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Abstract-Influence maximization refers to selecting a group 
of nodes from a social network, which obtains the largest 
influence spread under a cascade model. However, most of the 
existing works only focused on the influence and ignored the 
diversity of influenced crowd. Thus, scholars have raised the issue 
of diversified social influence maximization recently, using the 
category information of nodes to design diversity indicator and 
introducing a trade-off parameter to balance the two objectives 
influence and diversity as one single objective for optimization. In 
fact, the category information of nodes in the network is usually 
difficult to be collected, thus the definition of diversity based on 
nodes' categories is not very general and accurate. In addition, 
it is very difficult to set the trade-off parameter, especially 
when there is no prior knowledge in real applications. To this 
end, we employ overlapping community structure information to 
design the diversity of nodes without any node's additional (e.g. 
category) information. Due to the two objectives of influence 
and diversity may be conflicting, a multi-objective evolutionary 
algorithm named MOEA-DIM is proposed to optimize the two 
objectives simultaneously, which does not need to set the trade­
off parameter between the two objectives. In MOEA-DIM, a 
network reduction strategy based on overlapping community 
structure is suggested to greatly reduce the search space. In 
addition, a population initialization strategy based on random 
walk is designed to accelerate the convergence of the algorithm. 
Experiments on six real-world datasets show that the proposed 
algorithm MOEA-DIM has promising performance in terms of 
both effectiveness and efficiency. 

Index Terms-Influence maximization, diversity, overlapping 
community detection, multi-objective evolutionary algorithm. 

I. INTRODUCTION 

Today, online social networks such as Facebook and Twitter 

play a great role in people's life. People share their opinions 

through social platform to make information easier to spread 

between users [ 1 ]-[3]. The problem of influence maximization 

is to simply find top-k high-influence users in social networks, 

which has the maximum influence. Kempe et al. [ 4] formalized 

the problem as a discrete optimization problem and proved 

that the problem was an NP-hard problem and then used a 

greedy algorithm to solve the problem. The greedy algorithm 

has a certain degree of accuracy, but it used Monte Carlo 

simulation to calculate the marginal effects of all nodes to 

select nodes, which has a high time complexity and cannot 

be used in large-scale networks. Based on this issue, scholars 

have proposed various greedy [5]-[7] and heuristic strategies 

[8]-[14] to accelerate speed of the algorithm. 

However, most of the existing studies only focused on the 

influence of the influenced crowd and ignored the importance 

of diversity. In fact, in real-world marketing, enterprises prefer 

to choose diverse target audience to promote new products and 

expand the market size. And in investing, investors are more 

inclined to choose diverse portfolios to reduce investment 

risks. To this end, Tang et al. [15] first utilized the category 

information of the nodes to design diversity indicator. Then 

they formulated a novel problem of diversified social influence 

maximization by using a trade-off parameter to combine the 

two objectives influence and diversity as one single objective 

for optimization. At the same time, they proved that this 

problem was an NP-hard problem and then proposed a greedy 

algorithm to solve it. Finally, the experimental results on 

two real datasets validated the effectiveness of their proposed 

problem and algorithm. However, in real world, the category 

information of nodes is usually difficult to be collected. 

Thus, designing diversity indicator based on this additional 

information is not very accurate and universal to a certain 

extent. In addition, the trade-off parameter between influence 

and diversity is difficult to set, especially when there is no 

prior knowledge of the application can be considered. 

To solve the above challenges, we use the overlapping 

community detection algorithm to obtain community structure 

information of nodes and employ these information to design 

novel diversity indicator without using any additional (e.g. 

category) information of nodes. In the real world, overlapping 

community detection is an important tool for discovering infor­

mation hidden in complex networks such as social networks, 

people with similar hobbies and interests are more likely to 

be divided into same community and one people maybe have 
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more than one communities or hobbies. Thus, it is intuitive to
use the community structure information of nodes to design
diversity indicator. In addition, we propose a multi-objective
evolutionary algorithm to simultaneously optimize influence
and diversity without setting the trade-off parameter between
the two objectives. In summary, the major contributions of this
paper are summarized as follows:

• We employ the overlapping community structure infor­
mation of nodes to design novel diversity indicator, which
does not need any node's additional information. Consid­
ered that the two objectives of influence and diversity are
conflicting, we formulate the diversified social influence
maximization as a multi-objective optimization problem.

• We propose a multi-objective evolutionary algorithm
named MOEA-DIM to solve the above multi-objective
optimization problem. In MOEA-DIM, in order to reduce
the search space, we suggest a network reduction strategy
by using overlapping community structure information to
prune out unimportant nodes. In addition, we design a
population initialization strategy based random walk to
accelerate the convergence of the algorithm. 

• We estimate the effectiveness and efficiency of MOEA­
DIM on six real-world networks with different charac­
teristics. Experimental results show that the proposed
algorithm MOEA-DIM has better performance than the
comparison algorithms.

The remainder of this paper is organized as follows. We first
give the preliminaries and related work in Section IL Then,
we describe the problem model and introduce the proposed
MOEA-DIM algorithm in Section III. Section IV shows our
experimental results and Section V concludes this paper.

II. THE PRELIMINARIES AND RELATED WORK 

In this section, we first present some preliminaries about
influence maximization and traditional diversified social influ­
ence maximization problem, then introduce the multi-objective
optimization. Finally, we give the related work.

A. Influence Maximization Problem
For the first time, Kempe et al. [4] formalized the social

influence maximization problem as a discrete optimization
problem. Formally, given a graph G = (V, E), the influence
maximization problem is defined as follows:

max (J' (S), s.t. ISi = k, 
s�v 

(1) 

where O'(S) denotes the influence of activated nodes by the
seed set S and k represents the size of S. Kempe et al.
proved that this problem was an NP-hard one, then they
used Monte Carlo simulations to calculate the influence of
influenced crowd and proposed a (1-1/e) approximation greedy
algorithm.

B. Traditional Diversified Social Influence Maximization
Problem

Tang et al. [15] proposed the problem of diversified social
influence maximization. In their work, they used the category

information of the nodes in the network to measure the
diversity of nodes. For example, in movie recommendation
dataset, nodes represent movies and the category of the node
is the category of the movie. If the type of one movie is
comedy, love and action at the same time, then this node has
three categories. They assumed that each node belongs to one
or more categories, which is described as a distribution over
these categories. Based on these distributions, they designed a
novel diversity measure D(µ8), which has the nice property
of monotonicity and submodularity. Then, they combined
the two goals of diversity and influence into one objective
to optimize. The diversified social influence maximization
problem is defined as follows:

max F (S) = (1 - 1) u C!) +, D �
s
), s.t. ISi = k. (2)

u D
where a and D are two normalization factors, 1 is a trade-off
parameter. They proved that this objective function was non­
decreasing submodular, and then employed a simple greedy
algorithm to address it.

C. Multi-Objective Optimization
Multi-objective optimization problem (MOP) refers to the

optimization of multiple objectives at the same time, and
multiple objectives usually conflict with each other. In real
applications, a variety of tasks can be formulated as MOPs,
such as pattern recommendation [16], [17], community detec­
tion [18], [19], network vulnerability analysis [20], and so on.

A multi-objective optimization problem (take the maxi­
mization problem as an example) can be formally defined as
follows:

max F(x) = (f1(x),h(x), ... ,fm(x)f, (3)

where x = (x1, x2, ... , xn) E n is the decision vector, n is
the n-dimensional decision space and m is the number of
objectives. 

Suppose two decision vectors x1 and x2, x2 dominates
x1 or x1 is dominated by x2 (expressed as x2 >-- x1) if
f;(x1) :::; f;(x2) for all i = 1, 2, ... , m, and F;(x1) i= F;(x2)­
The non-dominated solution x E n is a decision vector, if
there is no any x* E n satisfying x* >-- x. The set of all
non-dominated solutions is represented as a Pareto set defined
as PaS = {x E !1l�x• E !1,x* >-- x}. The Pareto front is
a projection of the Pareto set to the target space, which is
denoted as PF = {F ( x) Ix E P aS}. The purpose of the multi­
objective evolutionary algorithm is to search a group of non­
dominated solutions that approximate the true Pareto front.

D. Related Works
Kempe et al. [4] formalized the social influence maximiza­

tion problem into a discrete optimization problem for the first
time and proved that it is an NP-hard problem. Then they
proposed a (1-1/e) approximation greedy algorithm to solve it.
However, the proposed greedy algorithm is not very efficient
and it is difficult to be applied for large-scale networks. For



this reason, a large number of scholars have proposed various 
greedy and heuristic strategies to accelerate speed of the 
algorithm [5]-[14]. 

To be specific, on the one hand, some scholars proposed 
to reduce the number of calculations of the influence of seed 
to improve the efficiency. For example, Leskovec et al. [5]
used the submodule property to propose a CELF optimization 
strategy to reduce the user's search space. Based on the 
similar idea, Goyal et al. [6] proposed a CELF++ optimization
strategy, which can further reduce the number of calculations 
of seed influence. Chen et al. [7] proposed the NewGreedy and
MixGreedy algorithms to simulate the influence propagation 
process by generating a subgraph. 

On the other hand, some scholars have focused on heuristic 
algorithms to improve the efficiency. Heuristic algorithms 
usually select seed nodes according to some heuristic rules, 
whose advantage is that the speed is fast, but there is no 
guarantee of accuracy. For example, Chen et al. [9] proposed
a PMIA model by using the local influence of the nodes 
to approximate the global influence and constructing the 
maximum influence subtree through the Maximum Influence 
Path (MIP). Gong et al. [10] presented an efficient memetic
algorithm based on community to reduce the network and 
adopted the 2-hop influence spread [21] method to reduce 
computational cost. Recently, Huang et al. [14] proposed a 
new method integrated community detection into the process 
of influence propagation by digging potential topic information 
and community members to infer the correlation between users 
and finding influential nodes about communities. 

Most of the above existing works have been devoted to 
designing efficient algorithms to solve the problem of max­
imizing influence, but a few researchers focused on the diver­
sity of influenced people. For example, Tang et al. [15] first
proposed the problem of diversified social influence maximiza­
tion, where the influence and the diversity of influenced crowd 
were both considered. They used the category information of 
nodes to design the diversity indicator, and the two objectives 
of influence and diversity were combined as one objective 
by setting a trade-off parameter for optimization. In fact, 
the category information of nodes is usually difficult to be 
collected in the real world. In addition, the trade-off parameter 
is difficult to set for different networks with different charac­
teristics. Calio et al. [22] defined a novel problem, named 
Diversity-sensitive Targeted Influence Maximization (DTIM) 
and brought the concept of topology-driven diversity into 
targeted influence maximization problems. They assumed that 
users' diversity in a social graph can be determined based 
on topological properties related to their neighbors. Finally, 
they employed a greedy approach that exploited the search 
for shortest paths in the diffusion graph, in a backward fashion 
from the selected target set. 

Different from the above related works, this paper proposes 
to employ overlapping community structure information to 
design the diversity of nodes without any node's additional 
information. Due to the conflict between influence and di­
versity, we propose a multi-objective algorithm to simultane­
ously optimize influence and diversity. In MOEA-DIM, two 
novel strategies (i.e. a network reduction strategy based on 

overlapping community structure information and population 
initialization strategy based on random walk) are proposed to 
greatly reduce the search space and accelerate convergence of 
the algorithm. 

Ill. THE PROPOSED ALGORITHM FOR DIVERSIFIED 
INFLUENCE MAXIMIZATION 

In this section, we propose a novel diversity indicator 
based on overlapping communities and then formalize the 
diversified social influence maximization as a multi-objective 
optimization problem. In what follows, we introduce the pro­
posed multi-objective evolutionary algorithm named MOEA­
DIM, including the proposed network reduction strategy and 
population initialization strategy in detail. 

A. The Overlapping Community Based Diversity and Multi­
Objective Problem Formulation

The overlapping community detection algorithm is firstly 
used to obtain community structure information of nodes, 
which can be used to design the diversity indicator. To be 
specific, each community is assigned with one label, then the 
labels of communities where one node is belonged to are used 
as this nodes's label information. It can be found that each 
node belongs to one or more labels, described as a distribution 
over these labels. Then, the popular Shannon entropy is 
adopted to calculate the diversity of influenced crowd by 
using nodes' distribution over these labels. To be specific, 
the proposed diversity indicator named StrudDiversity is
formulated as follows. 

Definition 1 (StructDiversity): Given a seed S, the struct
diversity for the network is defined as: 

ICI 

SD (µ8

) = L -p;log2 Pi, 

where 

i=l 

IVI 

I: W;jµff 
j=l 

(4) 

where µ8 is a vector with length IVI that represents the
influence of nodes in the network activated by seed S, C =
{ c1, c2, ... , Cm} is a division of G with m communities, p; can
be understood as the proportion of influence allocated to the i­
th community, µff is the probability of node j being activated
after Monte Carlo simulation, w;j is the label distribution of 
node j in the community i. For each node j in the network,
a vector of length ICI satisfies I:;�� Wij = 1. It can be found 
that the proposed diversity indicator just uses the inner struct 
information of nodes without use any additional (e.g. category) 
information of nodes, thus is more general and accurate. 

Let's take the network shown in Fig. 1 as an example. 
Suppose this network is divided into two communities (labeled 
with A and B respectively), where blue nodes 5 and 7 are 
two overlapping nodes. Let seed S be {1, 5}. After 10,000 
times Monte Carlo simulations, suppose the probability of 
each node being activated in 10,000 times are µff. = 1.0,
µf = 0.3, µf = 1, µf = 0.1, µf = 0.2 respectively, and 



Fig. 1. A network is divided into two communities A and B, where blue 
nodes {5, 7} are overlapping uodes. 

for other nodes, their probabilities are all 0. We can find that 
the labels of nodes {1,4,5,7,8} are £1 = {A}, £4 = {A}, 
L5 = 

{A,B}, L1 = 
{A,B}, L8 = {B} respectively. 

Therefore, the label distribution of node 1 in the community 
A, WA1 = 1. Similarly, WA4 = 1, WAs = WB5 = 0.5, 
WA1 = WB7 = 0.5, WBs = 1. The proportion of influ­
ence allocated to the A, B community (no normalization) 
is PA = l * 1 + 0.3 * 1 + 1 * 0.5 + 0.1 * 0.5 = 1.85, 
p� = 1 * 0.5 + 0.1 * 0.5 + 0.2 * 1 = 0.75. After normalization, 
PA = 1.85/(1.85+0.75) = 0.71, PB = 0.75/(1.85+0.75) = 
0.29. Then SD(µ8) = -(pAlog2 pA + PBlog2 pB) = 0.52 +
0.36 = 0.87. 

Tang et al. [15] have verified the conflict between influence 
and category-based diversity through their experiments. In 
other words, when the diversity is large, the influence may 
be small. Otherwise, when the diversity is small, the influence 
may be large. This observation is also verified in our experi­
ments shown in Section IV-B. To this end, it is very intuitive 
to formalize the diversified social influence maximization as 
a multi-objective optimization problem by optimizing both 
influence CJ(S) and struct diversity SD(µ8 ) of influenced
crowd, which is defined as follows: 

Maximize F(S) = (!1(S),h(S)f, 

where (5) 

In the following, an effective multi-objective evolutionary 
algorithm MOEA-DIM is proposed for this multi-objective 
optimization problem. 

B. The Framework of MOEA-DIM

In this paper, we propose a multi-objective evolutionary
algorithm for diversified social influence maximization, which 
adopts a similar framework with NSGA-11 [23] to solve the 
multi-objective problem. The integer encoding is adopted as 
the individual encoding. To be specific, the i-th individual 
in the population includes a k-node set, which is denoted as 
p; = {x1, x2, ... , xk} and Xj is one node in the network.

Algorithm 1 shows the general framework of MOEA­
DIM, which consists of four steps: overlapping community 
detection, network reduction, population initialization and 
population evolution. At the first step, we use one popular 
overlapping community detection algorithm SLPA [24] to get 
the overlapping community structure C. At the second step, 

in order to reduce the search space, a network reduction 
strategy based on overlapping community structure informa­
tion is proposed for pruning out unimportant nodes to obtain 
the candidate node set G' (see Algorithm 2). At the third 
step, a population initialization strategy based random walk 
is suggested to accelerate the convergence of the proposed 
algorithm (see Algorithm 3). At the last step, MOEA-DIM 
uses tournament selection to obtain mating pool and employs 
parents in the mating pool to crossover and mutation to 
produce child individuals as suggested in [23], where each 
node in the child individuals should be appeared in G'. 

From the above explanation of Algorithm 1, it can be found 
that the proposed network reduction strategy and population 
initialization strategy are two important parts in MOEA-DIM. 
In the following, we will illustrate them in detail. 

Algorithm 1: General Framework of MOEA-DIM 

Input: G: the network of G = (V, E); maxgen: the maximum 
number of generations; pop: the size of population; 

Output: Optimal solutions OS

Stepl: Overlapping Community Detection 
1: C +--- obtain community structure and node label information 

by a popular overlapping community detection algorithm 
SLPA [24]; 
Step2: Network Reduction 

2: G' +--- obtain node candidates by the proposed Algorithm 2; 
Step3: Population Initialization 

3: Po +--- obtain initial population by the proposed Algorithm 3; 
4: t = O; 

Step4: Population Evolution 
5: while t < maxgen do 
6: Pt +---Evaluate(Pt); 
7: Mt +---GenerateM atingPool(Pt); 
8: Qt t-CrossM utate( Mt, G'); 
9: Pt+1 +---UpdatePopulation(Pt U Qt); 

10: t++; 
11: end while 
12: OS +--- get the non-dominated solutions from the final 

population Pt; 

C. The Proposed Strategies in MOEA-DIM

In this section, we will introduce the two proposed strategies
including network reduction strategy and population initializa­
tion strategy. 

I) Network reduction strategy: The basic idea of network
reduction is that some unimportant nodes will increase the 
search space of the algorithm, so we harness some useful 
information to prune out some unimportant nodes in the 
network. To be specific, we design two indicators ( denoted 
as StructDegree and NeiDiversity) by considering two
aspects of influence and diversity to select node candidates. 

Note that the overlapping node in the network is like bridge 
connecting different communities and plays a very important 
role in network information diffusion [25]. To this end, we 
propose a novel structural degree indicator by using nodes' 
structural information of the overlapping nodes to measure 
the influence importance of nodes in the network. Given a 
network G = (V, E), let n be the number of all nodes in 
V, Lv represents the community labels of the node v and 



Nv represents the neighbors of node v. The structural degree 
indicator can be defined as follows. 

Definition 2 (StructDegree): 

IL l+i IL l+l StructDegree (v) = __ v2-- + L
_

_ u2--, (6) 
uENv 

where (ILv l + 1)/2 represents the overlapping importance of 
node v itself, I: (ILv l + 1)/2 represents the overlapping 

uENv 

importance of node v's neighbors. From the formula, we 
can see that if a node is not an overlapping node, then its 
contribution to structural degree is 1. This means that the 
more overlapping nodes a node connects, the greater structural 
degree of the node. 

For example, as shown in Fig. 1, nodes 4, 5 have four 
neighbors with the same degree. The neighbors of node 4 and 
5 are {1, 2, 5, 6} and {1, 4, 7, 8} respectively, According to 
Eq. (6), StructDegree(4) = 1 + (1 + 1 + 1.5 + 1) = 5.5 and 
StructDegree(5) = 1.5 + (1 + 1 + 1.5 + 1) = 6. We can 
find that node 5 is better than node 4. Although node 4 and 
node 5 have same degree, node 5 is more important since it is 
an overlapping node. From this example, we can see that the 
importance between overlapping nodes and non-overlapping 
nodes with the same degree can be distinguished according to 
the proposed indicator. 

In addition, it is intuitive to find that if a node's neighbors 
belong to more different communities, then the diversity of n­
odes will be greater according to the Definition 1. Therefore, a 
new indicator named neighbor diversity of node v is proposed 
to measure the diversity importance of nodes in the network, 
which is defined as follows: 

Definition 3 (NeiDiversity): 

N eiDiver sity ( v) = f fi ( L Wiu)
i=l uENv 

(7) 

where f i ( x) can be any nondecreasing concave function, we 
set fi(x) = ln(l+x) and Nv represents the neighbors of node 
v, wiu is the distribution of node u in the community i. 

Also taking the network shown in Fig. 1 as an example. The 
network is divided into two communities labeled as A and 
B respectively, where blue nodes 5, 7 are two overlapping 
nodes. Take node 5 as an example. The neighbors of node 
5 are {1, 4, 7, 8}, and the community labels of node 1, 4, 
7, 8 are £1 = {A}, L4 = {A}, L1 = {A,B} and 
L8 = { B} respectively. Therefore, the nodes in A community 
are {1, 4, 7} and the nodes in B community are {7, 8}. So, the 
neighbour diversity in community A is f A = ln(l + 1 + 1 +
0.5) = 1.25, and the neighbour diversity in community B is 
is = ln(l + 0.5 + 1) = 0.92. Finally, the neighbour diversity 
for node 5 is NeiDiversity(v5) = fA +is= 2.17. 

Algorithm 2 presents the procedure of network reduc­
tion strategy, which uses the two suggested indicators 
StructDegree and NeiDiversity to prune out some u­
nimportant nodes in the network. First, we calculate the 
StructDegree and NeiDiversity value of each node. 
Then, we sort the nodes in descending order according to 
StructDegree and N eiDiver sity value respectively. To au­
tomatically get a proper number of candidates, we select ../nf

nodes as candidates for each indicator, where n is the number 
of nodes in the network and k is the size of seed S. Then, 
we merge and remove duplicate nodes for the two candidates 
as one final candidates, whose length is much smaller than n. 
Therefore, the search space can be greatly reduced by using 
this strategy. 

Algorithm 2: Network Reduction 
Input: G: the network of G = (V, E); n: the number of nodes in 

network G; k: seed size; 
Output: CN: Candidate Nodes 
1: CN +- 0; 
2: for each u E V do 
3: Calculate StructDegree(u) by Eq. (6); 
4: Calculate NeiDiversity(u) by Eq. (7); 
5: end for 
6: SD+- select top-Vnk nodes with high StructDegree;
7: ND +- select top-Vnk nodes with high N eiDiversity;
8: CN+-SDUND;

Algorithm 3: Population Initialization 
Input: pop: population size; k: seed size; 
Output: Population P
1: P = {p1,P2, ··•,Ppop} +- 0; 
2: p1, p2 +- use a greedy algorithm to respectively obtain one 

most influential k nodes and one most diverse k nodes; 
3: for i = 3 to pop do 
4: t = O; 
5: while t < k do
6: ( v, u) +- randomly select two different nodes from 

candidate nodes C N obtained by Algorithm 2; 
7: if RScore(v) > RScore(u) and v if. Pi then
8: Pi+- Pi U {v}; 
9: t = t + l; 

10: end if 
11: if RScore(v) � RScore(u) and u if. Pi then 
12: Pi+- Pi U {u}; 
13: t = t + 1;
14: end if 
15: end while 
16: end for 

2) Population initialization strategy: In multi-objective
evolutionary algorithms, a random strategy is usually used to 
generate the initial population. However, randomly initialized 
individual solutions usually deteriorate the algorithm's con­
vergence in diversified social influence maximization. To this 
end, we propose a population initialization strategy based on 
random walk to accelerate the convergence of the proposed 
algorithm. Algorithm 3 presents the procedure of population 
initialization strategy. First, for the two objectives influence 
and diversity, we use a greedy algorithm to obtain two good 
individuals (p1 and p2) with k nodes, which has the largest 
value of influence or diversity. Then, for the remaining indi­
viduals, we select better nodes from the candidates to generate 
individuals by using the binary tournament mechanism. 

Since random walk is often used to calculate the importance 
of nodes in a network, we use a popular indicator of random 
walk score RScore [26] to measure the importance of nodes 



TABLE I 
REAL-WORLD NETWORKS WITH DIFFERENT CHARACTERISTICS. 

Networks #Nodes #Edges Average Degree Maximal Degree 
Erdos 
HepTh 
Anybeat 
AstroPh 

Email-enron 
Gemsec-RO 

6.9k 11.8k 
9.9k 26.0k 
12.6k 67.lk
18.8k 198.lk
33.7k 180.8k
41.8k 125.8k

3.42 507 
5.26 65 
5.30 4.516 
21.10 504 
10.73 1.383 
6.02 112 

in binary tournament mechanism, which is defined as follows. 

S ( ) _ � preRScore (v) 
R core u - �

d(v) ,
vENu 

(8) 

where preRScore is the random walk score at the previous 

iteration, d(v) represents the degree of node v. 
Finally, base on Equation (8), pop individuals can be gen­

erated by using the binary tournament mechanism. 

IV. EXPERIMENTAL RESULTS 

In this section, we first give experimental setup, including 

datasets and comparison algorithms. Then, we provide suffi­

cient experimental results to verify the effectiveness and effi­

ciency of the proposed algorithm MOEA-DIM compared with 

the baseline algorithms. Finally, we show the effectiveness of 

the two strategies proposed in MOEA-DIM. 

A. Experimental Setup

1) Datasets: To evaluate the performance of proposed algo­

rithm, six real-world networks with different characteristics are 

adopted. Among them, Anybeat network [27] and Gemsec-RO 

network [27] are social networks. Erdos network [28], HepTh 

network [29], and AstroPh network [29] are collaboration net­

works. Email-enron network [27] is a communication network. 

The basic characteristics of these six real-world networks are 

given in Table I, where #Nodes and #Edges denote the number 

of nodes and edges in the network respectively. 

2) Comparison Algorithms: We compare MOEA-DIM with

baseline algorithms and its variants. 

• D-Inf: D-Inf is a greedy algorithm by using a trade­

off parameter 'Y to balance two objectives influence and

diversity as one objective for optimization [15].

• MOEA-DIM(-Red): In order to verify the effectiveness of

the proposed network reduction strategy, we also compare

MOEA-DIM with a variant named MOEA-DIM(-Red),

where we set all parts the same as MOEA-DIM except

there is no network reduction strategy .

• MOEA-DIM(-lni): In order to verify the effectiveness of

the proposed population initialization strategy, we also

compare MOEA-DIM with a variant named MOEA­

DIM(-Ini). MOEA-DIM(-Ini) keeps the same as MOEA­

DIM except the random initialization strategy is used.

• MOEA-DIM(EDV): In order to reduce the calculation

time of MOEA-DIM, the approximate method EDV [30]

is used in MOEA-DIM to calculate the influence by

replacement of Monte Carlo simulation. And this variant

is named as MOEA-DIM(EDV).

TABLE II 
PARAMETERS SETTINGS OF COMPARISON ALGORITHMS. 

Parameter 
maxgen 

pop 
pool 
pm 

iters 

0 

pp 

Meaning 
the maximum generation 

population size 
the size of mating pool 

mutation probability 
the maximum iteration of SLPA 

the threshold of SLPA 
the times of random walk 

propagation probability in IC model 

TABLE ill 

Value 
100 
100 
100 
1/k: 

100 
0.1 
3 

0.005 

EFFICIENCY COMPARISON (IN MINUTES). 

Networks D-Inf MOEA-DIM MOEA-DIM(EDV) 
Erdos 16.69 8.11 0.27 
HepTh 16.16 2.80 0.14 
Anybeat 2,150.37 38.72 1.88 
AstroPh 231.04 29.59 1.27 

Email-enron 424.96 52.60 2.72 
Gemsec-RO 79.72 4.51 0.51 

In our experiments, Monte Carlo simulation for 10,000 

times is adopted to approximate the influenced crowd under 

the independent cascade (IC) model [4] for all datasets. All 

the experiments are conducted in Java on an Intel(R) Core 

i7 computer with 3.40 GHz and 20.00 GB Memory. The 

experimental parameters of comparison algorithms are listed 

in Table II. 

B. Effectiveness of The Proposed Algorithm MOEA-DJM

Fig. 2 shows the plots of final obtained solutions in objective

space for comparison algorithms on the six networks under 

the IC model (the size of seed is set to 10), where the x-axis 

represents the diversity distribution and the y-axis represents 

the influence distribution estimated by running 10,000 times 

of Monte Carlo simulations. Note that D-Inf only obtains one 

solution when the weighting parameter 'Y is fixed. In order 

to get multiple solutions for D-Inf, 'Y ranging from O to 1 is 

equally divided into 100 values, since that there are about 100 

non-dominated solutions obtained by our algorithm for most 

of datasets. 

From this figure, for MOEA-DIM, there exists a tradeoff 

between objectives influence and diversity on the six networks. 

In other words, the two objectives influence and diversity con­

flict with each other in some degree, this is the reason why a 

multi-objective evolutionary algorithm is proposed to optimize 

influence and diversity simultaneously. In addition, we can 

find that the final solutions obtained by D-Inf are usually 

concentrated on the upper half of the Pareto front of MOEA­

DIM on most of networks. Compared with MOEA-DIM, the 

D-Inf algorithm is poorly distributed. MOEA-DIM(EDV) is

similar to MOEA-DIM in the distribution trend. However, the

non-dominated solutions obtained by MOEA-DIM(EDV) are

most dominated by that obtained by MOEA-DIM on the six

datasets, due to the fact that the influence is approximated by

the method of EDV in MOEA-DIM(EDV).
In addition, Table III shows the running time of D-Inf, 

MOEA-DIM and MOEA-DIM(EDV) on the six networks. 

From this table, it can be found that the proposed algorithm 

MOEA-DIM is much faster than the greedy algorithm D-Inf 
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Fig. 2. The plots of final obtained solutions in objective space for comparison algorithms on the six networks (when the size of seed is set to 10). 
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Fig. 3. The hypervolume (HV) of non-dominated solutions obtained by MOEA-DIM, MOEA-DIM(-Red) and MOEA-DIM(-lni) with different generations 
on the six networks (when the size of seed is set to 10). 

on all networks, but is much slower than MOEA-DIM(EDV) 

since that MOEA-DIM(EDV) use an approximate evaluation 

method to calculate the influence by replacement of the Monte 

Carlo simulation. Therefore, the effectiveness and efficiency of 

the proposed algorithm MOEA-DIM compared with baselines 

are verified. 

C. Effectiveness of The Proposed Strategies Used in MOEA­

DIM 

In this section, we will verify the effectiveness of the 

proposed strategies used in MOEA-DIM, that is, the network 

reduction strategy and population initialization strategy. Fig. 3 

shows the hypervolume (HV) [31] (The larger values of 

hypervolume, the better the solutions found in objective space) 

of non-dominated solutions obtained by MOEA-DIM, MOEA­

DIM(-Red) and MOEA-DIM(-lni) with different generations 

on the six networks (the size of seed set is set to 10), 

where x-axis represents the number of population iterations 

and the y-axis represents the the hypervolume values. As can 

be found from this figure, the proposed algorithm MOEA­

DIM can converge very quickly within 20 generations on most 

of networks. It can be also observed that MOEA-DIM with 



the proposed two strategies can converge faster and better 

than MOEA-DIM(-Ini) and MOEA-DIM(-Red). Therefore, the 

effectiveness of the proposed two strategies used MOEA-DIM 

is verified. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we formulated the task of diversified social 

influence maximization as a multi-objective problem and then 

proposed a multi-objective algorithm named MOEA-DIM for 

it. To be specific, we employed the overlapping community 

detection method to obtain the community structure infor­

mation of nodes, by which a novel diversity measure was 

designed without using any node's category information. In 

MOEA-DIM, a network reduction strategy based on overlap­

ping community structure information was designed to greatly 

reduce the search space. In addition, a population initialization 

strategy based on random walk was suggested to accelerate 

the convergence of the algorithm. Finally, experimental re­

sults on six real-world networks with different characteristics 

demonstrated that the proposed MOEA-DIM algorithm has 

good performance in terms of both effectiveness and efficiency. 

The proposed MOEA-DIM has shown promising performance 

in diversified social influence maximization on medium-sized 

networks. In the future, we would like to design more efficient 

MOEAs for diversified social influence maximization on very 

large-scale networks. 
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