. This gene
exhibits Type C behaviour as the filter is having no impact
on the performance of the algorithm. With a high-pass filter
being tuned to be perfect (no DC pass-through), a dynamic
DC pass-through is inconsequential. This is an example of a

(a)

0.00
0.25
0.50
0.75
1.00

N
or

m
al

is
ed

A
lle

le
 (A

U
)

010

020

030

St
ud

y
(#

)

(b)

0.00
0.25
0.50
0.75
1.00

N
or

m
al

is
ed

A
lle

le
 (A

U
)

050
100
150
200

G
en

er
at

io
n

(#
)

(c)

1 4 7 10 13 16 19 22 25 28 31 34
Gene (#)

0.00
0.25
0.50
0.75
1.00

N
or

m
al

is
ed

A
lle

le
 (A

U
)

050
100
150
200

G
en

er
at

io
n

(#
)

Fig. 7. Genomic landscapes for our BIV19 algorithm, all normalised to [0.0,
1.0] for display purposes, for: (a) Overall strongest child from each study
in Phase 2 (30 independent and randomly seeded studies), not necessarily
occurring at ig = 200; (b) Generational output of the strongest child from
all studies in Phase 2, specifically Study #24; and (c) Generational output
of Phase 3, where the strongest child from Phase 2 was used as the seed
of the initial population. Note that several genome boundaries were adjusted
between (b) and (c) to improve the response of certain genes (see genes 5 -
10 for example), therefore the landscapes will appear different.

redundant gene where the original purpose of the gene has
been subverted by the operation of another gene.

The fourth gene, gene 22 (Fig. 8(d)), represents the factor
used in a non-linearity adjustment. This gene exhibits Type A
behaviour, where it can be seen there is a clear preference for
the allele (∼0.48) while sufficient distance is provided to the
boundaries to allow for exploration.

Although BIV09 and BIV19 have identical photoreceptor
(PR) models, and near-identical lamina monopolar cell (LMC),
models (see Sec. II-A, Fig. 1), the alleles for these two
models were drastically different between the two. This was an
expected result due to the synergistic behaviour of the models
as a whole algorithm. Specifically, the epistasis between seem-
ingly unrelated genes, where one gene can be influential in, or
influenced by, a gene from a different part of the algorithm.
This kind of non-linear and non-direct interaction is extremely
difficult to account for manually. However, it is something that
an evolutionary algorithm excels at handling.

F. Processing Statistics

For Phase 2, the average time taken to phenotype each
generation was 191.9 s ± 11.3 s. Given the number of
frames processed per generation (61,703,548 ± 1,937,040),
this results in a throughput of ∼320,000 frames per second,
or ∼1,140 frames per second, per core. In contrast, in a real-
world deployment on an embedded computer, BIV19 (without
pre-processing stages, similarly to the tuning) achieved ∼400

(a)

0.0

2.5

5.0

7.5

Fi
tn

es
s (

A
U

)

050
100
150
200

G
en

er
at

io
n

(#
)

(b)

0.0

2.5

5.0

7.5

Fi
tn

es
s (

A
U

)

050
100
150
200

G
en

er
at

io
n

(#
)

(c)

0.0

2.5

5.0

7.5

Fi
tn

es
s (

A
U

)

050
100
150
200

G
en

er
at

io
n

(#
)

(d)

0.0 0.2 0.4 0.6 0.8 1.0
Normalised Allele (AU)

0.0

2.5

5.0

7.5

Fi
tn

es
s (

A
U

)
050
100
150
200

G
en

er
at

io
n

(#
)

Fig. 8. Example outputs for selective genes from the strongest child of
Phase 2. Fitness was calculated using (4). As elitism was not employed, older
generations can produce a higher fitness. Full explanation of behaviour types
can be found in Sec. III-B. Note that fitness resolution was 3 decimal points
in practice, however have been decimated to 1 decimal point to facilitate
graphing. (a) Gene 03, the smoothing factor α of a filter, where the shaded
section (∼0.8-1.0) represents the allele values where the filter would have
been disabled; (b) Gene 16, the amount of DC that is allowed to pass through
a high-pass filter, which exhibits Type B behaviour (allele settled on genome
boundary); (c) Gene 20, a linear signal adjustment factor, which exhibits Type
C behaviour (allele value has no impact on algorithm fitness); and (d) Gene
22, a non-linearity correction, which exhibits Type A behaviour (allele is
comfortably within genome boundary).

frames per second, reducing to ∼125 frames per second for
the entire processing pipeline, allowing for real-time operation
[8]. Due to expensive mathematical operations in BIV09 that
were removed as part of the improvements to form BIV19,
Phase 1 throughput was only ∼600 frames per second, per
core, which normalises to ∼500 frames per second, per core,
for the different computing systems used.

The vast majority of children (85.64% ± 2.36%) within
the Phase 2 studies went full-term, while a relatively high
percentage (13.94% ± 2.33%) of children were terminated
after failing to phenotype correctly after processing the first
velocity. While some terminations did occur at other veloc-
ities, their cumulative percentage was very low (0.42% ±
0.12%). The total number of frames processed in Phase 2 was
370,221,292,176, or 12,306,074,027 ± 294,558,701 per study,
compared to the 424,512,000,000 available had all children
phenotyped positively.

V. DISCUSSION

The work presented here has shown that a complex
biologically-inspired computer vision algorithm, featuring 36
parameters with both non-linear responses and interactions,
can be tuned with evolutionary algorithms. A baseline algo-
rithm, BIV09 [7], has a fitness of 5.6 from previous work [8].
In previous work, extensive changes were made to BIV09 to
form BIV19, and we compared a non-optimally tuned version
of BIV19 to a non-optimally tuned BIV09 algorithm and
other state-of-the-art algorithms [8]. To accurately quantify the
impact of the changes, BIV09 was tuned to Pareto-optimality
in this work, achieving a fitness of 6.515; a 16.3% increase.
BIV19 was then also tuned to a state of Pareto-optimality,
achieving a fitness of 7.547. Not only is this a 15.8% increase
over the tuned BIV09 and a 34.8% increase over the baseline
BIV09, BIV19 executes ∼3 times faster than BIV09 on a real-
world real-time system [8]. The slight improvement of 2.68%
reported here for BIV19 compared to previous results [8] is
caused by different genome boundaries and, as the aim of
this paper was not to directly improve upon the previously
published result but to validate the methodology used, is
acceptable.

Unlike a binary or fixed-point genome, the floating-point
genome presented a few challenges. First, we had to ensure
enough resolution between boundaries was provided while
restricting the solution space. Exploratory work could be
performed at a lower stepping (50), with later studies at higher
steps (200). In this work, we empirically chose 100 steps as
this was a balance between enough resolution to see operating
point details (Fig. 8(d)), what occurs when a filter is disabled
(Fig. 8(a)), and decreased convergence times.

Determination of tuning termination presented another prob-
lem. With a binary genome, there are 2 possible states; with
an 8-bit genome, 256. With a 32-bit floating-point genome this
limitation still exists, but to a much lesser extent. A typical re-
sponse might be to increase the stepping between boundaries,
or restrict the boundaries. While this will drive the fitness
higher, it can also decrease generalisability. This problem is
common to all forms of machine learning, where performance
is dependent upon the diversity of the training dataset [41].
However, for a computer vision algorithm, generalisability
might not be important, depending on how specific the task is
that is being addressed. This is where a deep understanding
of the algorithm being tuned, the application space, and the
tuning algorithm itself, is mandatory. While possible to tune
the algorithm for higher performance, there is not a single, or
even a small, group of parameter values that are uniquely high
performing. Rather, there exists a large cohort of parameter
values that result in high fitness. This diversity of parameters
yielding good results indicates that the system is not likely
to be uniquely tuned to this dataset. This has previously been
explored where a validation scene different to the training data
was used to quantify performance [38].

While the unsuitable children are tracked within each study
and uniqueness was brutally enforced at all times, repeated

instances of the tuning could benefit in having awareness of
historically unsuitable children, known as a priori knowledge
transfer [42]. This a priori knowledge would remove the re-
evaluation of unsuitable children, thereby decreasing solution
times. Quantifying the improvement in solution time, however,
is not trivial due to the large number of genome combinations
for an algorithm as complex as BIV19.

As with lots of machine learning tasks, parameter limitations
are often determined by available resources, ultimately cost. In
this work, the time taken to process a generation is variable
as there is extensive spatial processing within the computer
vision algorithm, and the size and strength of these spatial
filters is open to adjustment. This, combined with premature
termination of unsuitable children, makes it practically im-
possible to optimise the number of children to the resources
available other than Nc � Ncpu. This lack of generalisability
in parameter selection is a well-known problem [43].

This work has focussed on a single objective — fitness
function maximisation — however multi-objective tuning is
often employed in computer vision research [44], [45]. Due to
the modularity of BIV09 and BIV19, being they are comprised
of distinct and separable models, development of parallel
vision pathways can also occur. For example, the small target
detection pipeline of many insects shares the photoreceptor
(PR) and lamina monopolar cells (LMC) models with the
motion estimation pipeline [36]. Each pipeline could be tuned
individually (single-objective), or they could be tuned in
parallel (multi-objective), where each pipeline shares common
PR and LMC genes. This level of interoperability is more
biologically plausible, and is the subject of ongoing work.

VI. CONCLUSION

This paper has shown the usefulness of a biologically-
inspired evolutionary algorithm in guiding the development
and tuning of an elaborated biologically-inspired computer
vision algorithm. Working with an algorithm that has 36
unique parameters, most having non-linear impacts on algo-
rithm performance and non-linear interactions with each other,
presents some unique challenges for operational tuning. While
the value of some genes can be informed from biological
recordings, that is only applicable if the digital model is
100% biologically accurate. This is something that is currently
difficult to achieve both neurophysiologically (particularly the
LMC, EMD, and MLI stages), as well as technologically,
meaning using parameters derived from neurophysiological
recordings is not currently feasible. As a result, educated
guesses to seed a genetic algorithm is one of the only viable
approaches. However, by taking inspiration from other aspects
of biology, specifically evolution, the continued development
of complex algorithms can progress with the knowledge that
their parameter sets can in fact be tuned.

ACKNOWLEDGEMENTS

The authors declare that they have no conflicts of interest.
The authors thank the University of South Australia for
their donation of extensive computational resources on their

High Performance Computing cluster to realise this work.
PSMS was supported by an Australian Government Research
Training Program Scholarship.

REFERENCES

[1] C. V. Stewart, “Robust parameter estimation in computer vision,” SIAM
review, vol. 41, no. 3, pp. 513–537, 1999.

[2] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2818–2826.

[3] G. Elsayed, S. Shankar, B. Cheung, N. Papernot, A. Kurakin, I. Good-
fellow, and J. Sohl-Dickstein, “Adversarial examples that fool both
computer vision and time-limited humans,” in Advances in Neural
Information Processing Systems, 2018, pp. 3910–3920.

[4] D. B. Fogel, “An evolutionary approach to the traveling salesman
problem,” Biological Cybernetics, vol. 60, no. 2, pp. 139–144, 1988.

[5] C.-J. Du and D.-W. Sun, “Learning techniques used in computer vision
for food quality evaluation: A review,” Journal of food engineering,
vol. 72, no. 1, pp. 39–55, 2006.

[6] R. K. Mohanta and B. Sethi, “A review of genetic algorithm application
for image segmentation,” Int. J. Comput. Technol. Appl, vol. 3, no. 2,
pp. 720–723, 2011.

[7] R. S. Brinkworth and D. C. O’Carroll, “Robust models for optic flow
coding in natural scenes inspired by insect biology,” PLoS computational
biology, vol. 5, no. 11, p. e1000555, 2009.

[8] P. S. Skelton, A. Finn, and R. S. Brinkworth, “Consistent Estimation
of Rotational Optical Flow in Real Environments using a Biologically-
Inspired Vision Algorithm on Embedded Hardware,” Journal of Image
and Vision Computing, pp. 1–8, 2019.

[9] N. Franceschini, J.-M. Pichon, and C. Blanes, “From insect vision
to robot vision,” Philosophical Transactions of The Royal Society Of
London. Series B: Biological Sciences, vol. 337, no. 1281, pp. 283–294,
1992.

[10] F. Ruffier and N. Franceschini, “Optic flow regulation: The key to
aircraft automatic guidance,” Robotics and Autonomous Systems, vol. 50,
no. 4, pp. 177–194, 2005.

[11] J. Serres, D. Dray, F. Ruffier, and N. Franceschini, “A vision-based
autopilot for a miniature air vehicle: Joint speed control and lateral
obstacle avoidance,” Autonomous robots, vol. 25, no. 1-2, pp. 103–122,
2008.

[12] A. Schwegmann, J. P. Lindemann, and M. Egelhaaf, “Depth information
in natural environments derived from optic flow by insect motion
detection system: A model analysis,” Frontiers in computational neu-
roscience, vol. 8, p. 83, 2014.

[13] Z. Michalewicz and M. Schmidt, “Report on Planning/Artifical intelli-
gence techniques and some research issues that are potentially applicable
to the UAV pre-mission planning problem,” Non-Public Report; Contact
Author(s) for Information, 2006.

[14] R. Hooke and T. A. Jeeves, ““Direct Search”Solution of Numerical and
Statistical Problems,” Journal of the ACM (JACM), vol. 8, no. 2, pp.
212–229, 1961.

[15] J. A. Nelder and R. Mead, “A simplex method for function minimiza-
tion,” The computer journal, vol. 7, no. 4, pp. 308–313, 1965.

[16] R. M. Lewis, V. Torczon, and M. W. Trosset, “Direct search methods:
Then and now,” Journal of computational and Applied Mathematics, vol.
124, no. 1-2, pp. 191–207, 2000.

[17] T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct
search: New perspectives on some classical and modern methods,” SIAM
review, vol. 45, no. 3, pp. 385–482, 2003.

[18] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Conver-
gence properties of the Nelder–Mead simplex method in low dimen-
sions,” SIAM Journal on optimization, vol. 9, no. 1, pp. 112–147, 1998.

[19] F. Walters, “Sequential simplex optimization-An update,” 1999.
[20] W. Swann, “Direct search methods,” Numerical methods for uncon-

strained optimization, pp. 13–28, 1972.
[21] V. Torczon, “On the convergence of the multidirectional search algo-

rithm,” SIAM journal on Optimization, vol. 1, no. 1, pp. 123–145, 1991.
[22] D. Pham and D. Karaboga, Intelligent Optimisation Techniques: Genetic

Algorithms, Tabu Search, Simulated Annealing and Neural Networks.
Springer Science & Business Media, 2012.

[23] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for nu-
merical function optimization: Artificial bee colony (ABC) algorithm,”
Journal of global optimization, vol. 39, no. 3, pp. 459–471, 2007.

[24] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
John Wiley & Sons, 2001, vol. 16.

[25] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
learning,” Machine learning, vol. 3, no. 2, pp. 95–99, 1988.

[26] C. Sharma, S. Sabharwal, and R. Sibal, “A survey on software testing
techniques using genetic algorithm,” arXiv preprint arXiv:1411.1154,
2014.

[27] M. Srinivas and L. M. Patnaik, “Adaptive probabilities of crossover and
mutation in genetic algorithms,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 24, no. 4, pp. 656–667, 1994.

[28] M. Mahmoodabadi and A. Nemati, “A novel adaptive genetic algorithm
for global optimization of mathematical test functions and real-world
problems,” Engineering Science and Technology, an International Jour-
nal, vol. 19, no. 4, pp. 2002–2021, 2016.

[29] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
NSGA-II,” in International Conference on Parallel Problem Solving
from Nature. Springer, 2000, pp. 849–858.

[30] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE transactions on evo-
lutionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[31] M. T. Jensen, “Reducing the run-time complexity of multiobjective EAs:
The NSGA-II and other algorithms,” IEEE Transactions on Evolutionary
Computation, vol. 7, no. 5, pp. 503–515, 2003.

[32] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A
comparative case study and the strength Pareto approach,” IEEE trans-
actions on Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999.

[33] I. Das, “A preference ordering among various Pareto optimal alterna-
tives,” Structural optimization, vol. 18, no. 1, pp. 30–35, 1999.

[34] A. Baresel, H. Sthamer, and M. Schmidt, “Fitness function design
to improve evolutionary structural testing,” in Proceedings of the 4th
Annual Conference on Genetic and Evolutionary Computation. Morgan
Kaufmann Publishers Inc., 2002, pp. 1329–1336.

[35] A. L. Nelson, G. J. Barlow, and L. Doitsidis, “Fitness functions in
evolutionary robotics: A survey and analysis,” Robotics and Autonomous
Systems, vol. 57, no. 4, pp. 345–370, 2009.

[36] A. Melville-Smith, A. Finn, and R. S. Brinkworth, “Enhanced micro
target detection through local motion feedback in biologically inspired
algorithms,” in 2019 International Conference on Digital Image Com-
puting: Techniques and Applications (DICTA). IEEE, 2019.

[37] R. S. Brinkworth and D. C. O’Carroll, “Bio-inspired model for robust
motion detection under noisy conditions.” IEEE, 2010, pp. 1–8.

[38] P. S. Skelton, A. Finn, and R. S. Brinkworth, “Real-Time Visual
Rotational Velocity Estimation Using a Biologically-Inspired Algorithm
on Embedded Hardware,” in 2017 International Conference on Digital
Image Computing: Techniques and Applications (DICTA). IEEE, 2017,
pp. 1–8.

[39] J. E. Baker, “Reducing bias and inefficiency in the selection algorithm,”
in Proceedings of the Second International Conference on Genetic
Algorithms, vol. 206, 1987, pp. 14–21.

[40] E.-L. Mah, R. S. Brinkworth, and D. C. O’Carroll, “Implementation
of an elaborated neuromorphic model of a biological photoreceptor,”
Biological cybernetics, vol. 98, no. 5, pp. 357–369, 2008.

[41] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep
neural networks,” IEEE Transactions on Evolutionary Computation,
2019.

[42] W. Y. Choy and B. C. Sanctuary, “Using genetic algorithms with a priori
knowledge for quantitative NMR signal analysis,” Journal of Chemical
Information and Computer Sciences, vol. 38, no. 4, pp. 685–690, 1998.

[43] F. Lobo, C. F. Lima, and Z. Michalewicz, Parameter Setting in Evolu-
tionary Algorithms. Springer Science & Business Media, 2007, vol. 54.

[44] J. Delpiano, L. Pizarro, R. Verschae, and J. Ruiz-del-Solar, “Multi-
objective optimization for characterization of optical flow methods,”
in 2014 International Conference on Computer Vision Theory and
Applications (VISAPP), vol. 2. IEEE, 2014, pp. 566–573.

[45] L. Shao, L. Liu, and X. Li, “Feature learning for image classification
via multiobjective genetic programming,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 25, no. 7, pp. 1359–1371, 2013.

