
Multifactorial Cellular Genetic Algorithm
(MFCGA): Algorithmic Design, Performance

Comparison and Genetic Transferability Analysis
Eneko Osaba†∗, Aritz D. Martinez†∗, Jesus L. Lobo†, Javier Del Ser†‡ and Francisco Herrera§
†TECNALIA, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain

Email: [eneko.osaba, aritz.martinez, jesus.lopez, javier.delser]@tecnalia.com
‡University of the Basque Country (UPV/EHU), 48013 Bilbao, Bizkaia, Spain

§DaSCI Andalusian Institute of Data Science and Computational Intelligence. University of Granada. 18071 Granada, Spain
∗ Corresponding authors. These authors have equally contributed to the work presented in this paper.

Abstract—Multitasking optimization is an incipient research
area which is lately gaining a notable research momentum. Unlike
traditional optimization paradigm that focuses on solving a single
task at a time, multitasking addresses how multiple optimization
problems can be tackled simultaneously by performing a single
search process. The main objective to achieve this goal efficiently
is to exploit synergies between the problems (tasks) to be opti-
mized, helping each other via knowledge transfer (thereby being
referred to as Transfer Optimization). Furthermore, the equally
recent concept of Evolutionary Multitasking (EM) refers to
multitasking environments adopting concepts from Evolutionary
Computation as their inspiration for the simultaneous solving of
the problems under consideration. As such, EM approaches such
as the Multifactorial Evolutionary Algorithm (MFEA) has shown
a remarkable success when dealing with multiple discrete, con-
tinuous, single-, and/or multi-objective optimization problems. In
this work we propose a novel algorithmic scheme for Multifacto-
rial Optimization scenarios – the Multifactorial Cellular Genetic
Algorithm (MFCGA) – that hinges on concepts from Cellular
Automata to implement mechanisms for exchanging knowledge
among problems. We conduct an extensive performance analysis
of the proposed MFCGA and compare it to the canonical
MFEA under the same algorithmic conditions and over 15
different multitasking setups (encompassing different reference
instances of the discrete Traveling Salesman Problem). A further
contribution of this analysis beyond performance benchmarking
is a quantitative examination of the genetic transferability among
the problem instances, eliciting an empirical demonstration of the
synergies emerged between the different optimization tasks along
the MFCGA search process.

Index Terms—Transfer Optimization, Evolutionary Multitask-
ing, Cellular Genetic Algorithm, Multifactorial Evolutionary
Algorithm, Traveling Salesman Problem

I. INTRODUCTION

Inspired by the roots of Transfer Learning [1] and Multi-
task Learning [2], Transfer Optimization is a relatively new
knowledge field within the wider area of optimization, which
is attracting great attention within the community in recent
years [3]. The main idea is to exploit what has been learned for
optimizing one given optimization problem, toward tackling
another related or unrelated problem. Due to its relative youth,
efforts devoted by the scientific community for advancing over
this emerging research area are considerably fewer than those

dedicated to Transfer and Multitask Learning, which address
a similar problem for Machine Learning tasks. It has not been
until recently when the transferability of knowledge among
optimization problems have become a research priority, mainly
due to the increasing complexity and scales of optimization
problems, and the subsequent need for harnessing knowledge
acquired beforehand.

Three different algorithmic categories can be identified in
the Transfer Optimization panorama [4]. The first one is
sequential transfer, in which optimization problems (tasks) are
solved in a sequential fashion under the assumption that for
optimizing a new problem/instance, the knowledge acquired
when solving previous tasks is used as external information
[5]. The second class is the so-called multitasking, which
tackles different tasks of equal priority in a simultaneous
way by dynamically exploiting existing synergies and com-
plementarities among problems [6], [7]. The last category
is referred to as multiform optimization, which aims at the
resolution of a single task through the use of alternative
problem formulations, which are solved in a simultaneous way.
As can be observed in the literature background, in all these
three categories the correlation among problem instances or
tasks is crucial for positively capitalizing on the transference
of knowledge over the search [8].

Among the above three categories, the most prolific one in
the current literature is multitasking. The research presented in
this study is centered on this category. Being more specific, we
focus on multitasking optimization through the perspective of
Evolutionary Multitasking (EM, [9]). In short, EM embraces
the concepts, operators and search strategies conceived within
Evolutionary Computation for simultaneously solving several
problems at a time [10], [11]. As such, EM underlies Multi-
factorial Optimization (MFO, [8]), a particular realization of
this paradigm that has demonstrated its potential in different
environments encompassing continuous, discrete and multi-
objective optimization problems [12]–[15]. In the current com-
munity, the majority of contributions around MFO gravitate
on the Multifactorial Evolutionary Algorithm (MFEA, [8]), or
variants of this algorithm.

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

Bearing this background in mind, this work presents a
new MFO approach coined as Multifactorial Cellular Genetic
Algorithm (MFCGA). We take a step further over the state of
the art by elaborating on several research directions:
• We introduce a new efficient meta-heuristic scheme for

MFO that relies on the foundations of Cellular Automata
and Celular Genetic Algorithms (cGAs, [16]) for controlling
the mating process among different species (problems).
Moreover, the search strategy of the proposed MFCGA
solver favors the exploration and quantitative examination of
synergies among the problems being solved, providing a sort
of explainability interface for understanding the interactions
between problems. To the best of our knowledge, MFCGA
is the first cGA for being applied to EM, and to the wider
Transfer Optimization domain.

• We conduct an extensive experimentation focused on
the well-known Traveling Salesman Problem (TSP, [17]).
Specifically, we compare the performance of our proposed
solver with those obtained by the canonical MFEA, with
the firm intention of demonstrating that our solver is a
promising alternative to face MFO scenarios. To do that, we
employ 8 different TSP instances, which have been used to
generate 15 different scenarios. We also examine the genetic
transferability among the used TSP instances, which poses
a valuable addition to the state of the art [18], [19], and
provides useful insights for further research.
The rest of the paper is organized as follows: Section

II presents a brief overview of the background related to
Evolutionary Multitasking, MFEA and cGAs. Next, in Section
III, we describe the main characteristics of our proposed
MFCGA in detail. Experimental results obtained with the
developed method are discussed in Section IV, along with
a description of the benchmark and the experimental setup
under consideration. Finally, Section V concludes the paper
by drawing conclusions and outlining future research lines.

II. BACKGROUND

As stated above, this section is devoted to providing a brief
background about the three main concepts addressed in this
paper: EM and MFO (Section II-A), MFEA (Section II-B),
and the area of cGAs (Section II-C).

A. Evolutionary Multitasking and Multifactorial Optimization

In contrast to sequential transfer, in which a single optimiza-
tion task is addressed at a time, multitasking focuses on simul-
taneously addressing several tasks. While sequential transfer
optimization seeks an unidirectional transfer of knowledge
from previously completed tasks to new ones, multitasking is
characterized by omnidirectional knowledge transfer among
tasks, pursuing a more synergistic completion of the tasks
under consideration [4].

Within this landscape, EM has emerged as a promising
paradigm for dealing with simultaneous transfer optimization
scenarios. Two main characteristics motivated the first formu-
lation of the EM paradigm. The first feature is the inherent
parallelism offered by a population of individuals, which

allows for efficient computational means to deal with concur-
rent optimization tasks faced simultaneously. It is precisely
this simultaneous treatment what permits latent relationships
between problems to be automatically harnessed during the
search process [3]. The second interesting characteristic is that
the constant transfer of genetic material along the evolutionary
search allows all tasks to benefit each other, even for tasks that
are not strongly correlated [8], [20].

It was not until late 2017 when the concept of EM was
only formalized through the perspective of the MFO paradigm
[21]. Firstly introduced in [8], this incipient branch of the
evolutionary computation field is grasping notable interest in
terms of new algorithmic schemes, such as hybrid solvers
[22], multifactorial heuristic engines encompassing modern
metaphors [23] or multi-population methods [24] under the de-
velopment of a novel multitasking multi-swarm optimization.
Despite this recent upsurge of new MFO schemes, MFEA has
dominated the knowledge stream of MFO since its conception.

Mathematically speaking, MFO can be formally described
as an EM environment in which K optimization tasks are
simultaneously optimized. This environment is characterized
in this way by the existence of multiple search spaces,
each related to a single task. Assuming that all tasks are
minimization problems, for the k-th task Tk its objective
function is characterized as fk : Ωk → R, where Ωk denotes
the solution space of Tk. This being said, the main goal of
MFO is to find a set of solutions {x1,x2, . . . ,xK} such that
xk = arg minx∈Ωk

fk(x). However, instead of tackling K
independent search processes in isolation, MFO pursues to
find {xk}Kk=1 by exploring a single, unified search space Ω′.
Therefore, solutions x′ ∈ Ω′ can be encoded and decoded
to represent a task-specific solution xk for any of the K
optimization tasks under consideration.

Moreover, MFO is based on four different definitions, asso-
ciated to each individual x′p ∈ Ω′ within a P -sized population:

Definition 1 (Factorial Cost): the factorial cost Ψp
k of a

population member x′p is equal to the value of the fitness
function for a given task Tk. Each individual counts with a
list {Ψp

1,Ψ
p
2, . . . ,Ψ

p
K} of factorial costs, each related to an

optimization task.
Definition 2 (Factorial Rank): the factorial rank rpk of an

individual xp in a given task Tk is the index of this individual
within the population sorted in ascending order of Ψp

k. Each
population member has a factorial rank list {rp1 , r

p
2 , . . . , r

p
K}.

Definition 3 (Scalar Fitness): the scalar fitness ϕp of x′p is
calculated by using the best factorial ranks over all the tasks,
i.e., ϕp = 1/

(
mink∈{1...K} r

p
k

)
. As will be exposed in Section

II-B, the scalar fitness is used for comparing individuals in
MFEA.

Definition 4 (Skill Factor): The skill factor τp is the task in
which x′p performs best, namely, τp = arg mink∈{1,...,K} r

p
k.

The skill factor plays a crucial role in MFEA by establishing
which population members are selected for crossover.

The research activity around MFO and MFEA has been
vibrant in the last few years. In [25] MFEA is applied to
different discrete problems, such as the job shop scheduling

problem and the TSP. This paper also introduces the unified
discrete encoding strategy, which is embraced in this work.
A similar study is proposed in [26], where MFEA is put
to practice to deal with vehicle routing problems. In [15],
a multiobjective variant of MFEA is proposed, proving its
efficiency over continuous benchmark functions, as well as
a real-world manufacturing process design problem. An inter-
esting discrete MFEA is also developed in [12] for Semantic
Web Service Composition. An improved version of MFEA
was proposed in [13], which endowed the algorithm with a
dynamic resource allocating strategy. Likwewise, the enhanced
MFEA presented in [14] follows a similar philosophy by
incorporating opposition-based learning. Further works around
MFO and MFEA can be found in [27], [28] and [14].

B. Multifactorial Evolutionary Algorithm

MFEA is a recently proposed MFO method for solving
EM problems using bio-cultural schemes of multifactorial
inheritance [8]. The basic workflow of MFEA is depicted in
Algorithm 1. For deeper details on the algorithmic operators,
we refer reader to [8]. For simultaneously dealing with all
optimizing tasks, MFEA has four cornerstone characteristics:
unified solution representation, assortative mating, selective
evaluation, and scalar fitness based selection:

• The design of the representation strategy for x′p that yields
the unified search space Ω′ is subject to the characteristics
of the K problems under consideration. Specifically for
this work, the TSP is used as the family of benchmark
problems for assessing the performance of both MFEA and
the proposed MFCGA. For this reason, the well-known
permutation encoding is used as the unified representation
for x′p [29]. Following [25], if K TSP problems are to be
simultaneously solved, and by denoting the size of each
TSP problem Tk (i.e. the number of cities) as Dk, an
individual x′p is encoded as a permutation of the integer
set {1, 2, . . . , Dmax}, where Dmax = maxk∈{1,...,K}Dk,
namely, the maximum problem size among the K tasks. In
this way, when x′p is to be evaluated for a task Tk whose
Dk < Dmax, only integers lower than Dk are considered for
producing the argument solution xk of fk(·). These integers
maintain the same order as in x′p.

• Assortative mating establishes that individuals prefer to
interact with other mates belonging to similar cultural
background [8]. Thus, as described in [15], [27], [30],
genetic operators used in the MFEA promote mating among
individuals with the same skill factor τp. We recommend
consulting these papers for deeper details on how this
breeding mechanism is implemented in MFEA.

• Selective evaluation implies that each generated individual
is measured only for one task, instead of evaluating it for
every task. Specifically, the produced offspring is evaluated
in task Tτp

∗ , where τp∗ is the skill factor of its parent (or the
skill factor selected at random among the two parents of the
offspring). This means that the factorial cost Ψp

k is set to∞
∀k ∈ {1, . . . , τp∗ − 1, τp∗ + 1, . . . ,K}.

• Finally, the scalar fitness based selection is a survivor
function similar to those used in basic Genetic Algorithms.
In this case, MFEA is based on an elitist strategy, i.e. the
best P individuals in terms of scalar fitness σp among those
in the current population and the newly produced offspring
survive for the next generation.

Algorithm 1: Pseudocode of the canonical MFEA

1 Randomly generate a population of P individuals
2 Evaluate each generated individual for the K problems
3 Calculate the skill factor (τp) of each individual x′p
4 repeat
5 Apply genetic operators on P to get the offspring

subpopulation P∗
6 Evaluate the generated offspring for the best task

τp∗ of their parent(s)
7 Combine P and P∗ in intermediate population Q
8 Update the scalar fitness ϕpk and skill factor τp for

each individual in Q
9 Build the next population by selecting the best P

individuals in Q in terms of scalar fitness
10 until termination criterion not reached
11 Return the best individual for each task Tk

C. Cellular Genetic Algorithm

Briefly explained, cGAs are a sub-type of the canonical GAs
in which the population is structured in a specific topology
based on small-sized neighborhoods [16]. Thereby, individuals
can only interact with their neighbors, which enhances the
exploration of the search space through the induced slow
diffusion of solutions across the population. On the other hand,
exploitation is carried out inside each neighborhood [31].
Therefore, while in classical GAs the population is structured
in a unique panmictic group, in cGAs the whole population is
arranged over a grid (typically two-dimensionals), on which
the aforementioned neighborhood relation is defined. Two are
the most frequently used neighborhood structures: i) NEWS,
linear5, or Von Neumann, in which the neighborhood of each
individual is composed by its North (N), East (E), West (W),
and South (S) individuals; and ii) C9, or Moore, in which the
neighborhood is given by NW, N, NE, W, E, SW, S and SE
individuals. We recommend [32] for additional information
about cellular grid structures, and [33]–[35] for an excerpt of
different theoretical works and applications of this particular
kind of evolutionary algorithms.

As pointed, in cGAs each individual can only interact with
its assigned neighbors. Thus, the genetic crossover operates
inside the neighborhoods, modifying each individual with one
of its neighbors. Furthermore, newly generated individuals
are not introduced in the population. On the contrary, they
replace the current individual upon the fulfillment of a given
criterion (for example, an improvement in the fitness function).
Additionally, two cGA types can be distinguished depending
on the update policy of the population: synchronous cGA and

asynchronous cGA. On the one hand, synchronous cGAs are
characterized by implementing all the replacements in parallel.
On the other hand, in asynchronous cGAs individuals are
sequentially updated, thus overriding any need for auxiliary
populations and adapting faster to the newly generated genetic
material. These are the main reasons why we have chosen this
second scheme for our research work.

III. MULTIFACTORIAL CELLULAR GENETIC ALGORITHM

As we have been identified previously, the four pillars on
which the operation of the MFEA is based are unified repre-
sentation, assortative mating, selective evaluation, and scalar
fitness based selection. These concepts have been embraced
and reformulated in this work to yield the workflow of the
proposed MFCGA shown in Algorithm 2, which are inspired
by both MFEA and cGAs.

Algorithm 2: Pseudocode of the proposed MFCGA

1 Randomly generate a population of P individuals
2 Evaluate each generated individual for the K problems
3 Calculate the skill factor (τp) of each individual x′p
4 Let X~

p denote the set of neighbors of x′p
5 while termination criterion not reached do
6 for p = 1, . . . , P do
7 Randomly choose a neighbor xj from X~

p

8 xcrossoverp ← crossover(x′p,xj)
9 xmutationp ← mutation(x′p)

10 Evaluate xcrossoverp and xmutationp for τp

11 x′p ← best(x′p,x
crossover
p ,xmutationp)

12 Update ϕp and τp of the evolved x′p
13 end
14 end
15 Return the best individual for each task Tk

First, as unified representation, the same philosophy and
encoding as in the case of the MFEA has been used. Regarding
the genetic operators, they are based on the classical evolution-
ary crossover and mutation procedures: at every generation,
each individual x′p goes through these two phases (without
using any crossover or mutation probabilities), producing two
new individuals: xcrossoverp and xmutationp . The first of these
newly created individuals is the result of mating x′p with a
randomly chosen neighbor xj from the cellular neighborhood
X~
p of x′p. Correspondingly, the mutation operator applied to

x′p gives rise to xmutationp .
Once xcrossoverp and xmutationp have been generated, their

quality is evaluated by using the same selective evaluation
described in Subsection II-B. In this way, we ensure that
MFGCA is as computationally efficient as MFEA. It should
be mentioned here that both xcrossoverp and xmutationp are
evaluated for task Tτp , where τp is the skill factor of x′p.
This implies a significant difference with respect to MFEA,
since in MFGCA individuals are devoted to the optimization of
the same single task along the whole execution, not changing
at all from one task to another. Moreover, the first complete

evaluation and sorting of the population, based on the factorial
rank and scalar factor, ensures the equilibrium between the
population, allocating a similar number of individuals to each
of the tasks.

A final aspect of the proposed MFCGA is the local im-
provement selection mechanism, by which the newly generated
xcrossoverp or xmutationp can only substitute their parent x′p. In
fact, the individual that survives to the next generation is the
best one among x′p, xcrossoverp and xmutationp . The other two
produced individuals are automatically discarded.

IV. EXPERIMENTAL SETUP AND RESULTS

We proceed by describing an experimentation conducted for
comparing both MFEA and MFCGA solvers, properly ana-
lyzing the genetic transfer within MFCGA and examining the
synergies between the chosen tasks. As mentioned previously,
the experimentation has been done over the well-known TSP
[36]. Since its inception, the TSP has become one of the most
popular benchmark problems for the performance assessment
of discrete optimization algorithms, from traditional meta-
heuristics such as GAs [37] or Ant Colony Optimization [38],
to more recently introduced bio-inspired solvers, such as the
Firefly Algorithm [39], Bat Algorithm [40], or the Water Cycle
Algorithm [41], among others. In the context of the present
study, our main objective is not to find the optimal solution
to the TSP problems under consideration. Instead, we aim
to statistically compare the performance of both MFEA and
MFCGA using same problem instances and conditions.

Specifically, The performance of the developed MFEA and
MFCGA has been gauged over 15 different combinations
(test cases) of the Krolak/Felts/Nelson set of TSP instances
contained in the renowned TSPLIB repository [42]. It is
important to highlight that these cases have been selected not
only because of their wide acceptance by the community, but
also since the different levels of genetic complementarities in
their structure. This complementarity is measured using the
percentage of nodes that instances share between them. Thus,
our intention is to explore the impact of this complementarities
in the genetic exchange inherent to EM schemes. In Table I,
a summary of genetic complementarities is shown for all the
datasets considered in the experimentation.

TABLE I
SUMMARY OF GENETIC COMPLEMENTARITIES FOR ALL THE DATASETS

EMPLOYED IN THE EXPERIMENTATION

Instance kroA100 kroB100 kroC100 kroD100 kroE100 kroA150 kroA200 kroB150

kroA100 1% 2% 1% 2% 80% 66% 1%
kroB100 1% 2% 1% 1% 0% 0%
kroC100 1% 1% 1% 66% 80%
kroD100 1% 1% 2% 1%
kroE100 40% 0% 40%
kroA150 57% 1%
kroA200 57%

Each of the 15 multitasking test cases implies that the
modeled approaches should solve all the tasks assigned to
that scenario. As shown in Table II, 10 of these test cases
are comprised by four TSP instances, 4 are composed by 6
TSP instances, and the last one contemplates the resolution of

all the 8 TSP problems under consideration. Two have been
the main reasons of building these tests cases: i) to ensure
the heterogeneity and variety of the configurations, meaning
that each TSP instance is part of exactly the same number
of test cases; and ii) to examine how the genetic synergies
depicted in Table I are exploited during the search process by
the proposed MFCGA approach.

TABLE II
SUMMARY OF THE 15 TEST CASES BUILT FOR THE EXPERIMENTATION

Test Case Tasks involved

TC_4_1 kroA100, kroA150, kroA200, kroC100
TC_4_2 kroB100, kroB150, kroD100, kroE100
TC_4_3 kroA100, kroA150, kroD100, kroE100
TC_4_4 kroA200, kroC100, kroB100, kroB150
TC_4_5 kroA100, kroA200, kroB100, kroD100
TC_4_6 kroA150, kroC100, kroB150, kroE100
TC_4_7 kroA100, kroA150, kroB100, kroB150
TC_4_8 kroA200, kroC100, kroD100, kroE100
TC_4_9 kroA100, kroC100, kroB100, kroD100
TC_4_10 kroA150, kroA200, kroB150, kroE100
TC_6_1 kroA100, kroA150, kroA200, kroB100, kroC100, kroB150
TC_6_2 kroA200, kroB100, kroC100, kroB150, kroD100, kroE100
TC_6_3 kroA100, kroA150, kroA200, kroB150, kroD100, kroE100
TC_6_4 kroA100, kroA150, kroB100, kroC100, kroD100, kroE100

TC_8
kroA100, kroA150, kroA200, kroB100, kroC100, kroB150,
kroD100, kroE100

Regarding the algorithmic setup, we have used similar
parameters and the same operators for all the implemented
algorithms to ensure a fair comparison. For the sake of
reproducibility of the presented results, the parameterization
used for both MFEA and MFCGA are listed in Table III. For
this parameterization, studies focused on cGAs and MFEA
have been used as inspiration [25], [31], along with the
methodological guidelines given in [43]. Accordingly, results
are reported on the basis of 20 independent runs for every
test case to inspect the statistical significance of eventual
performance gaps. In addition, both MFEA and MFCGA are
stopped after 500 · 103 objective function evaluations. All
experiments have been executed on an Intel Xeon E52650 v3
2.30 GHz processor with 32 GB RAM.

TABLE III
PARAMETRIZATION OF MFEA AND MFCGA

Parameter MFEA MFCGA

Population size 200
crossover(·) Order crossover [44]
mutation(·) 2-opt
Crossover probability 0.9 1.0
Mutation probability 0.1 1.0
Type of grid Moore

A Java implementation of the MFCGA
has been made publicly available in
https://git.code.tecnalia.com/aritz.martinez/mfcga, together
with the scripts that generate the results next discussed.

A. Results and Discussion

We begin our discussion by analyzing Table IV, which sum-
marizes graphically the comparisons between the outcomes
obtained by both MFCGA and MFEA in all the 15 test cases
described above. Specifically, an orange circle indicates
that MFCGA outperforms MFEA in terms of fitness average
for a given TSP problem instance. On the other hand, the
gray circle denotes that MFEA has reached better average
outcomes. Let us take TC_4_2 as an example: in this case, and
considering the order of instances within the test case provided
in Table II, we can observe that MFCGA performs better in
kroB100, kroB150, and kroE100, while MFEA dominates only
in the kroE100 instance. By extrapolating this analysis to the
remaining content of the table, we conclude that MFCGA
elicits a better performance for tackling these test cases,
outperforming MFEA in all but six problem instances. It is also
important to underscore that for TC_8, MFCGA attains better
performance scores in all its compounding 8 TSP instances.

TABLE IV
COMPARISON OF THE RESULTS FOR THE 15 TEST CASES (: MFCGA

OUTPERFORMS MFEA; : MFEA OUTPERFORMS MFCGA).

Test Case MFGCA versus MFEA

TC_4_1 - - -
TC_4_2 - - -
TC_4_3 - - -
TC_4_4 - - -
TC_4_5 - - -
TC_4_6 - - -
TC_4_7 - - -
TC_4_8 - - -
TC_4_9 - - -
TC_4_10 - - -
TC_6_1 - - - - -
TC_6_2 - - - - -
TC_6_3 - - - - -
TC_6_4 - - - - -
TC_8 - - - - - - -

Table V exemplifies the process by which the above results
have been produced for the TC_8 test case. In this table we
depict, for each TSP instance in the test case, the average,
best and standard deviation of the fitness value achieved by
MFEA and MFCGA computed over 20 independent runs.
Additionally, we also represent the known optima for each
instance. It is straightforward to note that MFCGA clearly
outperforms MFEA in terms of average results. Furthermore,
regarding the best solution found over the 20 independent
runs, MFCGA also dominates the benchmark, obtaining a
better performance in 5 out of the 8 cases. Finally, it is also
interesting to notice that the difference between the known
optima and the average outcomes obtained by MFCGA ranges
between 3.8% and 4.7% in problem instances with 100 nodes,
and between 4.7% and 9.3% for problems of larger size.

In order to verify the statistical significance between the
results returned by MFCGA and MFEA, the Wilcoxon Rank-
Sum test has been applied to their fitness outcomes. The
confidence interval has been set at 95%. For properly building

this statistical test, we have compared the results reached in all
the 8 datasets separately, depicting graphically the outcomes of
these Wilcoxon Rank-Sum tests in the last row of Table V. In
this row, an orange circle means that MFCGA outperforms
MFEA with statistical significance. On the other hand, the
gray circle denotes that there is no enough evidence to
claim that the improvement is statistically relevant. As a
summary of all these tests, the obtained average z-value is
−1.96, with an average p-value equal to 0.04888. Taking into
account the critical zc value is equal to −1.64, and since
−1.96 < −1.64 and 0.04888 < 0.05, these results support
the significance of the difference at 95% confidence level.
Therefore, the difference is significant at this confidence level,
thereby concluding that MFCGA is statistically better than
MFEA for this test case.

TABLE V
RESULTS OBTAINED BY MFCGA AND MFEA FOR THE 8 INSTANCES IN
TC_8, AND GRAPHICAL RESULTS OF THE WILCOXON RANK-SUM TEST.

Method kroA100 kroA150 kroA200 kroB100 kroC100 kroB150 kroD100 kroE100

MFCGA
22099.1 28588.1 32109.0 23168.9 21494.7 27780.5 22257.7 23069.4
21746.0 27893.0 31162.0 22815.0 20852.0 27307.0 21648.0 22587.0
203.89 394.96 547.66 249.66 337.44 207.34 398.46 211.52

MFEA
22404.6 28817.0 32769.8 23790.0 21956.3 28512.0 22713.3 23239.3
21460.0 28385.0 31856.0 22330.0 21157.0 27394.4 21539.0 22607.0
703.53 299.44 596.42 609.08 739.15 788.14 548.83 533.68

Optima 21282.0 26524.0 29368.0 22141.0 20749.0 26524.0 21294.0 22068.0

Wilcoxon
rank-sum

test

B. Analysis of the Genetic Transfer between Tasks

We now analyze the genetic transfer across the 8 TSP tasks
considered in the complete experimentation, focusing on our
proposed MFCGA. The main objective with this study is i)
to get a glimpse of the positive knowledge transfer among
problem instances; ii) to discover synergies between them; and
iii) to empirically gauge inter-task interactions occurred along
the 20 repetitions of TC_8. We have chosen this test case since
it is the one in which the 8 TSP tasks are optimized jointly.

It should be pointed here that the novel MFCGA presented
in this paper is especially interesting for analyzing the genetic
transfer held through the algorithm execution. This is so due to
the replacement strategy employed in MFCGA. In our method,
an individual x′p of the population is replaced if and only
if any of the individuals generated through the crossover
(xcrossoverp) and mutation (xmutationp) operators outperform
x′p in terms of its best performing task (i.e. its skill factor).
Thus, if xcrossoverp replaces x′p, a positive transfer of genetic
material has occurred from xj to x′p (we refer to Algorithm 2
and Section III for notation details). In the context of the TSP,
this transfer is realized through the direct insertion of part of
the neighboring solution xj into x′p, which can be conceived
as a positive contribution of task τ j to task τp.

Bearing the above explanation in mind, Figure 1 represents
the number of positive genetic transfer episodes (through the
crossover operator) between every pair of TSP tasks. The
radius of every orange circle in this plot is proportional to the
average number of times per execution in which an individual

having the skill factor indicated in the column label has
exchanged some of its genetic material with an individual
whose skill factor is given in the row label. Moreover, circles
located in the diagonal represent the sum of all the inter-
task (orange portion) and intra-task exchanges (gray portion),
the latter quantifying the genetic transfer between individuals
featuring the same skill factor.

kroA100 kroA150 kroA200 kroB100 kroC100 kroB150 kroD100 kroE100

Skill factor of replaced individual

kroA100

kroA150

kroA200

kroB100

kroC100

kroB150

kroD100

kroE100

Sk
ill

fa
ct

or
of

m
at

in
g

in
di

vi
du

al

34.5

17.5

16.0

16.5

68.9

95.7

84.4

120.5

Fig. 1. Average intensities of genetic transfer between TSP instances.

Two main conclusions can be drawn after analyzing this
figure. The first one is the confirmation of synergy in three
different pairs of TSP instances, namely, {kroA100, kroA150},
{kroC100, kroA200} and {kroC100, kroB150}. Thus, the
genetic transfer between these tasks positively contributes to
the multi-task search process. The second conclusion is that for
the rest of task pairs, the intensity of genetic material exchange
is almost nonexistent. This fact unveils that transfers between
these tasks can be considered as negative [45], and that they do
not contribute for the search process. These findings a priori
contradict the information depicted in Table I, in which we
summarized the genetic complementarity of the 8 tasks. For
instance, we saw that tasks such as kroA100 and kroA200 have
a high level of complementarity among them (66% as per the
table). However, the inter-task interaction for this pair depicted
in Figure 1 is practically nonexistent. Similar conclusions
hold for other task pairs, such as {kroA150, kroA200} or
{kroA200, kroB150}. This contradiction collides with some
previously published studies [8]. In fact, by analyzing the
correlation in the landscapes of the aforementioned task pairs,
we can confirm that the so-called partial domain overlap exists
[4]. This statement is confirmed since the domains of task pairs
{kroA100, kroA150}, {kroA150, kroA200} and {kroA200,
kroB150} partially overlap, existing a subset of features that
are common to both tasks of every pair.

In order to shed light on this unexpected mismatch, a deeper
analysis of the considered 8 TSP instances has been made.
However, in this case we focus our attention on the correlation
among the best known solutions of such instances. Measur-

ing the distance between best solutions has been previously
proposed in recent works on continuous problems [18], [21].
We summarize in Table VI the genetic complementarities
in the optimal solutions of the 8 TSP tasks in use. Cells
corresponding to task pairs that have shown a higher inter-
task genetic transfer in Figure 1 have been highlighted in
orange. As shown in this table, the best known solutions of
{kroA100, kroA150}, {kroC100, kroA200} and {kroC100,
kroB150} present a partial degree of intersection, which means
that the global optima of the two tasks are identical in the
unified search space with respect to a subset of variables only,
and different with respect to the remaining variables [21]. At
the same time, these three pairs are the ones that evince a
higher intensity of interaction in the conducted experiments.

TABLE VI
GENETIC COMPLEMENTARITIES AMONG THE BEST KNOWN SOLUTIONS OF

THE TSP INSTANCES UTILIZED IN THE EXPERIMENTATION

Instance kroA100 kroB100 kroC100 kroD100 kroE100 kroA150 kroA200 kroB150

kroA100 0% 0% 0% 0% 32% 5% 0%
kroB100 0% 0% 0% 0% 0% 0%
kroC100 0% 0% 0% 21% 10%
kroD100 0% 0% 0% 0%
kroE100 3% 0% 2%
kroA150 3% 0%
kroA200 8%

This last analysis leads to the ultimate finding of our
experimentation: the confirmation that for the TSP, positive
inter-task genetic transfer is likely to happen among pairs of
optimization tasks in which the degree of intersection in their
best solution is, at least, partial. Specifically, our experiments
elucidate that the degree of intersection should be above 10%
for the transfer between tasks to be beneficial. In other words,
the raw complementarity in the structure of the TSP scenario is
irrelevant for the genetic transfer. For this reason, we conclude
that TSP instances which do not partially share a fraction of
their best solutions are prone to negative inter-task interactions
in EM environments.

V. CONCLUSIONS AND FUTURE WORK

This work has elaborated on the design, implementation
and performance assessment of a novel Multifactorial Cellular
Genetic Algorithm (MFCGA) for Evolutionary Multitasking.
Our proposed meta-heuristic approach is inspired by the well-
known MFEA, and the influential cellular Genetic Algorithm
(cGA). Specifically, the meta-heuristic search strategy relies on
a neighborhood relationship induced on a grid arrangement of
the individuals of the population, which restricts the coverage
of the evolutionary crossover operator. For assessing the
quality of our method, we have compared the performance
of the MFCGA to that of MFEA along 15 tests cases com-
prising 8 different TSP instances. The obtained experimental
outcomes support the preliminary conclusion that MFCGA
is a promising method for solving EM environments. An
equally important contribution of this work is the inter-task
genetic transfer analysis conducted over the MFCGA, aimed
at uncovering synergistic relationships among TSP instances
that are exploited over the search process. Our main conclusion

on this regard is that the genetic exchange can be positive
whenever tasks present a minimum degree of intersection in
the structure of their best solutions.

We plan to devote further efforts in a manifold of interesting
research paths rooted on this initial study. In the short term,
we will continue using the TSP as benchmarking problem
using larger instances and test cases, targeting to assess the
scalability of the developed MFCGA. Furthermore, additional
search mechanisms for our method will be investigated and
tested, such as heuristic local search methods or alternative
survivor strategies. In the longer term, we will explore the
application of the MFCGA to other fields [46] and additional
discrete optimization problems, such as the vehicle routing
[47], or community detection problems [48], [49]. In those
cases, a similar analysis of the intra-task genetic transfer
will be undertaken, possibly by resorting to other means for
computing the similarity between solutions. Finally, a closer
look will be taken at adaptive means to efficiently exploit
synergies between solutions, by potentially optimizing the
distribution of individuals over the grid according to such
intra-task relationships. We will also try to adapt additional
existing methods to this field, such as the firefly algorithm
[50], bat algorithm [51] or grey wolf optimizer [52], [53].

ACKNOWLEDGMENTS

Eneko Osaba, Aritz D. Martinez, Jesus L. Lobo and Javier
Del Ser would like to thank the Basque Government for its
funding support through the EMAITEK and ELKARTEK pro-
grams. Javier Del Ser receives funding support from the Con-
solidated Research Group MATHMODE (IT1294-19) granted
by the Department of Education of the Basque Government.

REFERENCES

[1] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–
1359, 2009.

[2] R. Caruana, “Multitask learning,” Machine Learning, vol. 28, no. 1, pp.
41–75, 1997.

[3] Y.-S. Ong and A. Gupta, “Evolutionary multitasking: a computer science
view of cognitive multitasking,” Cognitive Computation, vol. 8, no. 2,
pp. 125–142, 2016.

[4] A. Gupta, Y.-S. Ong, and L. Feng, “Insights on transfer optimization:
Because experience is the best teacher,” IEEE Transactions on Emerging
Topics in Computational Intelligence, vol. 2, no. 1, pp. 51–64, 2017.

[5] L. Feng, Y.-S. Ong, A.-H. Tan, and I. W. Tsang, “Memes as building
blocks: a case study on evolutionary optimization+ transfer learning for
routing problems,” Memetic Computing, vol. 7, no. 3, pp. 159–180, 2015.

[6] A. Gupta and Y.-S. Ong, “Genetic transfer or population diversification?
deciphering the secret ingredients of evolutionary multitask optimiza-
tion,” in IEEE Symposium Series on Computational Intelligence (SSCI),
2016, pp. 1–7.

[7] Y.-W. Wen and C.-K. Ting, “Parting ways and reallocating resources in
evolutionary multitasking,” in IEEE Congress on Evolutionary Compu-
tation (CEC), 2017, pp. 2404–2411.

[8] A. Gupta, Y.-S. Ong, and L. Feng, “Multifactorial evolution: toward
evolutionary multitasking,” IEEE Transactions on Evolutionary Compu-
tation, vol. 20, no. 3, pp. 343–357, 2015.

[9] Y.-S. Ong, “Towards evolutionary multitasking: a new paradigm in evo-
lutionary computation,” in Computational Intelligence, Cyber Security
and Computational Models. Springer, 2016, pp. 25–26.

[10] T. Bäck, D. B. Fogel, and Z. Michalewicz, Handbook of evolutionary
computation. CRC Press, 1997.

[11] J. Del Ser, E. Osaba, D. Molina, X.-S. Yang, S. Salcedo-Sanz, D. Ca-
macho, S. Das, P. N. Suganthan, C. A. C. Coello, and F. Herrera, “Bio-
inspired computation: Where we stand and what’s next,” Swarm and
Evolutionary Computation, vol. 48, pp. 220–250, 2019.

[12] C. Wang, H. Ma, G. Chen, and S. Hartmann, “Evolutionary multitasking
for semantic web service composition,” 2019, arXiv:1902.06370.

[13] M. Gong, Z. Tang, H. Li, and J. Zhang, “Evolutionary multitasking with
dynamic resource allocating strategy,” IEEE Transactions on Evolution-
ary Computation, vol. 23, no. 5, pp. 858–869, 2019.

[14] Y. Yu, A. Zhu, Z. Zhu, Q. Lin, J. Yin, and X. Ma, “Multifactorial
differential evolution with opposition-based learning for multi-tasking
optimization,” in IEEE Congress on Evolutionary Computation (CEC),
2019, pp. 1898–1905.

[15] A. Gupta, Y.-S. Ong, L. Feng, and K. C. Tan, “Multiobjective multifac-
torial optimization in evolutionary multitasking,” IEEE Transactions on
Cybernetics, vol. 47, no. 7, pp. 1652–1665, 2016.

[16] B. Manderick, “Fine-grained parallel genetic algorithms,” in Proc. 3rd
International Conference on Genetic Algorithms, 1989, pp. 428–433.

[17] E. L. Lawler, J. K. Lenstra, A. R. Kan, and D. B. Shmoys, The traveling
salesman problem: a guided tour of combinatorial optimization. Wiley
New York, 1985, vol. 3.

[18] L. Zhou, L. Feng, J. Zhong, Z. Zhu, B. Da, and Z. Wu, “A study of sim-
ilarity measure between tasks for multifactorial evolutionary algorithm,”
in Proceedings of the ACM Genetic and Evolutionary Computation
Conference Companion, 2018, pp. 229–230.

[19] A. Gupta, Y.-S. Ong, B. Da, L. Feng, and S. D. Handoko, “Landscape
synergy in evolutionary multitasking,” in IEEE Congress on Evolution-
ary Computation (CEC), 2016, pp. 3076–3083.

[20] S. J. Louis and J. McDonnell, “Learning with case-injected genetic
algorithms,” College of Engineering, University of Nevada, Reno, Tech.
Rep., 2004.

[21] B. Da, Y.-S. Ong, L. Feng, A. K. Qin, A. Gupta, Z. Zhu, C.-K. Ting,
K. Tang, and X. Yao, “Evolutionary multitasking for single-objective
continuous optimization: Benchmark problems, performance metric, and
baseline results,” 2017, arXiv:1706.03470.

[22] H. Xiao, G. Yokoya, and T. Hatanaka, “Multifactorial pso-fa hybrid
algorithm for multiple car design benchmark,” in IEEE International
Conference on Systems, Man and Cybernetics (SMC), 2019, pp. 1926–
1931.

[23] X. Zheng, Y. Lei, M. Gong, and Z. Tang, “Multifactorial brain storm
optimization algorithm,” in International Conference on Bio-Inspired
Computing: Theories and Applications. Springer, 2016, pp. 47–53.

[24] H. Song, A. Qin, P.-W. Tsai, and J. Liang, “Multitasking multi-swarm
optimization,” in IEEE Congress on Evolutionary Computation (CEC),
2019, pp. 1937–1944.

[25] Y. Yuan, Y.-S. Ong, A. Gupta, P. S. Tan, and H. Xu, “Evolutionary
multitasking in permutation-based combinatorial optimization problems:
Realization with TSP, QAP, LOP, and JSP,” in IEEE Region 10 Confer-
ence (TENCON), 2016, pp. 3157–3164.

[26] L. Zhou, L. Feng, J. Zhong, Y.-S. Ong, Z. Zhu, and E. Sha, “Evolutionary
multitasking in combinatorial search spaces: A case study in capacitated
vehicle routing problem,” in IEEE Symposium Series on Computational
Intelligence (SSCI), 2016, pp. 1–8.

[27] G. Li, Q. Zhang, and W. Gao, “Multipopulation evolution framework
for multifactorial optimization,” in Proceedings of the ACM Genetic and
Evolutionary Computation Conference Companion, 2018, pp. 215–216.

[28] L. Zhou, L. Feng, K. Liu, C. Chen, S. Deng, T. Xiang, and S. Jiang,
“Towards effective mutation for knowledge transfer in multifactorial
differential evolution,” in IEEE Congress on Evolutionary Computation
(CEC), 2019, pp. 1541–1547.

[29] C. Bierwirth, D. C. Mattfeld, and H. Kopfer, “On permutation represen-
tations for scheduling problems,” in International Conference on Parallel
Problem Solving from Nature. Springer, 1996, pp. 310–318.

[30] H. T. Binh, P. D. Thanh, T. B. Trung et al., “Effective multifactorial
evolutionary algorithm for solving the cluster shortest path tree prob-
lem,” in IEEE Congress on Evolutionary Computation (CEC), 2018, pp.
1–8.

[31] E. Alba and B. Dorronsoro, “Solving the vehicle routing problem by
using cellular genetic algorithms,” in European Conference on Evolu-
tionary Computation in Combinatorial Optimization. Springer, 2004,
pp. 11–20.

[32] ——, Cellular genetic algorithms. Springer Science & Business Media,
2009, vol. 42.

[33] F. Luna, R. M. Luque-Baena, J. Martı́nez, J. F. Valenzuela-Valdés, and
P. Padilla, “Addressing the 5G cell switch-off problem with a multi-
objective cellular genetic algorithm,” in IEEE 5G World Forum (5GWF),
2018, pp. 422–426.

[34] M. H. Afshar and R. Hajiabadi, “A novel parallel cellular automata
algorithm for multi-objective reservoir operation optimization,” Water
resources management, vol. 32, no. 2, pp. 785–803, 2018.

[35] A. Nebro, J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, “Mocell: A
cellular genetic algorithm for multiobjective optimization,” International
Journal of Intelligent Systems, vol. 24, no. 7, pp. 726–746, 2009.

[36] M. Bellmore and G. L. Nemhauser, “The traveling salesman problem:
a survey,” Operations Research, vol. 16, no. 3, pp. 538–558, 1968.

[37] J. Grefenstette, R. Gopal, B. Rosmaita, and D. Van Gucht, “Genetic algo-
rithms for the traveling salesman problem,” in International Conference
on Genetic Algorithms and their Applications, 1985, pp. 160–168.

[38] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem,” IEEE Transac-
tions on Evolutionary Computation, vol. 1, no. 1, pp. 53–66, 1997.

[39] S. N. Kumbharana and G. M. Pandey, “Solving travelling salesman
problem using firefly algorithm,” International Journal for Research in
science & Advanced Technologies, vol. 2, no. 2, pp. 53–57, 2013.

[40] E. Osaba, X.-S. Yang, F. Diaz, P. Lopez-Garcia, and R. Carballedo, “An
improved discrete bat algorithm for symmetric and asymmetric traveling
salesman problems,” Engineering Applications of Artificial Intelligence,
vol. 48, pp. 59–71, 2016.

[41] E. Osaba, J. Del Ser, A. Sadollah, M. N. Bilbao, and D. Camacho, “A
discrete water cycle algorithm for solving the symmetric and asymmetric
traveling salesman problem,” Applied Soft Computing, vol. 71, pp. 277–
290, 2018.

[42] G. Reinelt, “Tsplib: A traveling salesman problem library,” ORSA
Journal on Computing, vol. 3, no. 4, pp. 376–384, 1991.

[43] E. Osaba, R. Carballedo, F. Diaz, E. Onieva, A. Masegosa, and A. Per-
allos, “Good practice proposal for the implementation, presentation, and
comparison of metaheuristics for solving routing problems,” Neurocom-
puting, vol. 271, pp. 2–8, 2018.

[44] L. Davis, “Job shop scheduling with genetic algorithms,” in Proceed-
ings of an International Conference on Genetic Algorithms and their
Applications, vol. 140, 1985, pp. 136–140.

[45] E. V. Bonilla, K. M. Chai, and C. Williams, “Multi-task gaussian process
prediction,” in Advances in Neural Information Processing Systems,
2008, pp. 153–160.

[46] R.-E. Precup and R.-C. David, Nature-Inspired Optimization Algorithms
for Fuzzy Controlled Servo Systems. Butterworth-Heinemann, 2019.

[47] J. Caceres-Cruz, P. Arias, D. Guimarans, D. Riera, and A. A. Juan, “Rich
vehicle routing problem: Survey,” ACM Computing Surveys (CSUR),
vol. 47, no. 2, p. 32, 2015.

[48] C. Pizzuti, “Evolutionary computation for community detection in
networks: a review,” IEEE Transactions on Evolutionary Computation,
vol. 22, no. 3, pp. 464–483, 2017.

[49] E. Osaba, J. Del Ser, D. Camacho, M. N. Bilbao, and X.-S. Yang,
“Community detection in networks using bio-inspired optimization:
Latest developments, new results and perspectives with a selection of
recent meta-heuristics,” Applied Soft Computing, vol. 87, p. 106010,
2020.

[50] X.-S. Yang, “Firefly algorithm, stochastic test functions and design
optimisation,” International Journal of Bio-Inspired Computation, vol. 2,
no. 2, pp. 78–84, 2010.

[51] ——, “A new metaheuristic bat-inspired algorithm,” in Nature inspired
cooperative strategies for optimization (NICSO 2010). Springer, 2010,
pp. 65–74.

[52] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,”
Advances in engineering software, vol. 69, pp. 46–61, 2014.

[53] R.-E. Precup, R.-C. David, and E. M. Petriu, “Grey wolf optimizer
algorithm-based tuning of fuzzy control systems with reduced parametric
sensitivity,” IEEE Transactions on Industrial Electronics, vol. 64, no. 1,
pp. 527–534, 2016.

