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Abstract—Multi-Point Dynamic Aggregation (MPDA) is a
novel task model to determine task allocation for a multi-robot
system. In an MPDA scenario, several robots with different
abilities aim to complete a set of tasks cooperatively. The demand
of each task is time varying. It increases over time at a certain
rate (e.g. the bush fire in Australia). When a robot executes a
task, the demand of the task decreases at another certain rate,
depending on the robot’s ability. In this paper, the objective is
to design a task plan for minimising the maximal completed
time of all tasks. But coupling cooperative and time-varying
characteristics of MPDA brings great challenges to modelling,
decoding, and optimisation. In this paper, a multi-permutation
encoding is used to represent every robot’s visiting sequence of
tasks, and an implicit decoding strategy with heuristic rules
is designed to simplify the problem from a hybrid variable
optimisation to a multi-permutation optimisation. Memetic algo-
rithms for the task allocation of MPDA with two local search
methods are designed: equality one-step local search with a
better exploration ability and elite multi-step local search with a
better exploitation ability. Computational experiments show that
the proposed decoding method leads to a better performance
given the same computational time budget. Experimental results
also show that the proposed memetic algorithms outperform the
state-of-the-art method in solving the task planning problems of
MPDA.

Index Terms—Multi-robot system, task allocation, memetic
algorithm, multi-point dynamic aggregation mission

I. INTRODUCTION

The task allocation problem is a key cooperation issue
for multi-robot systems, which determines how to assign
limited resources to achieve a mission most efficiently [1], [2].
Although research on the multi-robot task allocation (MRTA)
problem has achieved promising results, research considering
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the time-variance and complex dependence among robots is
insufficient. These two characteristics widely exist in real
applications of multi-robot systems, but they also bring many
difficulties for modelling and planning. A novel problem,
named Multi-point Dynamic Aggregation (MPDA), as a kind
of MRTA was introduced to involve these two characteristics
by Xin et al [3]. In an MPDA scenario, a number of task points
are located in different places and their demands change over
time. Multiple robots are aggregated to these tasks and execute
the tasks cooperatively to satisfy the demands of all the task
points. By planning the robots’ routes and scheduling their
process time, the goal of MPDA is to allocate tasks to robots
most efficiently. MPDA can be used to describe a wide range
of time-varying coordination tasks, such as human rescue and
disaster mitigation [4], [5]. For instance, when MPDA is used
to model a fire-fighting mission, the growth of forest fires over
time can be described as the tendency of tasks’ demands.

An MPDA problem resembles traditional optimisation prob-
lems such as the vehicle routing problems (VRP) and resource
scheduling problem [6], [7]. The task allocation in MPDA
needs to determine paths of robots visiting all tasks, which is
similar to the route planning in VRP. From the perspective of
VRP, the initial positions of robots in MPDA can be regarded
as deposits’ positions in the multi-deposit VRP, tasks can be
regarded as customers. The task allocation in MPDA also
needs to determine when robots arrive at and depart from tasks,
which is similar to the planning of arrival time and release
time in the scheduling problems. From the perspective of the
scheduling problems, robots can be regarded as machines in
the parallel machine scheduling, tasks can be regarded as jobs.
Thus, the task allocation problem in MPDA is a NP-hard
problem, which can not be solved by deterministic algorithms
for large-scale instances.

Although MPDA has some similarities with VRPs and
scheduling problems, it still has some essential differences
from these traditional optimisation problems. Firstly, VRP
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does not allow multiple vehicles to serve a customer at the
same time and the scheduling problem does not allow multiple
machines to process a job at the same time [8]. The MPDA
problem allows robots to perform one task cooperatively and
visit the same task several times. The characteristic of time-
variance in VRP is embodied by the shifting route time.
Usually, the serving time and demand of customers are fixed.
In MPDA, the serving time of a task is variable, and it is
affected by the abilities of robots aggregating at it. Thus, pre-
vious algorithms proposed for solving the VRP and scheduling
problems can not be applied to MPDA directly due to its
cooperative and time-varying characteristics.

New encoding/decoding and optimisation methods have
been proposed for solving MPDA [9]–[11]. Xin proposed an
Estimation of Distribution Algorithm (EDA) using K-means
clustering and multi-modal Gaussian distribution to solve the
task planning problem [10]. A multi-permutation represen-
tation and a corresponding decoding method by recording
arrival events are also proposed in [10]. The decoding method
designs a heuristic rule which requires that a completed task
can not be visited by a robot. Apparently, according to the
triangle inequality, the task performance of a robot arriving at
a completed task must be worse than the task performance of a
robot that goes to the next task directly without staying at the
completed task for a while. Although this rule can improve the
allocation results slightly, it will make the recorded event time
unordered during the decoding process. When the unordered
situation has happened, the decoding process [10] needs to
restart to keep events in order. This restart strategy leads to a
great increase of the time complexity of the decoding process.
Thus, a more efficient decoding method needs to be designed.
Furthermore, evolutionary Gaussian models used in [10] can
not describe the cooperation and dependences among robots
explicitly.

Memetic algorithms (MAs) with individual learning strate-
gies, which maintain balance between exploration and ex-
ploitation, have been successfully employed to solve VRP and
scheduling problems [12], [13]. This is because parts of the
solution space can be clustered together which need to be
exploited and links between clusters/new clusters need to be
explored. Considering the difficulties caused by coordination
and time-varying characteristics, defects of the algorithm pro-
posed by Xin [3] and merits of MAs, MAs for solving the
task allocation in MPDA with two local search methods are
designed in this paper. Specifically:
• The multi-permutation decoding process that distin-

guishes arrival and departure events is proposed in this
paper. Compared with Xin’s decoding method [10], the
proposed decoding method has a lower computation cost.

• Two local search strategies with a classical swap operator
on permutations have been designed in this paper. The
first one is called equality one-step local search (OLS)
which has an improved exploration ability. Every individ-
ual has a certain probability to participate in OLS. The
other one is called elite multi-step local search (MLS)
which has an improved exploitation ability. Only the elite

individual will participate in the local search process.

The rest of this paper is organised as follows. Section II
introduces MPDA and important related work. Section III
describes the representation scheme and decoding method
in detail. Afterwards, two MAs with different local search
strategies are proposed in Section IV. Section V presents the
computational experiments, which include empirical compari-
son with other algorithms and the demonstration of the efficacy
of operators. Finally, conclusions are drawn in Section VI.

II. BACKGROUND

In this section, the task allocation problem of MPDA is for-
mulated. Then, a brief review of the most relevant approaches
that have been used to tackle MPDA is introduced.

A. Problem description

A number of tasks and robots are distributed in a planar
space and assumed as points in the configuration space with
no obstacles, which can be defined by a graph G(V ,E ). V
is the set of vertices and E is the set of edges. The vertex set
V = {v1, v2, . . . , vm, vm+1, . . . , vm+n} contains m tasks and
n robots, the edge set E describes distances among robots and
tasks. The travel time matrix C = (c(x, y)) of robi is related to
the edge length and the robot’s speed. Speeds of all robots are
assumed as 1 to simplify the description in this paper. Thus,
the positive travel time c(x, y) is equal to exy in E for all
robots.

Each task in the MPDA has a demand characteristic. In
this paper, the demand of each task is assumed to follow an
exponential law, which is shown as (1) and (2).

sj(t+ ∆t) =

{
0, if sj(t) ≤ σ,

sj(t)e
λj(t)∆t, otherwise

(1)

where σ represents the demand threshold of a task, which is
set to 0.1 in this paper. The task is denoted by taskj . When
sj ≤ σ, taskj is considered as a completed task and Tcj is
the completed time when sj is first equal to σ.

λj(t) = αj −
∑n

i=1
v(i, j, t)βi (2)

where v(i, j, t) represents a binary value. v(i, j, t) is equal to 1
when robi is performing taskj at time t. Otherwise, v(i, j, t)
is equal to 0. The current change rate λj of taskj influences
the state of taskj directly. λj is determined by the initial
increment rate of taskj and abilities of robots aggregating
at taskj .

An optimisation problem that minimises the maximal com-
pleted time of MPDA can be established as follows.

SP∗ = arg min max
j∈{1,...,m}

Tcj(SP) (3)

where maxj∈{1,...,m} Tcj represents the makespan of config-
uration space {R, T } in schedule plan SP.



B. Related Works

MPDA has been discussed in the literature and approaches
to MPDA have been developed. A receding horizon path
planning method with a distributed decision mechanism was
proposed to solve the motion planning problem in MPDA [3].
MPDA is used to formulate the multi-robot motion planning
problem in a cooperative multi-area coverage mission in [14].
These distributed algorithms can obtain a schedule plan in a
short time, but the schedule plan is not of high quality. A
hybrid algorithm that combines the Differential Evolution and
EDA approaches is proposed in [11]. Lu [9] proposed a multi-
model EDA employing node histogram models and edge his-
togram models in probability modelling to be used to solve the
routing problem of MPDA. An EDA using K-means clustering
and multi-modal Gaussian distribution is used to solve the
task planning problem [10]. The dependence and cooperation
relationships are so complex that evolutionary models in these
algorithms can not match schedule plans accurately. Thus, the
evolutionary process expressed in this paper will pay more
attention to the relationships of permutations. In addition, the
aforementioned EDA methods did not introduce individual
learning strategies, so the exploitation ability of their algorithm
is not good. To gain more exploitation ability, this paper
designs two MAs considering exploration and exploitation to
solve the MPDA problem.

III. REPRESENTATION SCHEME AND DECODING METHOD

A. Representation scheme

The representation of solutions in evolutionary algorithms
has a great influence on the design of evolutionary operators
and algorithmic efficiency. In order to describe the whole
action plan, which is denoted by SP, an event tuple structure
is introduced, which is shown as follows.

eventk = [Rk,Mk, Tk, Ck] (4)

while the first position of eventk records robot information,
the second position records the task information, the third
position Tk represents the time when eventk begins to occur,
and the boolean value Ck in the tuple represents the event type
which is either arrival or departure events. Ck = 1 means that
a robot arrives at a task. Otherwise, Ck = 0 denotes that a
robot departs from a task. Thus, SP can be represented by a
list of event tuples in chronological order.

SP contains continuous and discrete variables and its length
is not fixed. Thus, an explicit encoding method of SP is
very difficult to design. In addition, as MPDA is a constraint
optimisation problem, there are so many infeasible solutions in
the solution space leading to a discrete landscape. An implicit
representation scheme was introduced by previous research
[9], [11]. Similar to the permutation scheme representation in
VRPs, a fixed-length solution without any continuous values

is expressed as n lists with m integral elements as shown in
(5).

X =


π1,[1] π1,[2] · · · π1,[m]

π2,[1] π2,[2] · · · π2,[m]

...
...

...
...

πn,[1] πn,[2] · · · πn,[m]

 (5)

where each row in X represents the task-performing sequences
of robi and it is a permutation of T . For example, if ith row
is [1, 3, 2], robi will intend to visit task1 task3 and task2 in
sequence.

B. Decoding method

The proposed decoding algorithm is shown as Algorithm 1.
As the formulation in (4), event contains information about
arrival or departure time of a robot. In the proposed decoding
strategy, two types of robots’ status are distinguished as
OnRoad and OnTask corresponding to two different values
of C. If a robot’s status is OnRoad, it becomes ready to
arrive at a task to execute. Otherwise, a robot will depart
from a task. The decoding process adopts the event trigger
mechanism. Heuristic rules, which decrease the problem’s
dimension and increase the performance of a solution, added
into the decoding process are shown as follows.
• Rule 1: When a robot reaches a task to execute, the robot

will stay at the task until it has been completed.
• Rule 2: When a robot completes a task, it will travel to

the next uncompleted task without any waiting time.
• Rule 3: A robot can only visit the same task at most

once.
• Rule 4: SP is generated by adding event iteratively

during the decoding process. The function shown in
Algorithm 2 is used to determine event.

• Rule 5: A robot is allowed to visit a completed task.
According to Rules 1-3, the arrival and departure time of

a robot can be determined without giving a certain time for
it to occur. The problem is simplified from a discrete and
continuous mixed optimisation problem to a multi-permutation
optimisation problem. As we know that the demands of tasks
change over time, it is very important to ensure the time
sequence of the events in the decoding process. Rule 4
guarantees event is added into SP in chronological order.
Algorithm 2 compares the time of the events, which are about
to happen, to find the minimal T . The event corresponding
to the minimal T will be added into SP. If a robot’s status
is onRoad, its arrival time will be compared. Otherwise, the
departure time will be compared.

The Function FINDEVENT always compares predicted
events. Thus, there will be a situation a robot arrives at a
completed task. The previous decoding method [10] optimised
this situation during the decoding process, which makes the
robot go to the next uncompleted task of the robot’s sequence
directly as shown in Fig. 1. This strategy can enhance the
performance of a schedule plan, but it will mix-up SP. For
example, a solution is represented as (6), where the predicted
events of visiting task1 by rob1 and rob2 will be compared



Fig. 1. An example to describe the triangle optimisation strategy. The red
dots line represents the origin routing of rob2 and the red solid line represents
the optimized routing of rob2.

firstly. Assume that the event time when rob1 arrives at and
departs from task1 is 0.2, 0.4, the event time of rob2 arriving
at task1 is 0.5.

X =

[
1 3 2
1 2 3

]
(6)

In the previous decoding method [10], rob2 will abandon
task1 instead of going to task2 directly. Assume the predicted
time of rob2 arriving at task2 is 0.1. Thus, there will be a
situation where the time of rob2 arriving at task2 is before
the time of rob1 arriving at task1. In order to guarantee the
decoding process is in chronological order, the decoding pro-
cess needs to be restarted. Although this strategy optimises the
performance of a schedule plan, it brings a large computational
cost. Especially for large-scale instances, where the out-of-
order situations generally exist, the decoding process will be
restarted many times. In the heuristic decoding rule proposed
by this paper, rob2 will still go to the completed task1 to
ensure the decoding process is in order.

The decoding algorithm contains two processes: initialisa-
tion and loop. In the initialisation process, SP is set as an
empty set. Every robot’s status will be set as onRoad and
its arrival time is calculated by the travel time matrix C. For
the loop process, it will be terminated when all the tasks
have been completed. During each iteration of loop process,
the function FINDEVENT finds event, which is added to the
whole schedule plan SP. When an event added to SP has been
determined, the status of several robots needs to be updated.
When event is an arrival event, the current demand and rate
of the related task are calculated and the corresponding robot’s
status is set as onTask. If the current rate λ(t) of a visiting
task is less than 0, which can be completed in a finite time,
the completed time of visiting task and departure time of all
coordinated robots that are executing the task are updated. If
the current rate λ(t) is greater or equal to 0, the departure
time of all coordinated robots is equal to ∞. When event is
a departure event, the related task has been completed and the
corresponding robot’s status is set as onRoad. The decoding
algorithm finds the next uncompleted task, which is denoted
by taskx in the corresponding robot’s visiting task sequence
and predicts the arrival time by C. It is worth mentioning that

Algorithm 1 Decoding method
Require: R, T and X
Ensure: SP

Initialisation Process :
1: SP = []
2: for all robi do
3: arrTi = C(πi,[0], i+m)
4: The status of robi is onRoad
5: end for
6: Initialise states of m tasks.

Loop Process:
7: while all tasks have not been completed do
8: event = [R,M, T,C] = FINDEVENT
9: Add [R,M, T,C] to SP

10: if C == aEvent then
11: robR’s status = OnTask
12: if taskM has been completed then
13: depTR = T
14: else
15: Calculate the current demand and rate of taskM .
16: if taskM is able to be completed then
17: Predict cTM and depTR
18: Update coordination robots’ status.
19: else
20: depTR =∞
21: end if
22: end if
23: end if
24: if C == dEvent then
25: robR’s status = OnRoad, cTM = T
26: Find the next uncompleted task taskx in πi.
27: arrTi = T + C(M, taskx)
28: end if
29: end while
30: return SP

this part is different from the Rule 5 as it will not mix up
SP. Thus, the triangle inequality can be used to enhance
a representation scheme’s performance. At the end of the
decoding process, the maximal completed time and SP can
be obtained.

In terms of worst-case time complexity, the previous de-
coding method is O(m2 × n2(n + m)), while the proposed
decoding method is O(m×n(n+m)), which is much smaller
than that of the previous decoding method.

IV. MEMETIC ALGORITHMS FOR THE TASK ALLOCATION
PROBLEM IN MPDA

Two MAs with different individual learning strategies are
proposed to solve the task allocation problem in MPDA. The
algorithm begins with Npop individuals to evolve. Then, the
crossover operator is used to produce 2 offspring for opsize
rounds. An intermediate population popt is constructed by the
current population and offspring generated by the crossover
operator. Individuals in popt will participate in the local search



Algorithm 2 Function of finding event
1: T =∞
2: for i to n do
3: if robi is onRoad then
4: if arrTi < T then
5: event = [robi, πi,[c], arrTi, 1]
6: end if
7: end if
8: if robi is onTask then
9: if depTi < T then

10: event = [robi, πi,[c], depTi, 0]
11: end if
12: end if
13: end for
14: return event

Algorithm 3 Procedures of memetic algorithm
1: Generate an initial population.
2: while The stop criterion is not met do
3: Set an intermediate population popt = pop.
4: for x = 1→ opsize do
5: Randomly select different solutions Xa and Xb from

pop.
6: Apply the crossover operator to Xa and Xb to

generate offspring S.
7: popt = popt ∪ S
8: end for
9: Do the local search process.

10: Sort the individuals in popt by fitness.
11: Set pop = the best Npop individuals in popt.
12: end while

process for enhancing the population’s performance. After the
local search process, the Npop best individuals of popt will
be selected to the next generation. The entire procedure is
described in Algorithm 3 and operators are discussed in the
following sections.

1) Crossover: In the crossover procedure, two parent in-
dividuals denoted as Xa and Xb are randomly selected to
produce offspring. A solution Xa can be divided into n parts
as [πa,1, . . . , πa,n, ]. πa,i and πb,i are permutations of tasks,
which are similar to solution representations in VRP. Each
permutation in parent individuals is executed by a partially
matched crossover [15] shown in Fig. 2. The partially matched
crossover can guarantee child permutations feasible. Then, all
permutations are combined to produce two offspring S and
add them to popt.

2) Local search: A local search procedure is designed to
enhance an individual’s quality by exploiting its neighbour-
hood. Thus, learning takes place in every generation of the
proposed MAs. The swap operator, which is a traditional
local search operator for a discrete optimisation problem, is
used to produce its neighbour individuals [16]. One or two
permutations of an original individual are randomly selected.
The swap operator is applied to selected permutations to

Fig. 2. Partially matched crossover.

Algorithm 4 Procedures of probability local search
1: for all Xt ∈ popt do
2: Sample a random number r from the uniform distribu-

tion between 0 and 1;
3: if r < Pls then
4: Apply local search to Xt to generate Xls

5: if Xls is better than Xt then
6: Xt = Xls

7: end if
8: end if
9: end for

produce neighbouring individuals. Two local search strategies
named OLS and MLS are designed in this paper, which are
shown in Algorithm 4 and 5 respectively. In the OLS strategy,
each individual in popt will explore its neighbourhood by
the same probability Pls. During the local search process, 10
neighbouring individuals of an origin individual are generated
by the swap method. If the best performance neighbouring
individual Xls is better than the original individual, it will
replace the original one. In the MLS strategy, the best per-
formance individual Xe in popt is selected to exploit its 10
neighbouring individuals by a certain probability Pls. If a
better individual is found, it will replace the best performing
individual and continue to participate in the subsequent local
search process until no better individuals can be found by the
MLS strategy. It is noticed that OLS can maintain a better
diversity of the population, but it has a slower convergence
speed. On the other hand, the MLS has a strong convergence
speed, but it may fall into the local optima.

Algorithm 5 Procedures of elite local search
1: Sample a random number r from the uniform distribution

between 0 and 1;
2: if r < Pls then
3: while True do
4: Apply local search to Xe to generate Xls

5: if Xls is better than Xe then
6: Xe = Xls

7: else
8: break;
9: end if

10: end while
11: end if



3) Survivor Selection: The survivor selection scheme is
a ranking technique. The best individual has a rank 1, and
the worst individual has a rank |popt|. The top best Npop
individuals of popt propagate to the next generation. This
method gives populations a hard selective pressure to converge
to a good solution and includes an elitist strategy.

V. COMPUTATION EXPERIMENTS

To evaluate the efficacy of the proposed decoding method,
local search strategies and MAs, two experiments have been
carried out. During the first part, we mainly focus on the effect
of the proposed decoding method and the local search strate-
gies. After that, the performance of the proposed algorithm
compared with a state-of-the-art algorithm is investigated.
According to [16], [17], the parameters of the proposed
algorithm are set as follows: Npop = n × m , Pls = 0.2,
opsize = 2. As different algorithms have different numbers
of fitness evaluation (NFE) in one generation, in order to keep
the fairness of comparison, the stopping criteria of following
test algorithms are set as that NFE = n ×m × 700. All the
values in following figures are an average of 30 independent
runs.

Since there is no standard benchmark instance for testing
MPDA problem, we designed a set of benchmark instances
according to the method which generates benchmarks for the
capacitated VRP [18]. All robots and task are located at 100
× 100 planar configuration space. Positions of tasks (PT) and
positions of robots (PR) are classified into five alternative
types: Random (R), Clustered (CL), Random-Clustered (RC),
Eccentric (E) and Central (CE). The abilities of robots and
the initial rates of tasks can be classified as Unitary (U);
small values, large coefficient of variation (SVLCV); large
values, large coefficient of variation (LVLCV); small values,
small coefficient of variation (SVSCV); small values, large
coefficient of variation (LVSCV); depending on quadrant (Q).
The main characteristics of eight benchmarks are shown in
Table I.

TABLE I
MAIN CHARACTERISTICS OF EIGHT BENCHMARKS.

No. n m PR PT β α
1 5 4 RC RC SVLCV SVSCV
2 5 5 E R SVSCV LVSCV
4 8 8 CL CL SVLCV U
3 8 8 E R U Q
5 11 11 R CL SVLCV Q
6 17 23 RC CL LVLCV LVSCV
7 20 20 CL R Q LVSCV
8 20 18 R E Q SVLCV

A. Parameter Sensitivity Analysis

This part analyses the sensitivity of MA-OLS and MA-MLS
on their different parameters in order to find an appropriate
parameter for the following experiments. opsize is an intrinsic
parameter. We will analyse its sensitivity by running experi-
ments on two typical instances. One is a small-scale No.3
instance, the other is a large-scale No.7 instance. Fig. 3 shows
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Fig. 3. Evolutionary progress of MA-OLS and MA-MLS with different
opsize for the selected problem instances. (a) MA-OLS on No. 3 (b) MA-
OLS on No. 7 (c) MA-MLS on No. 3 (d) MA-MLS on No. 7

convergence curves under different opsize, which is set as
2,10 and 50 separately.
opsize = 2 will be adopted in following experiments, be-

cause it get a fast convergence speed and a stable convergence
result. From Fig. 3, it is noticed that the smaller opsize can
get a stronger convergence speed than the greater opsize in
the MAs. MA-MLS with opsize = 2 and opsize = 10
both can converge to stable states, and convergence results
approximates to each other. Thus, different opsize do not make
a significant difference in the later phase of the evolutionary
process.

B. Comparison between MA-OLS and MA-MLS

We here analyse the progress of MA-OLS and MA-MLS
to verify the efficacy of the designed local search processes.
The GA method that the local search process is replaced by
a mutation process is also compared as the baseline.The mu-
tation process exchanges two tasks randomly in permutations
[19]. The probability of mutation in GA is set as 0.2, which is
same as Pls. For brevity, we consider No.2, 4, 6 and 8 problem
instances. Fig. 4 shows curves of the average minimum fitness
in a population during the evolutionary process of these three
algorithms.

From Fig. 4(a) and Fig. 4(b), it can be observed that MA-
OLS achieved the minimal fitness among the three algorithms
at the end of evolution on small-scale instances. As to the
large-scale instances, Fig. 4(c) and Fig. 4(d) both show that
MA-OLS can maintain a steady convergence speed during the
whole optimization process, however, on the No. 6 instances,
the convergence speed is not fast enough to get a better
solution than GA and MA-MLS.

Contrarily, MA-MLS outperforms GA and MA-OLS on
large-scale instances. On small-scale instances, its perfor-
mance is not satisfactory. MA-MLS has the fastest conver-
gence speed among these three algorithms on all instances in
the former phase of evolution and the convergence progress
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Fig. 4. Evolutionary progress of MA-OLS, MA-MLS and GA for the selected problem instances. (a) No. 2. (b) No.4 (c) No.6 (d) No.8

slows down in the later phase of evolution. The reason is that
the elite individual that has been trapped into local optima
has a very small opportunity for improvement by the swap
operator, and it will also lead other individuals to the same
local optimum..

The performance of GA is between the proposed two
MAs and the evolutionary process of GA stops earliest. It
indicates that the traditional mutation process of GA has
difficulty to handle the premature convergence. According to
the aforementioned results, we can conclude that MA-OLS
is suggested to use with a sufficient NFE and MA-MLS is
suggested to adopt when an acceptable solution is required in
a short time.

C. Comparison of Decoding Methods

The performances of the two MAs with different decoding
methods are analysed in order to verify the efficacy of the
proposed decoding method. No.2, 4, 6 and 8 problem instances
are also considered for brevity. In Fig. 5, the legend whose
suffix is TD represents that the decoding method proposed by
[10] is used and the abscissa shows the running time.

From Fig. 5, it can be observed that the decoding method
proposed in this paper has a lower time cost than the previous
method in the same NFE. In addition, the MAs using the
proposed decoding method converge faster than the MAs using
the previous decoding method. When given the same compu-
tational time budget, the MAs using the proposed decoding
method perform better.

Besides these observations, the Wilcoxon rank-sum test
is used to further analyse the results. The statistical results
of the best individual in each run demonstrate that obvious
dominance relationships of MAs with two decoding methods
do not exist in the same NFE on No.2, 4, 8 instances. On
No.6 instance, MAs with the previous decoding method can
get a better solution with a higher computation cost in the later
phase of evolution.

From the perspective of individual learning strategies, the
previous decoding method can be regarded as a multi-step
local search process using the triangle inequality’s knowledge.
The local search process will be carried on each individual dur-
ing the evolutionary process. Actually, there are some worse
individuals that do not need the local search process in each
generation. Thus, the previous decoding method will cause
a waste of computing resources. In summary, the decoding

method proposed by this paper more efficient than the previous
one due to its lower computation complexity.

D. Comparison with EDA

Here, the performances of MA-OLS, MA-MLS, and EDA
are shown in order to verify the efficacy of proposed algo-
rithms. The EDA counts the sequence number that the task
appears in the robot’s task planning order and updates a
probabilistic model by some elite individuals. Parameters are
set as same as [10], except that the stop criterion is set to NFE
= n×m× 700. We use the best and average fitness of Hall-
of-fame individuals of 30 independent runs as the comparison
metric, which are shown as Table II. An additional row at
the bottom of this table represents the number of instances on
which the novel algorithm has achieved the better result than
the EDA methods under the Wilcoxon rank-sum test. The best
mean values are highlighted in bold for all instances.

From Table II, it is noticed that the number of best per-
formance instances of EDA is 1, which is less than the other
two MAs. When the characteristic of an instance does not
distinguish indexes of tasks or robots, the method of counting
the task index in a robot’s action order does not work. For
example, robots in the No.3 instance have the same initial
positions and abilities. In this condition, the task index for
one robot’s action order is not important. It is important to
figure out the coordination relationships among robots. When
the scale of instances becomes large, the modelling method of
EDA also can not describe coordination relationships among
robots. Also, the fact that MA-OLS has a better performance
on small-scale instances is testified again.

In addition, the standard deviation values of MA-OLS are
small, which indicates that the performance of MA-OLS is
stable. MA-MLS finds better solutions on more instances
compared with the other two algorithms. It represents that
MA-MLS has a stronger exploitation ability.

VI. CONCLUSION

This paper designs MAs for solving the task allocation
problem efficiently in an MPDA scenario. In the proposed al-
gorithms, a new decoding method and two individual learning
strategies are designed. The decoding method, which allows
robots to visit a completed task, is proposed to decrease the
computation cost. When the same computational time budget
is given, the proposed decoding method has a better perfor-
mance during the searching process. Two individual learning
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Fig. 5. Evolutionary progress of MAs with different decoding methods for the selected problem instances. (a) No. 2. (b) No.4 (c) No.6 (d) No.8

TABLE II
COMPUTATIONAL RESULTS WITH EDA OF THE BENCHMARK SET.

instance EDA MA-OLS MA-MLS

1

mean 1.052E+2 1.059E+2(-) 1.067E+2(-)
std 0.000E-10 1.503E+0 1.841E+0
best 1.052E+2 1.052E+2 1.052E+2

2

mean 1.258E+3 1.177E+3(+) 1.218E+3(+)
std 3.038E+1 3.493E+1 4.417E+1
best 1.198E+3 1.135E+3 1.135E+3

3

mean 8.403E+2 6.495E+2(+) 6.694E+2(+)
std 3.786E+1 2.595E+1 2.220E+1
best 7.539E+2 6.222E+2 6.222E+2

4

mean 5.854E+2 4.537E+2(+) 4.652E+2(+)
std 3.408E+1 1.398E+1 1.661E+1
best 5.148E+2 4.401E+2 4.424E+2

5

mean 3.883E+2 3.044E+2(+) 3.028E+2(+)
std 9.604E+0 1.233E+1 1.762E+1
best 3.665E+2 2.698E+2 2.649E+2

6

mean 8.489E+2 6.237E+2(+) 4.107E+2(+)
std 1.084E+2 3.066E+1 2.858E+1
best 6.888E+2 5.540E+2 3.540E+2

7

mean 6.444E+1 6.407E+1(+) 6.408E+1(+)
std 9.778E-2 7.378E-3 8.371E-3
best 6.427E+1 6.407E+1 6.407E+1

8

mean 2.795E+2 2.344E+2(+) 1.809E+2(+)
std 1.406E+1 1.016E+1 1.170E+1
best 2.422E+2 2.016E+2 1.621E+2

(+)/(≈)/(-) 7/0/1 7/0/1

strategies are designed in this paper. The OLS has a better
exploration ability and the MLS has a stronger convergence
ability. The designed individual learning strategies are vali-
dated comparing experiments with GA. Finally, experiments
show that MAs combined with the proposed decoding method
and individual learning strategies outperform EDA, which is
a state-of-the-art algorithm for solving the task allocation
problem in MPDA scenarios.

In the future, the proposed MAs can be improved by
combining the two local search methods to get a better balance
between exploration and exploitation.
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