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Abstract—In this paper, we propose a new method for large
scale multi-objective optimization based on symmetric points
search and variable grouping, named SSVG. The main idea is to
use variable grouping scheme first to divide the original decision
space into several subspaces. In each subspace, the symmetric
points of the points in population form some potential search
directions. Using the search directions, the possibility of finding
the optimal solutions will increase greatly. Moreover, in order
to decrease the dimension of problem, a new transformation
function which transforms the decision space into a lower dimen-
sion search space (weight vector space) is designed. Furthermore,
experiments are conducted on some benchmarks with 200, 500
and 1000 decision variables and the proposed algorithm SSVG
is compared with three state-of-the-art algorithms: MOEA/DVA,
WOF and LSMOF. The results show that the proposed algorithm
outperforms the compared algorithms in term of convergence and
diversity.

Index Terms—large-scale multi-objective optimization, vari-
able grouping, symmetric point, dimension reduce, problem
transformation

I. INTRODUCTION

Multi-objective optimization problems (MOPs) exist com-
monly in real world. With the increasing of the factors of the
problems, the scale of the mathematical model constructed
becomes larger and larger. These problems usually includes
a large number of decision variables and are named large-
scale multi-objective optimization problems. The features of
these problems are that the decision space is very huge and
the objectives conflict with each other. Generally speaking,
large-scale MOPs are much more difficult to be solved than
those with a few decision variables, since the search space
exponentially increases with the increasing of the number of
decision variables, which causes the so called the curse of
dimensionality. Therefore, it is very challenging for multi-
objective evolutionary algorithms to exploit the search space
efficiently [1].

Up to date, many algorithms have been proposed to solve
the large-scale multi-objective optimization problems. These
algorithms can be classified into three categories as follows.
The algorithms in the first category are based on decision
variable grouping. They apply grouping mechanism to divide

the decision variables into several groups, then optimize each
group respectively. For instance, CCGDE3 [2] randomly di-
vides the decision variables into some equal groups, and then
uses GDE3 [3] to optimize each group. The algorithms in
the second category are based on variable interaction analysis.
The variable interaction analysis method divides the decision
variables into different groups, and in each group we use a
specific optimization strategy. For example, MOEA/DVA [4]
divides decision variables into three groups, i.e., convergence-
related, diversity-related and both convergence and diversity-
related. And then they perform different optimization strategies
for different groups. The algorithms in the third category
are based on problem transformation. The large-scale multi-
objective optimization problems are transformed into several
small-scale multi-objective problems. WOF [5] and LSMOF
[6] are two typical algorithms based on reformulation. For
example, WOF divides the decision variables into some groups
first, with every group affiliated with a weight variable. Thus
the number of weight variables is smaller than that of original
variables. And then WOF transforms optimizing the original
variables into optimizing the weight variables. As a result, the
transformed problem is smaller than the original one.

However, these algorithms have some drawbacks. The
variable analysis-based methods consume a large amount of
function evaluations due to the variable analysis. Without any
prior knowledge, the grouping-based method may divide the
decision variables into improper groups. Although the methods
based on transformation decrease the number of dimensions
and the difficulty of solving problems, the directions to search
optimal solutions are not always effective. Furthermore, look-
ing for some efficient search directions is difficult for large-
scale multi-objective optimization problems. Motivated by
this, we propose a method based on symmetric points search
for solving large-scale multi-objective optimization problems.

The rest of this paper is organized as follows. In Section
II, we introduce some related works and our motivation. The
proposed SSVG is presented in Section III. We compare SSVG
with state-of-the-art algorithms by experiments in Section IV.
Finally, the conclusions are made in Section V.
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II. RELATED WORKS AND MOTIVATION

In this section, some basic concepts and definitions about
large-scale multi-objective optimization are explained first.
And then three related large-scale multi-objective optimization
algorithms are briefly introduced. Finally, our motivation is
presented.

A. Some Basic Concepts and Definitions

Definition 1. Multi-objective optimization problems: Many
problems can be modeled as mathematical problems with some
objectives that are always conflict. These problems with 2
or 3 objectives are often called multi-objective optimization
problems (MOPs). They can be formulated as:

Z : minF (x) = (f1 (x) , f2 (x) , . . . , fm (x))

s.t. x ∈ Ω ⊆ Rn (1)

This kind of MOPs maps the decision space Ω =
{x ∈ Rn|g(x) ≤ 0} of dimension n to the objective space M
of dimension m.

Definition 2. Large-scale Multi-objective optimization prob-
lem: If the dimension of the decision space is larger or equal
to 100, an multi-objective optimization problem is called as a
large-scale multi-objective optimization problem.

Since the objectives of MOPs are always conflict with each
other, the algorithms for single objective optimization prob-
lems are no longer effective for multi-objective optimization
problems. The aim of MOPs algorithms is looking for a
Pareto set which makes objectives obtain optimal values as
much as possible. The conflicts between objectives mean that
interdependence exists among some decision variables. That is
to say, if you change one decision variable, the optimal values
of other decision variables will be changed at the same time.
This increases the difficulty to solve this kind of problems.

B. MOEA/DVA

The MOEA/DVA [4] proposed in 2016 applies the interde-
pendence analysis into optimization process, and the decision
variables were divided into three groups: position variables,
distance variables and mixed variables. As its name shown, the
position variable group contains variables which contributes to
convergence, and the distance variables play an important role
in diversity. Decision variables which do not belong the above
two groups are seen as the mixed variables.

Although the MOEA/DVA obtains the interdependence be-
tween decision variables and makes optimization more effec-
tive, the interdependence analysis consume a large amount of
function evaluations. Relatively, the computation resource in
optimization process may be restricted.

C. Weighted Optimization Framework(WOF)

The feature of large-scale multi-objective optimization is the
high dimension of decision variables. In order to reduce the
dimension of the decision space, the weighted optimization
framework (WOF) [7] is first to divide the n dimensional
decision variables (x1, x2, . . . , xn) into γ sub-groups with
γ < n. Each group will associate with a weight variable. And

then the original problem with n dimensional decision space
is transformed into a new problem of weight variables with
γ dimensional weight space. Some metaheuristic optimizers
were employed to optimize weight variables. According to
transformation function, the weight variables can be affiliated
with the original decision variables, changing the original
solutions indirectly. As a consequence, the optimization of
the weight variable in the same group can be regarded as the
optimization of a subproblem in a subspace of the original
decision space [7].

D. Large-scale Multi-objective Optimization Framework
(LSMOF)

The large-scale multi-objective optimization framework
(LSMOF) [6] was proposed in 2019 and was experimentally
shown effective. The feature of LSMOF is using bi-directional
search. It contains two steps, The first step is looking for a
quash-optimal solution sets near the PS by using the problem
transformation and the second step spreads the quash-optimal
solution sets to approximate the true PF.

In the first step, LSMOF uses some optimal points as
reference points, and each point is affiliated with two direction
vectors (i.e. vl and vu) and two weight variables (i.e. λ11 and
λ12 ). Given two direction vectors and the reference points,
we can find the optimal solutions along the direction vectors
as follows:

p1 = o+ λ11
vl
‖vl‖

lmax

p2 = t− λ12
vu
‖vu‖

lmax

(2)

where o and t are the lower and upper bound points and
lmax = ||t− o||.

Once the original problem is reformulated, LSMOF per-
forms single-objective optimization of the weight variables in
the reconstructed decision space and the reduced objective
space [6]. The objective function is transformed into a new
single-objective function:

z11 (λ11) = F

(
o+ λ11

v1
‖vl‖

lmax

)
z12 (λ12) = F

(
o+ λ12

vu
‖vu‖

lmax

) (3)

For more details, please refer to [6].

E. Motivation

Note that MOEA/DVA using the interdependence analy-
sis consumes a great number of function evaluations before
the start of the optimization. Because the decision space
of large-scale multi-objective optimization problem is very
huge, MOEA/DVA may be inefficient. WOF uses problem
transformation mechanism to decrease the decision space, re-
ducing difficulty of searching optimal solutions sets. However,
there is only one search direction in the reduced subspaces,
and some optimal solutions can not be found because these
optimal solutions may not allocate in the associated subspaces.



Similarly, LSMOF only adopted the bi-direction vectors to
guide the search, and it also enough.

Note that the distribution of the Pareto set in decision
space may be uneven and unknown before the optimization.
If the Pareto Front is complicated, the possibility to find
the true Pareto set will decrease. It is crucial for large-
scale multi-objective optimization problem algorithms to use
multiple potential search directions. Motivated by this, this
paper proposes a symmetric point search and variable grouping
method for large-scale multi-objective optimization (SSVG).

III. THE PROPOSED METHOD

In this section, we explain the proposed method in detail.
We shall introduce a symmetric points search method and a
new transformation function, which needs fewer parameters
than those used in WOF.

A. The Symmetric Points Search and Variable Grouping
Method (SSVG)

The aim of the symmetric points search method is increasing
the search directions in the reduced subspaces. Similar to
WOF, our method uses grouping mechanism to divide the
high dimensional decision space into several low dimensional
subspaces. An n dimensional vector X = (x1, x2, . . . , xn)
is divided into k sub-vectors X = (X1, X2, · · · , Xk), where
Xi ∈ Rni for i = 1, 2, · · · , k. Each sub-vector Xi is
assigned a weight variable wi. For any sub-vector Xi =
(y1, y2, · · · , yni

), its ni symmetric points with respect to
each dimension are Yj = (y1, y2, · · · ,−yj , · · · , yni) for

j = 1, 2, · · · , ni, respectively, and there are
(
ni
2

)
possible

pairs of these ni symmetric points. Randomly take m pairs
from these symmetric points, where m is a predefined number.
Each pair, say, the r pair of P and Q, defines one search
direction by dr+1 = P − Q for r = 1, 2, · · · ,m. Also, let
d1 = Xi. In this way, for each Xi, we can define m + 1
directions d1, d2, · · · , dm+1. In order to avoid defining too
many search directions for each sub-vector, m should not be
large. We take m = 4 in the experiments.

Fig. 1 gives an example to illustrate this process. Suppose
the original point X = (x1, x2, . . . , x20) is divided into
X = (X1, X2, · · · , X10) , where X1 = (x1, x2). For X1,
m = 1 pair Y1 = (−x1, x2) and Y2 = (x1,−x2) of symmetric
points is chosen. Two search directions d1 = (x1, x2) and
d2 = Y1 − Y2 can be defined and is shown in Figure 1. The
search region around point X1 is divided into four quadrants
in the 2-D subspace. With changing weight w1, the new
solutions produced by the transformation function will change.
By searching optimal weight w1 along d1, we can find the
optimal solutions of the first and the third quadrants. But it
is difficult to find the optimal solutions in the second and the
forth quadrants only along the d1. By using search direction
d2, we can search the optimal solutions in the second and the
forth quadrants along the d2. So searching the solutions along
d1 and d2 will improve the diversity of solutions.

The SSVG contains two steps, where the first step aims to
search the optimal solutions in the reduced decision space and

Fig. 1: An example of the symmetric points and search
directions.

the second step spreads the obtained solutions to maintain the
diversity. The main framework is shown in Algorithm 1.

For SSVG, an original problem Z, a transform function ψ
and a population size N are given. First, an initial population
for original problem Z is produced. Then we select q different
reference points with the largest crowding distance. In every
iteration of the main loop (i.e.,lines 4-12 in algorithm 1),
for every reference point, SMPSO [8] is applied to optimize
the weight vector. The obtained optimal weight vectors are
denoted by wvk(k = 1, 2, ..., q).

Next, the optimal weight vectors wvk are combined with
reference points to generate new solutions by a new transfor-
mation function, forming population Pnew1. Then a number of
directions are calculated by using symmetric points and we do
the symmetric point search by SMPSO along these directions.
The resulted population is denoted as Pnew2 (refer to algorithm
2 for detail). To keep the diversity of the population, we
randomly select some original points from Pnew2 and combine
the optimal weight vectors wvk with the selected points
to form a new population Pnew3. Finally, the environment
selection is used to select N (population size) best solutions
as the final population.

B. A new transformation function

In this subsection, we propose a new transformation func-
tion for grouped variables. In [5], there are three transforma-
tion functions. The best function is the p-Value Transforma-
tion. But the expression of this function is a little complicated.
The performance of the function is affected by parameter p
greatly. A larger value of p may yield an invalid solution, and
a smaller value of p may yield a solution which have no any
improvement. To overcome this drawback, we introduce a new
transformation function as follows:

xi,new =

{
xi,old − wj · ρmin if ρmin ≤ ρmax

xi,old + wj · ρmax if ρmin > ρmax
(4)



Algorithm 1 The main framework of SSVG

Input: Z: original problem ; ψ: transformation function; N :
population size;

Output: optimal solutions set S
1: Initialization;
2: P ← initial population for original problem Z;
3: Q = {x1, x2, · · · , xq} ← selectReferencePoint (P, q);

//select q different reference points;
4: repeat
5: for k = 1 to q do
6: wvk ← WeightvectorOptimization(P,Q, ψ); //use the

Heuristic algorithm to optimize the weight vector
7: Pnew1 ← WeightTransformToDecision(wvk, ψ,Qk);

//use the transformation function to apply the weight
variable to decision vectors

8: Pnew2 ← SymmetricPointSearch(Pnew1); // use Algo-
rithm 2

9: Pnew3 ← ExtendPopulation(wvk, Qk); //keep the di-
versity of the population

10: Punion ← Pnew1

⋃
Pnew2

⋃
Pnew3;

11: end for
12: until σ ∗ total Evaluations used;
13: S ← EnvironmentSelection(Punion, N);
14: return S;

Algorithm 2 SymmetricPointSearch(P )

Input: P : A population
Output: solutions Prs

1: Initialization;
2: for i = 1 to r do
3: r2 ← calculate the symmetric points of the current

population;
4: d2 ← calculate the intersecting direction using(4);
5: P ← search the optimal results along the d2;
6: Prs ← Prs

⋃
P ;

7: end for
8: return Prs;

wj ∈ [0, 1]

ρmin = xi,old − xi,min

ρmax = xi,max − xi,old
where xi,minand xi,max are the lower and upper bounds of
xi respectively. The wj is the weight variable corresponding
to group that the decision variable xi belongs to. If xi is
closer to xi,min, the new solution locates on the left of xi.
Similarly, if xi is closer to xi,max, the new solution locates
on the right of xi. Thus, the value of the new solution always
locates in the interval [xi,min,xi,max].

IV. EXPERIMENTAL RESULTS

In this section, we conduct the experiments and compare
the performance of the proposed algorithm SSVG with three
state-of-the-art algorithms MOEA/DVA, WOF, and LSMOF
on several widely used benchmarks ZDT1-ZDT4, ZDT6 [9]

and UF1-10 [10]. We use PlatEMO [11] as the platform to
investigate the performance of these algorithms.

The performance indicators used in this paper are the in-
verted generational distance (IGD) [12] and the hyper-volume
indicator (HV) [13].

A. Experimental settings
For fairness, all algorithms to be compared are implemented

in PlatEMO [11]. The population size of the algorithms is
set to 100. The number of the FEs is set to 30000 for all
compared algorithms. The parameters needed in MOEA/DVA,
WOF, and LSMOF are set to defaults in their algorithms. Each
test instance is run for 30 times independently.

B. Comparison and analysis of the results
In the experiments. the dimensions adopted are n = 200,

n = 500, and n = 1000, respectively. The Wilcoxon rank sum
test with a significance level of 0.05 is adopted to perform
statistical analysis on test results, where the symbols “+”, “-”,
and “=” indicate that the result of the compared algorithm is
significantly better, significantly worse, and statistic similar to
that of the proposed algorithm.

The statistics results of IGD values achieved by
MOEA/DVA, WOFSMPSO, LSMOF and our method SSVG
on ZDT problems are presented in Table I. It can be observed
that most of the best performance results are obtained by
SSVG. SSVG has achieved 9 out of 15 best results. LSMOF
has achieved 3 out of 15 best results, and WOFSMPSO has
achieved 3 best results. To be specific, SSVG achieves the best
results on ZDT3, ZDT6, 200-dimension ZDT1, 500-dimension
ZDT2, and 1000-dimension ZDT2. LSMOF achieves the best
results on ZDT4. WOFSMPSO achieves the best results
on 500-dimension ZDT1, 1000-dimension ZDT1 and 200-
dimension ZDT2.

The statistics results of HV values achieved by
MOEA/DVA, WOFSMPSO, LSMOF and our method
SSVG on ZDT problems are listed in Table II. It can be
seen that SSVG has achieved most of the best results.
Specifically, SSVG obtains the best results on ZDT2,
ZDT6, 200-dimension ZDT3, 500-dimension ZDT3, and
200-dimension ZDT1. LSMOF achieves the best results on
ZDT4 and 1000-dimension ZDT3. WOFSMPSO achieves two
best results on 500-dimension and 1000-dimension ZDT1.

Table III lists the IGD values obtained by the four above
algorithms on UF1-10. SSVG has achieved 21 out of 30
best results. It performs best on UF1-3, 500-dimension UF5,
1000-dimension UF5, 200-dimension UF6, and UF7-9. WOF-
SMPSO outperforms others on UF4, 500-dimension UF6,
and 1000-dimension UF6. It can be observed that the SSVG
outperforms others on the 3-objective problems.

Table IV presents the HV values of the above algorithms on
UF1-10. SSVG outperforms others on UF1-4, 500-dimension
UF6, and UF7-9. The solutions obtained by SSVG are better
than those of other three algorithms.

In summary, the proposed SSVG is effective and shows
a competitive performance in comparison with MOEA/DVA,
WOFSMPSO and LSMOF.



TABLE I:
IGD VALUE OF MOEA/DVA, LSMOF, WOFSMPSO, AND SSVG ON TWO-OBJECTIVE ZDT1-4 AND ZDT6, WHERE

THE BEST RESULT ON EACH TEST INSTANCE IS SHOWN IN BOLD FONT

Problem M D MOEA/DVA LSMOF WOFSMPSO SSVG

ZDT1
2 200 6.4244e+2(1.61e+1)- 2.4300e-1(1.21e-1)- 1.9656e-2(8.08e-2)= 4.8079e-3(2.26e-4)
2 500 1.9667e+3(2.58e+1)- 3.0307e-1(1.17e-1)- 3.2719e-2(1.53e-1)= 1.1630e-1(2.89e-1)
2 1000 4.1841e+3(3.92e+1)- 4.1324e-1(1.44e-1)- 1.4419e-1(3.17e-1)= 2.8083e-1(3.94e-1)

ZDT2
2 200 6.6528e+2(1.46e+1)- 2.4982e-1(1.06e-1)- 4.9395e-3(3.24e-4)= 4.9741e-3(2.21e-4)
2 500 2.0060e+3(1.91e+1)- 4.1752e-1(8.95e-2)- 1.1620e-1(2.32e-1)= 8.5777e-2(2.09e-1)
2 1000 4.2370e+3(3.40e+1)- 4.7065e-1(9.42e-2)- 3.2739e-1(3.07e-1)= 2.2272e-1(2.92e-1)

ZDT3
2 200 6.5207e+2(1.21e+1)- 3.8837e-1(1.49e-1)- 2.0173e-1(2.50e-1)= 1.2333e-1(2.15e-1)
2 500 1.9626e+3(2.66e+1)- 4.6259e-1(1.16e-1)- 3.8209e-1(2.72e-1)= 2.3355e-1(2.90e-1)
2 1000 4.1978e+3 (3.52e+1)- 4.9402e-1(1.39e-1)= 4.9054e-1(2.80e-1)= 4.2915e-1(3.28e-1)

ZDT4
2 200 2.7335e+3(5.30e+1)- 3.1120e-2(2.59e-2)+ 5.2209e+2(1.01e+2)- 4.3475e+2(1.18e+2)
2 500 8.1138e+3(7.18e+1)- 3.8589e-2(2.55e-2)+ 2.3982e+3(2.53e+2)- 1.9614e+3(4.19e+2)
2 1000 1.7255e+4(1.73e+2)- 4.8516e-2(2.19e-2)+ 6.0303e+3(5.44e+2)- 5.5892e+3(7.17e+2)

ZDT6
2 200 2.6872e+1(1.29e-1)- 4.5647e-3(3.49e-4)- 3.8812e-3(1.92e-4)= 3.8481e-3(1.89e-4)
2 500 3.5169e+1(1.08e-1)- 4.7883e-3(1.98e-3)- 3.9133e-3(2.37e-4)= 3.8797e-3 (2.06e-4)
2 1000 4.2365e+1 (8.89e-2) - 7.4600e-3 (7.98e-3) - 3.9009e-3 (1.26e-4) = 3.8694e-3 (1.63e-4)

+/− / = 0/15/0 3/11/1 0/3/12

TABLE II:
HV VALUE OF MOEA/DVA, LSMOF, WOFSMPSO, AND SSVG ON TWO-OBJECTIVE ZDT1-4 AND ZDT6, WHERE

THE BEST RESULT ON EACH TEST INSTANCE IS SHOWN IN BOLD FONT

Problem M D MOEA/DVA LSMOF WOFSMPSO SSVG

ZDT1
2 200 0.0000e+0(0.00e+0)- 5.7555e-1(7.43e-2)- 7.1007e-1(5.05e-2)= 7.1938e-1(2.43e-4)
2 500 0.0000e+0(0.00e+0)- 5.3786e-1(7.59e-2)- 6.9840e-1(1.15e-1)= 6.3548e-1(2.17e-1)
2 1000 0.0000e+0(0.00e+0)- 4.6068e-1(1.05e-1)- 6.1456e-1(2.38e-1)= 5.1247e-1(2.96e-1)

ZDT2
2 200 0.0000e+0(0.00e+0)- 2.2993e-1(7.78e-2)- 4.4393e-1(2.91e-4)= 4.4402e-1(2.10e-4)
2 500 0.0000e+0(0.00e+0)- 1.3798e-1(4.18e-2)- 3.7632e-1(1.39e-1)= 3.9654e-1(1.22e-1)
2 1000 0.0000e+0(0.00e+0)- 1.2073e-1(3.50e-2)- 2.5567e-1(1.79e-1)= 3.1504e-1(1.72e-1)

ZDT3
2 200 0.0000e+0(0.00e+0)- 5.2856e-1(1.60e-1)= 5.1387e-1(1.04e-1)= 5.4419e-1 (8.69e-2)
2 500 0.0000e+0(0.00e+0)- 4.4979e-1(1.31e-1)- 4.3273e-1(1.59e-1)= 4.8784e-1 (1.47e-1)
2 1000 0.0000e+0(0.00e+0)- 4.1721e-1(1.50e-1)= 3.6844e-1(2.08e-1)= 3.7197e-1(1.93e-1)

ZDT4
2 200 0.0000e+0(0.00e+0)- 7.0026e-1(1.56e-2)+ 0.0000e+0(0.00e+0)= 0.0000e+0(0.00e+0)=
2 500 0.0000e+0(0.00e+0)- 6.9490e-1(1.62e-2)+ 0.0000e+0(0.00e+0)= 0.0000e+0(0.00e+0)=
2 1000 0.0000e+0(0.00e+0)- 6.8851e-1(1.37e-2)+ 0.0000e+0(0.00e+0)= 0.0000e+0(0.00e+0)=

ZDT6
2 200 0.0000e+0(0.00e+0)- 3.8742e-1(3.31e-4)- 3.8809e-1(1.93e-4)= 3.8813e-1(2.13e-4)
2 500 0.0000e+0(0.00e+0)- 3.8711e-1(1.96e-3)- 3.8801e-1(2.65e-4)= 3.8809e-1(2.15e-4)
2 1000 0.0000e+0(0.00e+0)- 3.8432e-1(8.26e-3)- 3.8804e-1(1.25e-4)= 3.8809e-1(1.72e-4)

+/− / = 0/12/3 3/10/2 0/0/15



TABLE III:
IGD VALUE OF MOEA/DVA, LSMOF, WOFSMPSO, AND SSVG ON TWO-OBJECTIVE UF1-7 AND

THREE-OBJECTIVE UF8-10, WHERE THE BEST RESULT ON EACH TEST INSTANCE IS SHOWN IN BOLD FONT

Problem M D MOEA/DVA LSMOF WOFSMPSO SSVG

UF1
2 200 1.4356e+0(6.06e-2)- 2.0676e-1(1.78e-2)- 1.1033e-1(7.84e-3)- 1.0108e-1(5.81e-3)
2 500 1.9342e+0(4.20e-2)- 2.6937e-1(2.11e-2)- 1.1027e-1(1.07e-2)- 1.0237e-1(8.46e-3)
2 1000 2.1306e+0(3.49e-2)- 2.8972e-1(1.82e-2)- 1.1123e-1(8.86e-3)- 1.0224e-1(8.29e-3)

UF2
2 200 6.6944e-1(2.34e-2)- 9.9280e-2(2.42e-2)- 8.4781e-2(4.77e-3)= 8.2428e-2(3.34e-3)
2 500 8.5969e-1(1.42e-2)- 1.1729e-1(3.24e-2)- 8.4877e-2(3.68e-3)= 8.4259e-2(4.72e-3)
2 1000 9.3068e-1(8.77e-3)- 1.2465e-1(3.47e-2)- 8.3327e-2(3.06e-3)= 8.2699e-2(4.22e-3)

UF3
2 200 8.4520e-1(2.67e-2)- 1.6467e-1(2.13e-3)- 7.2305e-2(4.58e-3)- 6.0904e-2(2.18e-3)
2 500 1.0347e+0(2.25e-2)- 1.4117e-1(1.57e-3)- 4.0928e-2(3.77e-3)- 3.3156e-2(2.07e-3)
2 1000 1.1050e+0(1.64e-2)- 1.3340e-1(2.22e-3)- 3.0033e-2(3.33e-3)- 2.3620e-2(2.22e-3)

UF4
2 200 1.8706e-1(1.39e-3)- 7.1716e-2(1.93e-3)+ 6.4733e-2(6.52e-3)+ 1.4908e-1(7.19e-2)
2 500 2.1288e-1(9.24e-4)- 7.2861e-2(9.96e-4)+ 6.3905e-2(7.71e-3)+ 1.4152e-1(7.41e-2)
2 1000 2.2146e-1(6.50e-4)- 7.3016e-2(1.05e-3)+ 6.5655e-2(6.05e-3)+ 1.3994e-1(7.56e-2)

UF5
2 200 5.5145e+0(1.36e-1)- 1.5898e+0(3.27e-1)= 1.7773e+0(2.24e-1)- 1.6608e+0(2.03e-1)
2 500 6.7153e+0(1.08e-1)- 2.3079e+0(2.88e-1)- 1.9926e+0(9.72e-2)= 1.9616e+0(8.95e-2)
2 1000 7.1427e+0(8.46e-2)- 2.7000e+0(1.49e-1)- 2.0976e+0(6.45e-2)= 2.0686e+0(6.81e-2)

UF6
2 200 5.9192e+0(3.22e-1)- 1.0095e+0(1.74e-1)- 3.6630e-1(6.62e-2)= 3.4872e-1(7.32e-2)
2 500 7.8126e+0(1.51e-1)- 1.2801e+0(2.23e-1)- 3.6235e-1(6.39e-2)= 3.6967e-1(8.05e-2)
2 1000 8.5818e+0(1.40e-1)- 1.4150e+0(1.77e-1)- 3.4259e-1(2.79e-2)= 3.7085e-1(7.56e-2)

UF7
2 200 1.5235e+0(5.76e-2)- 4.2204e-1(9.22e-3)- 1.1085e-1(7.26e-2)- 8.9352e-2(4.14e-2)
2 500 1.9847e+0(3.03e-2)- 4.6398e-1(9.34e-3)- 1.0219e-1(5.40e-2)- 8.6153e-2(3.62e-3)
2 1000 2.1730e+0(3.00e-2)- 4.8163e-1(7.92e-3)- 8.8844e-2(4.34e-3)- 8.6107e-2(3.54e-3)

UF8
3 200 3.0266e+0(1.26e-1)- 5.5835e-1(1.57e-2)- 3.2193e-1(2.74e-2)- 2.7440e-1(2.42e-2)
3 500 3.9306e+0(9.77e-2)- 6.1040e-1(2.41e-2)- 3.2216e-1(2.90e-2)- 2.6367e-1(1.94e-2)
3 1000 4.3216e+0(9.05e-2)- 6.3936e-1(2.29e-2)- 3.1574e-1(2.77e-2)- 2.5773e-1(1.84e-2)

UF9
3 200 3.2020e+0(1.21e-1)- 5.5111e-1(8.38e-3)- 5.5609e-1(2.14e-2)- 5.0721e-1(5.40e-2)
3 500 4.0787e+0(9.81e-2)- 5.9401e-1(1.32e-2)- 5.6470e-1(2.55e-2)- 4.5730e-1(7.97e-2)
3 1000 4.4472e+0(6.29e-2)- 6.2133e-1(1.75e-2)- 5.6740e-1(2.19e-2)- 4.5043e-1(6.02e-2)

UF10
3 200 1.5720e+1(5.92e-1)- 1.6644e+0(2.88e-1)+ 3.5834e+0(2.52e-1)= 3.6735e+0(2.51e-1)
3 500 1.9465e+1(4.61e-1)- 2.7168e+0(3.57e-1)+ 3.9659e+0(2.81e-1)= 3.9153e+0(2.03e-1)
3 1000 2.0797e+1(3.24e-1)- 3.3647e+0(3.20e-1)+ 4.1293e+0(2.68e-1)= 4.0257e+0(2.57e-1)

+/− / = 0/30/0 6/23/1 3/16/11

V. CONCLUSION

This paper proposes a new method based on the symmetric
points search and variable grouping for large-scale multi-
objective optimization problems, named SSVG. The proposed
SSVG adopts two main steps, where in the first step we
use grouping mechanism to divide the decision space into
several sub-space and reformulate the problem into a lower
dimensional problem. In each subspace, a weight variable
is assigned to this subspace, and the symmetric points of
the original points form a number of search directions. An
embedded MOEA searches the solutions along the obtained
search directions. In the second step, the solutions obtained
by the first step are extended to whole space solutions and
the diversity of solutions are kept. A number of experi-

ments are conducted on widely used benchmarks, and the
proposed SSVG is compared with three state-of-the-art large-
scale MOEAs, namely, MOEA/DVA, WOF, and LSMOF. The
statistical results show that SSVG performs better than the
compared algorithms and has good potential in solving large-
scale multi-objective optimization problems.

ACKNOWLEDGMENT

This work is supported by National Natural Science Foun-
dation of China (NO.61872281) and Key Natural Science
Foundation of Shaanxi Province (No. 2016JZ022) and the
Fundamental Research Funds for the Central Universities and
the Innovation Fund of Xidian University(NO.CS2020-08).



TABLE IV:
HV VALUE OF MOEA/DVA, LSMOF, WOFSMPSO, AND SSVG ON TWO-OBJECTIVE UF1-7 AND

THREE-OBJECTIVE UF8-10, WHERE THE BEST RESULT ON EACH TEST INSTANCE IS SHOWN IN BOLD FONT

Problem M D MOEA/DVA LSMOF WOFSMPSO SSVG

UF1
2 200 0.0000e+0(0.00e+0)- 4.0158e-1(2.64e-2)- 5.5375e-1(1.52e-2)- 5.7724e-1(1.10e-2)
2 500 0.0000e+0(0.00e+0)- 3.3122e-1(2.80e-2)- 5.5489e-1(2.07e-2)- 5.7424e-1(1.62e-2)
2 1000 0.0000e+0(0.00e+0)- 3.1587e-1(2.60e-2)- 5.5196e-1(1.60e-2)- 5.7492e-1(1.42e-2)

UF2
2 200 7.2349e-2(8.50e-3)- 5.9410e-1(4.59e-2)- 6.2384e-1(6.07e-3)= 6.2681e-1(4.21e-3)
2 500 1.1589e-2(3.83e-3)- 5.6538e-1(6.21e-2)- 6.2438e-1(4.60e-3)= 6.2487e-1(5.98e-3)
2 1000 1.8613e-3(1.33e-3)- 5.5275e-1(6.66e-2)- 6.2620e-1(4.05e-3)= 6.2693e-1(5.50e-3)

UF3
2 200 5.5263e-3(3.65e-3)- 5.2814e-1(2.45e-3)- 6.3470e-1(5.21e-3)- 6.4785e-1(2.37e-3)
2 500 0.0000e+0(0.00e+0)- 5.5792e-1(2.12e-3)- 6.7227e-1(4.31e-3)- 6.8126e-1(2.38e-3)
2 1000 0.0000e+0(0.00e+0)- 5.6760e-1(2.56e-3)- 6.8550e-1(3.89e-3)- 6.9304e-1(2.55e-3)

UF4
2 200 2.0648e-1(1.05e-3)- 3.5244e-1(1.68e-3)= 3.5848e-1(7.47e-3)- 3.7581e-1(5.98e-2))
2 500 1.8430e-1(6.47e-4)- 3.4979e-1(1.72e-3)= 3.5977e-1(8.39e-3)- 3.7090e-1(6.01e-2)
2 1000 1.7763e-1(3.90e-4)- 3.4911e-1(1.79e-3)- 3.5660e-1(7.63e-3)- 3.6811e-1(5.85e-2)

UF5
2 200 0.0000e+0(0.00e+0)= 0.0000e+0(0.00e+0)= 0.0000e+0(0.00e+0)= 0.0000e+0(0.00e+0)=
2 500 0.0000e+0(0.00e+0)= 0.0000e+0(0.00e+0)= 0.0000e+0(0.00e+0)= 0.0000e+0(0.00e+0)=
2 1000 0.0000e+0(0.00e+0)= 0.0000e+0(0.00e+0)= 0.0000e+0(0.00e+0)= 0.0000e+0(0.00e+0)=

UF6
2 200 0.0000e+0(0.00e+0)= 1.2520e-3(5.29e-3)- 1.6310e-1(2.28e-2)= 1.6301e-1(2.47e-2)
2 500 0.0000e+0(0.00e+0)= 1.4413e-3(5.51e-3)- 1.4700e-1(2.73e-2)= 1.5238e-1(2.75e-2)
2 1000 0.0000e+0(0.00e+0)= 0.0000e+0(0.00e+0)= 1.6075e-1(2.30e-2)+ 1.4520e-1 (2.71e-2)

UF7
2 200 0.0000e+0(0.00e+0)= 1.7838e-1(1.03e-2)- 4.4310e-1(5.84e-2)- 4.6395e-1(3.26e-2)
2 500 0.0000e+0(0.00e+0)= 1.3328e-1(7.27e-3)- 4.4994e-1(4.28e-2)- 4.6485e-1(6.64e-3)
2 1000 0.0000e+0(0.00e+0)= 1.1884e-1(5.16e-3)- 4.6016e-1(7.46e-3)- 4.6550e-1(5.59e-3)

UF8
3 200 0.0000e+0(0.00e+0)= 1.0334e-1(8.57e-3)- 1.8828e-1(2.35e-2)- 2.2589e-1(2.50e-2)
3 500 0.0000e+0(0.00e+0)= 7.6092e-2(1.41e-2)- 1.8970e-1(2.94e-2)- 2.3907e-1(2.78e-2)
3 1000 0.0000e+0(0.00e+0)= 6.1445e-2(1.13e-2)- 1.9534e-1(2.36e-2)- 2.4292e-1(2.78e-2)

UF9
3 200 0.0000e+0(0.00e+0)= 2.1172e-1(8.64e-3)- 2.4915e-1(2.66e-2)- 3.0589e-1(6.62e-2)
3 500 0.0000e+0(0.00e+0)= 1.7193e-1(1.15e-2)- 2.4269e-1(3.00e-2)- 3.5169e-1(6.45e-2)
3 1000 0.0000e+0(0.00e+0)= 1.5072e-1(1.39e-2)- 2.4121e-1(2.63e-2)- 3.7074e-1(6.09e-2)

UF10
3 200 0.0000e+0(0.00e+0)= 0.0000e+0(0.00e+0)= 0.0000e+0(0.00e+0)= 0.0000e+0(0.00e+0)=
3 500 0.0000e+0(0.00e+0)= 0.0000e+0(0.00e+0)= 0.0000e+0(0.00e+0)= 0.0000e+0(0.00e+0)=
3 1000 0.0000e+0(0.00e+0)= 0.0000e+0(0.00e+0)= 0.0000e+0(0.00e+0)= 0.0000e+0(0.00e+0)=

+/− / = 0/24/6 0/22/8 1/18/11
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