
Techniques for Accelerating Multi-Objective
Evolutionary Algorithms in PlatEMO

1st Ye Tian
Institutes of Physical

Science and Information
Technology, Anhui University,

Hefei, China
field910921@gmail.com

2nd Ran Cheng
Department of Computer
Science and Engineering,
Southern University of
Science and Technology,

Shenzhen, China
ranchengcn@gmail.com

3rd Xingyi Zhang
School of Computer

Science and Technology,
Anhui University,

Hefei, China
xyzhanghust@gmail.com

4th Yaochu Jin
Department of Computer

Science, University of Surrey,
Guildford, United Kingdom

yaochu.jin@surrey.ac.uk

Abstract—It has been widely recognized that evolutionary
computation is one of the most effective techniques for
solving complex optimization problems. As a group of meta-
heuristics inspired by nature, the superiority of evolutionary
algorithms is mainly attributed to the evolution of multiple
candidate solutions, which can strike a balance between
exploration and exploitation. However, the effectiveness
of evolutionary algorithms is generally at the expense of
efficiency, which reduces the prevalence of evolutionary
algorithms in solving real-world optimization problems. In
2017, we proposed the evolutionary multi-objective opti-
mization platform PlatEMO to facilitate the use of multi-
objective evolutionary algorithms (MOEAs), where some
delicate techniques were developed to improve the computa-
tional efficiency of MOEAs. These techniques have not been
introduced before, since users need not care about them
when using existing MOEAs or developing new MOEAs.
To deepen the understanding of the core mechanisms of
PlatEMO, this paper gives a comprehensive introduction to
these techniques, including new non-dominated sorting ap-
proaches, matrix calculation, and parallel computing. Several
comparative experiments are conducted for a quantitative
understanding of the efficiency improvement brought by
these techniques.

I. INTRODUCTION

Evolutionary algorithms broadly refer to a variety
of metaheuristics inspired by the biological evolution
mechanisms and swarm behaviors in nature, such as ge-
netic algorithms [1], particle swarm optimization [2], and
differential evolution [3]. These algorithms have been
widely adopted in many scientific and engineering areas
[4], [5], since they are versatile for solving different types
of optimization problems. The success of evolutionary
algorithms is mainly owing to the evolution of multiple

This work was supported in part by the Key Project of Science and
Technology Innovation 2030 supported by the Ministry of Science and
Technology of China under Grant 2018AAA0100105, in part by the
National Natural Science Foundation of China under Grant 61672033,
61822301, 61876123, 61906001, and U1804262, in part by the Hong
Kong Scholars Program under Grant XJ2019035, in part by the Anhui
Provincial Natural Science Foundation under Grant 1808085J06 and
1908085QF271, and in part by the State Key Laboratory of Synthetical
Automation for Process Industries under Grant PAL-N201805.

candidate solutions (i.e., a population), which enables
the algorithm to find optimal or sub-optimal solutions
without any a priori knowledge about the problem. On
the other hand, the computational complexity is consid-
erably increased since each solution should be updated
and reevaluated at each generation; in particular, some
evolutionary algorithms even update each solution more
than once [6], [7].

Therefore, evolutionary algorithms are often criti-
cized for the low efficiency [8], and it becomes even
more serious for multi-objective evolutionary algorithms
(MOEAs) [9]. On the one hand, MOEAs have to evaluate
each solution by calculating multiple objective functions
rather than a single one. On the other hand, the selection
operator of single-objective evolutionary algorithms can
be achieved by directly comparing the objective values
of solutions, whereas complex selection strategies should
be designed in MOEAs for striking a balance between
convergence and diversity, such as the non-dominated
sorting in NSGA-II [10], the truncation method in SPEA2
[11], and the hypervolume based selection in HypE [12].

To address this issue, some work has been dedicated
to improving the efficiency as well as the practical-
ity of MOEAs from various aspects. For Pareto dom-
inance based MOEAs whose computational resource
is mainly consumed by determining the Pareto dom-
inance relations between solutions, a number of non-
dominated sorting approaches have been proposed to
improve the efficiency of the sorting procedure. The
time complexity of the original non-dominated sort-
ing procedure is O(mn3) with n denoting the popu-
lation size and m denoting the number of objectives
[13], which is then reduced to O(mn2) by fast non-
dominated sort [10] and O(n lnm−1 n) by Jensen’s Sort
[9]. Later, the time complexity is further reduced by a
series of non-dominated sorting approaches [14]. For
decomposition based MOEAs that divide the original
problem into a number of simple subproblems to be
solved simultaneously, parallelization scheme has been

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

adopted to speed up the optimization of subproblems,
such as the MOEA deployed on multiple CPUs [15] and
the MOEA deployed on GPU [16]. For indicator based
MOEAs that must repeatedly calculate the performance
indicator, some efforts have been made to accelerate
the calculation of hypervolume, which is an effective
and popular performance indicator but has a super-
polynomial time complexity [17]. For instance, HypE [12]
suggests a hypervolume estimation algorithm by using
Monte Carlo simulation, FV-MOEA [18] accelerates the
calculation of the hypervolume contribution of each
solution by ignoring irrelevant solutions, and R2HCA-
EMOA [19] approximates the hypervolume contribution
of each solution by using an R2 indicator.

In 2017, an evolutionary multi-objective optimization
platform was proposed by us, called PlatEMO1 [20],
which contains more than 100 open-source MOEAs and
more than 200 open-source benchmark problems. More
importantly, it provides a powerful GUI enabling users
to implement comparative experiments over multiple
MOEAs and multiple benchmark problems by one-click
operation, where the statistical results can be directly
saved as an Excel table or LaTeX table. PlatEMO also
uses some delicate techniques to improve the compu-
tational efficiency of MOEAs, including non-dominated
sorting, matrix calculation, and parallel computing.
These techniques were embedded in public functions,
which can be invoked by users to develop new MOEAs
without understanding the implementation details of
them. In this paper, we would like to give a compre-
hensive introduction to these techniques, hoping to help
users deepen the understanding of the core mechanisms
of PlatEMO and to provide the users inspirations for
developing new MOEAs. To illustrate the benefits of
these techniques, we conduct several experiments to
quantitatively show the efficiency improvement brought
by these techniques.

The rest of this paper is organized as follows. Sec-
tion II introduces three non-dominated sorting ap-
proaches used in PlatEMO, and verifies their efficiency
by comparing them to other non-dominated sorting
approaches. Section III introduces the methods of using
matrix calculation in MOEAs, and compares the run-
times of MOEAs with and without matrix calculation.
Section IV introduces the way to deploy MOEAs on mul-
tiple CPUs in PlatEMO. Section V draws the conclusions.

II. COMPUTATIONALLY EFFICIENT NON-DOMINATED
SORTING TECHNIQUES

Since the solutions for multi-objective optimization
problems (MOPs) have multiple objective values rather
than a single one, the Pareto dominance relation is used
to compare the quality of two solutions. For minimiza-

1PlatEMO 2.4: https://github.com/BIMK/PlatEMO

tion MOPs, solution x is said to Pareto dominate solution
y (denoted by x ≺ y) if and only if{ ∀i ∈ {1, . . . ,m} : fi(x) ≤ fi(y)

∃j ∈ {1, . . . ,m} : fj(x) < fj(y)
, (1)

where fi(x) denotes the i-th objective value of x and
m ≥ 2 denotes the total number of objectives. In
particular, a solution is called non-dominated if it is
not dominated by any other solutions in a population.
Based on the Pareto dominance relation, the idea of
non-dominated sorting was suggested as the selection
strategy [21] and implemented in NSGA [13] for the
first time. Specifically, non-dominated sorting performs
the following three steps to divide a population P into
several subsets:

• Step 1: i = 1.
• Step 2: Find all the non-dominated solutions from P

and move them to the non-dominated front Fi.
• Step 3: i = i+ 1; return to Step 2 until P is empty.

Obviously, the solutions in front Fi are better than those
in front Fj for i < j, as each solution in Fj must
be dominated by at least one solution in Fi. Since the
NSGA-II [10] was proposed in 2002, a large number of
MOEAs have adopted non-dominated sorting as the ba-
sic selection strategy in environmental selection, which
are not limited to Pareto dominance based MOEAs [22]–
[24] but also include decomposition based MOEAs [25],
[26] and indicator based MOEAs [12], [27].

However, non-dominated sorting is relatively time-
consuming since the dominance relation between each
pair of solutions should be determined by (1). Therefore,
a series of non-dominated sorting approaches have been
proposed to increase the efficiency of non-dominated
sorting [14]. PlatEMO adopts three non-dominated sort-
ing approaches to be used in different cases, includ-
ing efficient non-dominated sort with sequential search
(ENS-SS) [28], tree-based efficient non-dominated sort
(T-ENS) [29], and efficient non-dominated level update
(ENLU) [30]. In what follows, the three non-dominated
sorting approaches are briefly reviewed and verified by
comparative experiments.

A. Efficient Non-Dominated Sort (ENS)
In contrast to the conventional non-dominated sorting

procedure that sorts the solutions front by front, ENS
[28] determines the front number of each solution in
sequence, while the sorting results of the two procedures
are the same. To be specific, ENS-SS performs the fol-
lowing three steps to divide a population P into several
subsets:

• Step 1: Sort P in an ascending order of the first
objective.

• Step 2: i = 1; pick up the first solution x from P .
• Step 3: If x is dominated by any solution in Fi, i =

i+1 and repeats Step 3; otherwise move x to Fi and
return to Step 2 until P is empty.

The core idea of ENS is to presort the population accord-
ing to the first objective in Step 1, so that any solution
x will not be dominated by the solutions after it in
the ascending order, and the front number of x can
be determined without checking the solutions after it.
Hence, each solution needs to be compared with some
solutions before it rather than all the solutions, and a
large number of comparisons can be saved by ENS-SS. In
short, ENS-SS is much efficient than fast non-dominated
sort as evidenced by the empirical comparisons in [28].

B. Tree-Based Efficient Non-Dominated Sort (T-ENS)

As reported in [28], [29], the efficiency of ENS-SS
considerably deteriorates as the number of objectives
increases. This is because most solutions become mutu-
ally non-dominated in high-dimensional objective space
[14], and the comparison between each pair of non-
dominated solutions cannot be saved by ENS-SS. While
most non-dominated sorting approaches including ENS-
SS store the solutions in each non-dominated front by an
array, a novel tree structure is designed in T-ENS [29]
to address the curse of dimensionality, which enables
the sorting approach to save many comparisons between
non-dominated solutions. That is, ENS-SS can save com-
parisons by deducing x ≺ z from x ≺ y and y ≺ z owing
to the transitivity of Pareto dominance, while T-ENS can
also deduce x ⊀ z from x ⊀ y and y ⊀ z in some cases.
As a result, T-ENS is more efficient than ENS-SS when
the number of objectives is high.

C. Efficient Non-Dominated Level Update (ENLU)

There exist some MOEAs based on the steady-state
evolution model, which generate a single offspring and
update the population each time [31]. Assuming that
the population size is n and the number of generations
is g, the non-dominated sorting should be performed g
times in general MOEAs, while it should be performed
n× g times in steady-state MOEAs. As a result, steady-
state MOEAs are generally less efficient than general
MOEAs with the same number of function evaluations.
To address this issue, ENLU [30] is tailored for steady-
state MOEAs, which performs non-dominated sorting by
taking advantage of the historical sorting result. More
specifically, when an offspring is added to or deleted
from the population, ENLU updates the non-dominated
fronts rather than sorts the new population from scratch.

D. Empirical Studies

To illustrate the superiority of the above three non-
dominated sorting approaches, several experiments are
conducted to compare them to other existing non-
dominated sorting approaches. Firstly, Fig. 1 depicts
the runtime of best order sort (BOS) [32], corner sort
[33], deductive sort [34], ENS-SS, fast non-dominated
sort [10], and T-ENS on random populations with 2–
4 objectives and 100–500 solutions, averaged over 20

100 200 300 400 500
Number of solutions

10-4

10-2

R
un

tim
e

(s
)

2 objectives

BOS Corner sort Deductive sort ENS-SS Fast non-dominated sort T-ENS

100 200 300 400 500
Number of solutions

10-4

10-2

R
un

tim
e

(s
)

3 objectives

Fig. 1. Runtime (in second) of BOS, corner sort, deductive sort, ENS-
SS, fast non-dominated sort, and T-ENS on random populations with
2–3 objectives and 100–500 solutions.

4 7 10 13 16
Number of objectives

2e-3

8e-3

R
un

tim
e

(s
)

500 solutions

BOS Corner sort Deductive sort ENS-SS Fast non-dominated sort T-ENS

4 7 10 13 16
Number of objectives

0.005

0.025

R
un

tim
e

(s
)

1000 solutions

Fig. 2. Runtime (in second) of BOS, corner sort, deductive sort, ENS-
SS, fast non-dominated sort, and T-ENS on random populations with
500–1000 solutions and 4–16 objectives.

101 125 150 175 200
Number of solutions

0

1e-3

3e-3

R
un

tim
e

(s
)

2 objectives

ENS-SS Fast non-dominated sort T-ENS ENLU

101 125 150 175 200
Number of solutions

0

1e-3

3e-3
R

un
tim

e
(s

)

10 objectives

Fig. 3. Runtime (in second) of ENS-SS, fast non-dominated sort, T-
ENS, and ENLU on random populations with 2–10 objectives and 100–
200 solutions. Note that the population is increased by new solutions
steadily.

runs. It is obvious that ENS-SS outperforms the other
approaches on all the populations. By contrast, as shown
in Fig. 2, T-ENS becomes more efficient than ENS-SS
when the number of solutions and the number of ob-
jectives increase. One the other hand, Fig. 3 plots the
runtime of ENS-SS, fast non-dominated sort, T-ENS, and
ENLU on random populations with 2–10 objectives. To
mimic the steady-state evolutionary process, an initial
population with 100 solutions is randomly generated,
then it is iteratively extended with a single solution until
its size reaches 200. According to the results shown in
Fig. 3, it can be found that ENLU is much more efficient
than ENS-SS and T-ENS.

TABLE I
RUNTIME (IN SECOND) OF NSGA-III EMBEDDED WITH BOS, CORNER
SORT, DEDUCTIVE SORT, ENS-SS, FAST NON-DOMINATED SORT, AND
T-ENS ON DTLZ2 WITH DIFFERENT NUMBER OF OBJECTIVES m AND
POPULATION SIZE n. BEST RESULT IN EACH ROW IS HIGHLIGHTED.

Number of NSGA-III embedded with
objectives m,

Corner Deductive
Fast non-

population BOS
sort sort

ENS-SS dominated T-ENS
size n sort

m = 2, n = 100 1.3342 1.2383 1.1442 1.0901 1.2392 1.2143
m = 2, n = 500 1.5586 1.4419 1.3019 1.1114 1.8105 1.3777
m = 3, n = 100 1.5822 1.5111 1.3977 1.3537 1.5071 1.3874
m = 3, n = 500 2.4367 2.5265 2.3762 2.1926 2.8630 2.1576
m = 5, n = 100 1.9484 1.7922 1.6631 1.5907 1.8241 1.6057
m = 5, n = 500 3.1479 3.3340 3.1284 2.9138 3.6098 2.7695
m = 10, n = 100 1.9484 1.7922 1.6631 1.5907 1.8241 1.6057
m = 10, n = 500 5.0384 5.3235 5.0838 4.8232 5.6854 4.6039

Secondly, the efficiency of the three non-dominated
sorting approaches is investigated by embedding them
into representative MOEAs. Table I lists the runtime
of NSGA-III [35] embedded with six non-dominated
sorting approaches on DTLZ2 [36], where the number of
function evaluations is set to 20000, the population size
is set to 100 and 500, and the other parameter settings are
the same to those in [35]. The experiment uses NSGA-III
rather than NSGA-II since the former can better solve
the MOPs with many objectives. To make the number
of reference points consistent with the population size,
the mixture uniform design [37] is adopted to generate
reference points instead of the original sampling method
of NSGA-III. As can be observed from Table I, ENS-
SS is the most efficient approach in most cases, while
T-ENS becomes more efficient than ENS-SS when the
number of objectives is more than 2 and the population
size is 500. Moreover, Table II presents the runtime of
MSEA [38] embedded with four non-dominated sorting
approaches on DTLZ7 [36], where MSEA is a recently
proposed steady-state MOEA having excellent diversity
performance. The number of function evaluations is set
to 20000 and the population size is set to 100 and 200. It
can be found from Table II that the MSEA with ENLU
consumes less runtime than MSEA with the other non-
dominated sorting approaches.

As a consequence, the above experiments indicate
that ENS-SS has the best efficiency when the number
of objectives or the population size is small, T-ENS
has the best efficiency when the number of objectives
and the population size are large, and ENLU has the
best efficiency for the steady-state evolutionary process.
In PlatEMO, a function NDSort.m is provided for the
non-dominated sorting of 77 MOEAs, where the sorting
approach to be used is automatically determined based
on the above experimental results. More specifically,
ENS-SS is used when the number of objectives is 2 or

TABLE II
RUNTIME (IN SECOND) OF MSEA EMBEDDED WITH ENS-SS, FAST

NON-DOMINATED SORT, T-ENS, AND ENLU ON DTLZ7 WITH
DIFFERENT NUMBER OF OBJECTIVES m AND POPULATION SIZE n.

BEST RESULT IN EACH ROW IS HIGHLIGHTED.

Number of MSEA embedded with
objectives m, Fast non-
population ENS-SS dominated T-ENS ENLU

size n sort
m = 2, n = 100 12.0792 19.1943 17.0460 11.7577
m = 2, n = 200 15.4912 22.4370 18.1422 13.1762
m = 5, n = 100 16.3255 22.2902 19.1006 14.0555
m = 5, n = 200 20.7603 48.0474 35.7418 19.5126
m = 10, n = 100 29.1788 59.0508 33.4465 21.4377
m = 10, n = 200 32.4758 56.3583 36.3406 23.9769

the population size is smaller than 500, and T-ENS is
used otherwise. Besides, a function UpdateFront.m is
provided for the non-dominated sorting of four steady-
state MOEAs, where ENLU is used.

III. MATRIX CALCULATION FOR EFFICIENT GENETIC
OPERATORS AND FUNCTION EVALUATIONS

Since matrix calculation can be accelerated by some
programming languages (e.g., MATLAB) and hardware
devices (e.g., GPU), it is desirable to improve the effi-
ciency of MOEAs by matrix calculation. For example, the
decision variables of all the solutions in a population can
be represented by a matrix, where each row denotes a
solution and each column denotes a decision variable.
Thus, the generation of offsprings can be accelerated
by performing genetic operators on the matrix, and the
function evaluation can be accelerated by calculating the
objective values of the matrix.

PlatEMO fits well with matrix calculation since it is
fully developed in MATLAB, which provides various
methods to accelerate matrix calculation. In the rest of
this section, we introduce the three methods for accel-
erating matrix calculation in PlatEMO, including matrix
operators, matrix functions, and GPU acceleration.

A. Matrix Operators
All the operators in PlatEMO are in fact conducted

based on matrix calculation, including genetic operators
(for real encoding [39], [40], binary coding [41], and
permutation based encoding [42], [43]), particle swarm
optimization [44] and its variants [45], [46], differential
evolution [47], covariance matrix adaptation evolution
strategy [48], and so on. In particular, the simulated
binary crossover (SBX) [39] includes complicated formu-
las and procedures, which is taken as an example to
illustrate the way to accelerate all its steps by matrix
operators.

Given two parents x1 = (x1
1, . . . , x

d
1), x2 = (x1

2, . . . , x
d
2)

and the crossover probability p, SBX performs the fol-
lowing steps to generate two offsprings o1 = (o11, . . . , o

d
1),

o2 = (o12, . . . , o
d
2), where rand denotes a random number

within [0, 1]:
• Step 1: If rand > p, let o1 = x1 and o2 = x2;

otherwise go to Step 2.
• Step 2: For each dimension i, if rand > 0.5, let oi1 =

xi
1 and oi2 = xi

2; otherwise go to Step 3.
• Step 3: Calculate oi1 and oi2 by{

oi1 = [(1 + β)xi
1 + (1− β)xi

2]/2

oi2 = [(1− β)xi
1 + (1 + β)xi

2]/2
, (2)

where

β =

{
(2μ)

1
η+1 , μ ≤ 0.5

(2− 2μ)−
1

η+1 , μ > 0.5
, (3)

μ is a random number within [0, 1], and η is a param-
eter controlling the distribution of the offsprings.

• Step 4: If rand > 0.5, exchange oi1 and oi2; return to
Step 2 until all the variables of the offsprings are
generated.

Obviously, the procedure of SBX is quite complex that it
contains two for-end blocks and three if-else blocks
for generating 2n offsprings.

In order to improve the efficiency of SBX, PlatEMO
uses four matrices X1, X2, O1, and O2 to represent the
parents and offsprings, where each matrix has a size
of n × d with each row denoting a solution and each
column denoting a decision variable. Generally, it is not
difficult to calculate O1, O2 based on X1, X2 by (2) and
(3), which can eliminate all the for-end blocks. But,
it is not intuitive to eliminate the if-else blocks by
matrix operators. Taking a closer look at (2), it can be
found that the decision variables of the offsprings are
mainly controlled by the value of β. More specifically,
the following assignments of β can lead to some special
results:

• β = 1 will make oi1 = xi
1 and oi2 = xi

2;
• β = −β will make oi1 = oi2 and oi2 = oi1.

Therefore, we can set β = 1 to prevent the crossover
and set β = −β to exchange the decision variables of
the two offsprings. As a consequence, PlatEMO performs
the following matrix calculations to achieve the same
function to SBX, where all the involved matrix operators
can be directly used in MATLAB:

• Step 1: Generate four random matrices M ∈ [0, 1]n×d,
R1 ∈ [0, 1]n×d, R2 ∈ [0, 1]n×d, and R3 ∈ [0, 1]n×1.

• Step 2: Perform the following matrix calculations:

T1 = M ≤ 0.5, 2 (4)

T2 = sign(R1 − 0.5), 3 (5)

T3 = R2 > 0.5, (6)

T4 = repmat(R3 > p, d), 4 (7)

B1 = (2×M)
1

η+1 , 5 (8)

B2 = (2− 2×M)−
1

η+1 , (9)

B = T1 ·B1 + (1− T1) ·B2,
6 (10)

B = T2 ·B, (11)

B = (1− T3) ·B + T3, (12)

B = (1− T4) ·B + T4, (13)

O1 = [(1 +B) ·X1 + (1−B) ·X2]/2, (14)

O2 = [(1−B) ·X1 + (1 +B) ·X2]/2. (15)

By doing so, the SBX only needs to perform sev-
eral matrix calculations without any for-end block
or if-else block, where (10) corresponds to (3), (11)
corresponds to Step 4, (12) corresponds to Step 2, (13)
corresponds to Step 1, and (14)(15) corresponds to (2).
In PlatEMO, the above steps are implemented in the
function GA.m.

B. Matrix Functions
The above formulas adopt not only matrix operators

but also some matrix functions provided by MATLAB
(i.e., sign() and repmat()). When calculating the
objective values of a population containing n solutions,
PlatEMO also adopt several matrix functions to im-
prove the efficiency. Taking the DTLZ2 [36] problem
as an example, the objective values of a solution x1 =
(x1, . . . , xd) are calculated by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = (1 + g(x)) cos
(π
2
x1

)
. . . cos

(π
2
xm−2

)
cos

(π
2
xm−1

)

f2(x) = (1 + g(x)) cos
(π
2
x1

)
. . . cos

(π
2
xm−2

)
sin

(π
2
xm−1

)

f3(x) = (1 + g(x)) cos
(π
2
x1

)
. . . sin

(π
2
xm−2

)

. . .

fm(x) = (1 + g(x)) sin
(π
2
x1

)

,

(16)
where

g(x) =
d∑

i=m

(xi − 0.5)2. (17)

Obviously, it is also not intuitive to replace the variables
in the above formulas by matrices, since each objective
function is related to different decision variables. Fortu-
nately, the goal can be achieved by taking advantages
of the matrix functions provided by MATLAB. More

2A < 0.5 returns a Boolean matrix, in which the value 1 denotes the
corresponding element in A is smaller than 0.5 and 0 otherwise.

3sign(A) returns a symbol matrix, in which the value 1 denote the
corresponding element in A is larger than 0 and -1 otherwise.

4repmat(A, d) returns a replicate matrix, in which A is repeated for
d times along the column.

5The power operator works on each element rather than the whole
matrix.

6The operator · denotes the element-wise multiplication.

specifically, PlatEMO uses a matrix X with size n × d
to represent the decision variables of all the solutions
in the population, and calculates the objective values on
DTLZ2 by

G = sum((Xm...d − 0.5)2), 7 (18)

F = repmat(1 +G,m) ·
flip(cumprod(cat(In, cos(

π

2
·X1...m−1)))) · (19)

cat(In, sin(
π

2
·Xm−1...1)). 8

The obtained matrix F stores all the objective values
of X , where each row denotes a solution and each
column denotes an objective value. It can be seen that
(18) corresponds to (17) and (19) corresponds to (16).
In PlatEMO, the above steps are implemented in the
function DTLZ2.m.

C. GPU Acceleration
The above matrix operators and matrix functions can

also be accelerated by GPU, especially when the popu-
lation size or the number of decision variables is large,
e.g., when solving large-scale MOPs [49]. In MATLAB,
all the matrices can be sent to GPU by the function
gpuArray() and got back from GPU by the function
gather(), while the matrix calculations on GPU uses
the same matrix operators and matrix functions, i.e., the
MATLAB codes do not need to be modified at all. How-
ever, it should be noted that the communication with
GPU is also time-consuming, which can even decrease
the efficiency if we send the matrices to GPU, perform
matrix calculations on GPU, and get the matrices back
from GPU. Instead, we should directly generate all the
initial matrices (e.g., the decision variables of the initial
population and the random matrices used in SBX) on
GPU by the function gpuArray.rand() and make all
the matrices stored in GPU all the time, thus saving the
time consumed by the communication with GPU.

D. Empirical Studies
To verify the efficiency of matrix calculation based

MOEA, Table III gives the runtime of NSGA-II on
DTLZ2, where the number of function evaluations is set
to 20000, the number of objectives is set to 3, the popula-
tion size is set to 100 and 500, and the number of decision
variables is set to 100, 500, 1000, and 5000. It can be seen
from the table that the NSGA-II with matrix operators
is more efficient than the original NSGA-II, while the
efficiency can be further improved by matrix functions.

7Am...d returns a matrix containing the m-th to the d-th columns of
A, and sum(A) returns a column vector containing the sum of each
row of A.

8In denotes a n × 1 column vector with all elements being 1,
cat(A,B) returns a matrix with B being concatenated to the last
column of A, cumprod(A) returns a matrix containing the cumulative
product of each row of A, and flip(A) returns A with its columns
flipped in the left-right direction.

TABLE III
RUNTIME (IN SECOND) OF NSGA-II USING DIFFERENT METHODS

FOR ACCELERATING MATRIX CALCULATION ON DTLZ2 WITH
DIFFERENT NUMBER OF DECISION VARIABLES d AND POPULATION

SIZE n. BEST RESULT IN EACH ROW IS HIGHLIGHTED.

NSGA-II with
Number of

Matrix
Matrix

variables d,
Original Matrix operators +

operators +
population

version operators Matrix
Matrix

size n
functions

functions +
GPU

d = 100, n = 100 1.1422 0.9440 0.8952 3.8038
d = 100, n = 500 0.8527 0.6797 0.6396 3.1963
d = 500, n = 100 2.8561 1.8656 1.8094 4.0788
d = 500, n = 500 2.3751 1.6227 1.6101 3.2507
d = 1000, n = 100 4.7466 2.8531 2.8035 4.4720
d = 1000, n = 500 4.4219 3.0301 3.0040 3.5709
d = 5000, n = 100 23.1272 13.8115 13.9500 6.6578
d = 5000, n = 500 22.7842 15.1807 14.9286 5.9857

(a) The original NSGA-II (b) NSGA-II with ENS-SS, matrix
operators, matrix functions, and
GPU acceleration

Fig. 4. Runtime (in second) of each component of the original NSGA-II
and the accelerated NSGA-II on DTLZ2, where the number of decision
variables is 5000 and the population size is 500.

As for the NSGA-II based on GPU acceleration, it has the
best efficiency when the number of decision variables is
large. To summarize, the experiment indicates that the
matrix operators and matrix functions can considerably
improve the efficiency of MOEAs, and the efficiency can
be further improved by GPU when solving large-scale
MOPs.

For a comprehensive study, Fig. 4 compares the run-
times of the original NSGA-II and the NSGA-II accel-
erated by ENS-SS (i.e., non-dominated sorting), matrix
operators (i.e., offspring generation), matrix operators
(i.e., function evaluation), and GPU, where the number
of function evaluations, the number of objectives, the
population size, and the number of decision variables
are set to 20000, 3, 500, and 5000, respectively. It is
obvious that the runtime of the accelerated NSGA-II is
approximately a quarter of the original version. As a
consequence, the effectiveness of these techniques used

0

20

40

60

80

100

120

R
un

tim
e

(s
)

NSGA-II on
DTLZ2

NSGA-II and NSGA-III on
DTLZ2

NSGA-II and NSGA-III on
DTLZ2 and DTLZ7

11.61s
3.88s

23.75s

7.92s

105.93s

41.06s

Executed in sequence
Executed in parallel

Fig. 5. Runtime (in second) of executing NSGA-II and NSGA-III on
DTLZ2 and DTLZ7 for 20 times in sequence and in parallel.

in PlatEMO can be confirmed.

IV. PARALLELIZATION OF THE EXECUTION OF MOEAS

When comparing the performance of several MOEAs,
it needs to execute each MOEA for multiple independent
runs to eliminate the effect of random initialization and
perform statistical analysis. To improve the efficiency of
the experimental comparison between MOEAs, PlatEMO
uses parallel computing to accelerate such a repetitive
execution. More specifically, the parfor-end block is
used to execute an MOEA for multiple runs instead
of the for-end block, which can execute the loop in
parallel by using all the CPUs in the computer.

To illustrate the efficiency improved by parallel com-
puting, Fig. 5 depicts the runtime of executing NSGA-II
and NSGA-III on DTLZ2 and DTLZ7 for 20 times. It can
be found that the experiments performed in parallel are
much more efficient than the experiments performed in
sequence, where the parallel computing can reduce the
runtime to a third. It is worth to note that the parallel
computing is supported by four CPUs here, while the
runtime cannot be reduced to a quarter since some
runtime is consumed by the communication between
CPUs.

In PlatEMO, the experimental module provided by the
GUI can automatically perform the experiments in paral-
lel. In other words, users can achieve parallel computing
by one-click operation without writing any code.

V. CONCLUSIONS

Evolutionary algorithms have demonstrated high ef-
fectiveness in solving complex optimization problems,
but they are often criticized for the low efficiency. As
an evolutionary multi-objective optimization platform,
PlatEMO provides more than 100 MOEAs and improves
their efficiency by various techniques. This paper has
given a detailed introduction to these techniques, in-
cluding three non-dominated sorting approaches, ma-
trix operators, matrix functions, GPU acceleration, and
parallel computing. Moreover, several experiments have

been conducted to quantitatively show the efficiency
improved by these techniques.

The techniques provided by programming languages
and hardware devices do improve the computational
efficiency of MOEAs to some extent, while novel search
strategies should be developed to fundamentally im-
prove the efficiency of MOEAs in solving real-world
MOPs, especially those with a large number of decision
variables [50]. Although some variable decomposition
based MOEAs have been tailored for large-scale MOPs
[49], [51], they require a large number of function evalua-
tions that highly increase the computational complexity.
Therefore, some other strategies (e.g., Pareto optimal
space learning [52]) should be employed to solve large-
scale MOPs with both high effectiveness and high effi-
ciency.

REFERENCES

[1] J. H. Holland, Adaptation in Natural and Artificial Systems. MIT
Press, 1992.

[2] R. Eberhart and J. Kennedy, “A new optimizer using particle
swarm theory,” in Proceedings of the 6th International Symposium
on Micro Machine and Human Science, 1995, pp. 39–43.

[3] R. Stom and K. D. Price, “Differential evolution - a simple
and efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–359,
1997.

[4] T. Back, Evolutionary algorithms in theory and practice: Evolution
strategies, evolutionary programming, genetic algorithms. Oxford
University Press, 1996.

[5] C. A. C. Coello, G. B. Lamont, and D. A. Van Veldhuizen, Evo-
lutionary algorithms for solving multi-objective problems. Springer,
2007, vol. 5.

[6] D. Karaboga and B. Akay, “A comparative study of artificial bee
colony algorithm,” Applied mathematics and computation, vol. 214,
no. 1, pp. 108–132, 2009.

[7] Y. Tan and Y. Zhu, “Fireworks algorithm for optimization,” in
International conference in swarm intelligence, 2010, pp. 355–364.

[8] P. Pospichal, J. Jaros, and J. Schwarz, “Parallel genetic algorithm
on the CUDA architecture,” in European conference on the applica-
tions of evolutionary computation. Springer, 2010, pp. 442–451.

[9] M. T. Jensen, “Reducing the run-time complexity of multiobjective
EAs: The NSGA-II and other algorithms,” IEEE Transactions on
Evolutionary Computation, vol. 7, no. 5, pp. 503–515, 2003.

[10] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and eli-
tist multi-objective genetic algorithm: NSGA-II,” IEEE Transactions
on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[11] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
strength Pareto evolutionary algorithm for multiobjective opti-
mization,” in Proceedings of the Fifth Conference on Evolutionary
Methods for Design, Optimization and Control with Applications to
Industrial Problems, 2001, pp. 95–100.

[12] J. Bader and E. Zitzler, “HypE: An algorithm for fast
hypervolume-based many-objective optimization,” Evolutionary
Computation, vol. 19, no. 1, pp. 45–76, 2011.

[13] N. Srinivas and K. Deb, “Multiobjective optimization using non-
dominated sorting in genetic algorithms,” Evolutionary Computa-
tion, vol. 2, no. 3, pp. 221–248, 1995.

[14] Y. Tian, H. Wang, X. Zhang, and Y. Jin, “Effectiveness and
efficiency of non-dominated sorting for evolutionary multi-
and many-objective optimization,” Complex & Intelligent Systems,
vol. 3, no. 4, pp. 247–263, 2017.

[15] A. Mambrini and D. Izzo, “PaDe: A parallel algorithm based on
the MOEA/D framework and the island model,” in Proceedings of
the International Conference on Parallel Problem Solving from Nature,
2014, pp. 711–720.

[16] M. Z. de Souza and A. T. R. Pozo, “A GPU implementation of
MOEA/D-ACO for the multiobjective traveling salesman prob-
lem,” in Proceedings of the 2014 Brazilian Conference on Intelligent
Systems, 2014, pp. 324–329.

[17] L. Russo and A. P. Francisco, “Quick hypervolume,” IEEE Trans-
actions on Evolutionary Computation, vol. 18, no. 4, pp. 481–502,
2014.

[18] S. Jiang, J. Zhang, Y.-S. Ong, A. N. Zhang, and P. S. Tan, “A simple
and fast hypervolume indicator-based multiobjective evolution-
ary algorithm,” IEEE Transactions on Cybernetics, vol. 45, no. 10,
pp. 2202–2213, 2015.

[19] K. Shang and H. Ishibuchi, “A new hypervolume-based evolu-
tionary algorithm for many-objective optimization,” IEEE Trans-
actions on Evolutionary Computation, 2020, in press.

[20] Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “PlatEMO: A MATLAB
platform for evolutionary multi-objective optimization,” IEEE
Computational Intelligence Magazine, vol. 12, no. 4, pp. 73–87, 2017.

[21] D. E. Goldberg, Genetic algorithms in search, optimization, and
machine learning. Boston, USA: Addison-Wesley, 1989.

[22] X. Zhang, Y. Tian, and Y. Jin, “A knee point driven evolutionary
algorithm for many-objective optimization,” IEEE Transactions on
Evolutionary Computation, vol. 19, no. 6, pp. 761–776, 2015.

[23] C. He, Y. Tian, Y. Jin, X. Zhang, and L. Pan, “A radial space
division based evolutionary algorithm for many-objective opti-
mization,” Applied Soft Computing, vol. 61, pp. 603–621, 2017.

[24] Y. Liu, D. Gong, J. Sun, and Y. Jin, “A many-objective evolutionary
algorithm using a one-by-one selection strategy,” IEEE Transac-
tions on Cybernetics, vol. 47, no. 9, pp. 2689–2702, 2017.

[25] K. Li, K. Deb, Q. Zhang, and S. Kwong, “Combining dominance
and decomposition in evolutionary many-objective optimization,”
IEEE Transactions on Evolutionary Computation, vol. 19, no. 5, pp.
694–716, 2015.

[26] M. Li, S. Yang, and X. Liu, “Pareto or non-Pareto: Bi-criterion
evolution in multi-objective optimization,” IEEE Transactions on
Evolutionary Computation, vol. 20, no. 5, pp. 645–665, 2015.

[27] Y. Tian, R. Cheng, X. Zhang, F. Cheng, and Y. Jin, “An indicator
based multi-objective evolutionary algorithm with reference point
adaptation for better versatility,” IEEE Transactions on Evolutionary
Computation, vol. 22, no. 4, pp. 609–622, 2018.

[28] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “An efficient approach
to non-dominated sorting for evolutionary multi-objective opti-
mization,” IEEE Transactions on Evolutionary Computation, vol. 19,
no. 2, pp. 201–213, 2015.

[29] ——, “Empirical analysis of a tree-based efficient non-dominated
sorting approach for many-objective optimization,” in Proceedings
of the 2016 IEEE Symposium Series on Computational Intelligence,
2016.

[30] K. Li, K. Deb, Q. Zhang, and Q. Zhang, “Efficient nondomination
level update method for steady-state evolutionary multiobjective
optimization,” IEEE Transactions on Cybernetics, vol. 47, no. 9, pp.
2838–2849, 2016.

[31] J. J. Durillo, A. J. Nebro, F. Luna, and E. Alba, “On the effect
of the steady-state selection scheme in multi-objective genetic
algorithms,” in Proceedings of the International Conference on Evolu-
tionary Multi-Criterion Optimization, 2009, pp. 183–197.

[32] P. C. Roy, M. M. Islam, and K. Deb, “Best order sort: A new algo-
rithm to non-dominated sorting for evolutionary multi-objective
optimization,” in Proceedings of the 2016 Genetic and Evolutionary
Computation Conference Companion, 2016, pp. 1113–1120.

[33] H. Wang and X. Yao, “Corner sort for Pareto-based many-
objective optimization,” IEEE Transactions on Cybernetics, vol. 44,
no. 1, pp. 92–102, 2014.

[34] K. M. Clymont and E. Keedwell, “Deductive sort and climbing
sort: New methods for non-dominated sorting,” Evolutionary Com-
putation, vol. 20, no. 1, pp. 1–26, 2012.

[35] K. Deb and H. Jain, “An evolutionary many-objective optimiza-
tion algorithm using reference-point based non-dominated sort-
ing approach, part I: Solving problems with box constraints,”
IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp.
577–601, 2014.

[36] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test
problems for evolutionary multiobjective optimization,” in Evolu-
tionary Multiobjective Optimization. Theoretical Advances and Appli-
cations, 2005, pp. 105–145.

[37] Y. Tian, X. Xiang, X. Zhang, R. Cheng, and Y. Jin, “Sampling
reference points on the Pareto fronts of benchmark multi-objective
optimization problems,” in Proceedings of the 2018 IEEE Congress
on Evolutionary Computation, 2018.

[38] Y. Tian, C. He, R. Cheng, and X. Zhang, “A multistage evolution-
ary algorithm for better diversity preservation in multiobjective
optimization,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 2019.

[39] K. Deb and R. B. Agrawal, “Simulated binary crossover for
continuous search space,” Complex Systems, vol. 9, no. 4, pp. 115–
148, 1995.

[40] K. Deb and M. Goyal, “A combined genetic adaptive search (Ge-
neAS) for engineering design,” Computer Science and Informatics,
vol. 26, no. 4, pp. 30–45, 1996.

[41] Y. Tian, X. Zhang, C. Wang, and Y. Jin, “An evolutionary algorithm
for large-scale sparse multi-objective optimization problems,”
IEEE Transactions on Evolutionary Computation, 2019, in press.

[42] L. Davis, “Applying adaptive algorithms to epistatic domains,”
in Proceedings of the International Joint Conference on Artificial Intel-
ligence, vol. 1, 1985, pp. 162–164.

[43] D. B. Fogel, “An evolutionary approach to the traveling salesman
problem,” Biological Cybernetics, vol. 60, no. 2, pp. 139–144, 1988.

[44] J. Kennedy, J. F. Kennedy, R. C. Eberhart, and Y. Shi, Swarm
intelligence. Morgan Kaufmann, 2001.

[45] A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, C. A. C. Coello, F. Luna,
and E. Alba, “SMPSO: A new PSO-based metaheuristic for multi-
objective optimization,” in Proceedings of the 2009 IEEE Sympo-
sium on Computational Intelligence in Multi-Criteria Decision-Making,
2009, pp. 66–73.

[46] Y. Tian, X. Zheng, X. Zhang, and Y. Jin, “Efficient large-scale multi-
objective optimization based on a competitive swarm optimizer,”
IEEE Transactions on Cybernetics, vol. 2019, in press.

[47] K. Price, R. M. Storn, and J. A. Lampinen, Differential evolution:
A practical approach to global optimization. Springer Science &
Business Media, 2006.

[48] H. Li, Q. Zhang, and J. Deng, “Biased multiobjective optimization
and decomposition algorithm,” IEEE Transactions on Cybernetics,
vol. 47, no. 1, pp. 52–66, 2017.

[49] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “A decision variable
clustering-based evolutionary algorithm for large-scale many-
objective optimization,” IEEE Transactions on Evolutionary Compu-
tation, vol. 22, no. 1, pp. 97–112, 2018.

[50] C. He, R. Cheng, C. Zhang, Y. Tian, Q. Chen, and X. Yao,
“Evolutionary large-scale multiobjective optimization for ratio
error estimation of voltage transformers,” IEEE Transactions on
Evolutionary Computation, 2020, in press.

[51] X. Ma, F. Liu, Y. Qi, X. Wang, L. Li, L. Jiao, M. Yin, and M. Gong,
“A multiobjective evolutionary algorithm based on decision vari-
able analyses for multiobjective optimization problems with large-
scale variables,” IEEE Transactions on Evolutionary Computation,
vol. 20, no. 2, pp. 275–298, 2016.

[52] Y. Tian, C. Lu, X. Zhang, K. C. Tan, and Y. Jin, “Solving large-
scale multi-objective optimization problems with sparse optimal
solutions via unsupervised neural networks,” IEEE Transactions
on Cybernetics, vol. 2020, in press.

