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Abstract—When dynamic multi-objective optimization evo-
lutionary algorithms (DMOEA) are used to solve real world
problems, these are not only required to be able to find the
Pareto-Optimal Set (POS) quickly, but also the results obtained
can be easily used by decision makers. The classic DMOEAs
have much room for improvement in both aspects. Recently, the
transfer learning based DMOEAs have been proved that these
methods can significantly improve the quality of the solution, but
there are still too many individuals in the POS obtained by these
algorithms. The resulting problems are twofold: this not only
consumes a lot of computing resources to those solutions that
will not be used, but also makes it more difficult for decision
makers to choose. In this paper, we proposed a dynamic multi-
objective optimization evolutionary algorithm which combines
knee solutions with transfer learning method, and the feature of
the proposed method is that it only outputs a very small number
of solutions, which can greatly improve the efficiency of decision-
making. The proposed algorithm divides the whole decision space
into different subspaces, and find a local knee solutions in each
subspace, then a transfer learning framework, Tr-DMOEA, is
used to predict the knee solutions of the optimization problem at
the next moment by using the local knee solutions and a global
knee solution. The experimental results show the effectiveness of
our design.

Index Terms—Dynamic multi-objective optimization, Knee so-
lutions, Transfer learning, Multi-criteria decision making

I. INTRODUCTION

Many optimization problems in the real world [1]–[3]
involve multiple optimization functions which conflict with
each other and change over time. These dynamic optimization
problems are called Dynamic Multi-objective Optimization
Problems (DMOPs) [4], [5]. In recent years, evolutionary com-
munity researches have developed numerous efficient dynamic
multi-objective optimization algorithms to find the optimal
solutions quickly, and most existing algorithms can be clas-
sified into three categories: maintaining-diversity based [6]–
[8], prediction based [9]–[15], and the memory-based methods
[16]–[19]. Among these categories, the algorithm based on
prediction has achieved good performance. For example, Tan
et al. [20] proposed a prediction model based on the Kalman
filter to minimize the influence of noise, and the Kalman filter
is used to guide the search to generate a new initial population.
Cao et al. [21] considered dynamic problems as time series
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problems, and a support vector regression was employed to
construct a predictor. The authors [22]–[24] utilized linear
models to predict the population in the next environment. Rong
et al. [25] proposed a multi-directional prediction strategy to
enhance the performance of evolutionary algorithms. Jiang
et al. [26], [27] noticed the solution distributions are not
identical under different environments, and a domain adapta-
tion technique is incorporated to improve prediction accuracy.
However, most existing algorithms often need to use output
many individuals, which directly reduces the speed of solving,
and it is difficult for decision makers (DMs) to use these results
directly.

One reason why such DMOEAs are criticized is a large
number of solutions are found, however, only one or a
small number of solutions can be implemented for the real
applications, so picking solutions for implementation among
massive candidates is a mentally challenging burden to DMs,
especially, DMs should make decision quickly according
to the changing environment. For example, in the financial
investment, the market environment is changing, and many
investment schemes are obtained every moment. Due to the
limitation of funds, only one or several schemes can be
selected from a large number of schemes for implementation.
However, schemes may involve many decision variables and
objective variables, and selecting schemes will cost much
of energy and time for DMs, and DMs may miss the best
investment scheme.

From the above discussions, reducing the computational
complexity of prediction based methods and relieving the
cognitive burden to DMs remain great challenges in DMOPs.
To address these issues, we propose a innovative approach
combining both transfer learning technique and knee-based
multi-criteria decision making (MCDM) strategy, called KT-
MCDM. KT-MCDM identifies the global and local knee
solutions to decision making using the Minimum Manhattan
distance (MMD) [28], these knee solutions are provided to
DMs to relieve the burden of picking solutions. Afterwards,
once the environment changes, the knee solutions in the new
environment are predicted to guide the population towards
the optimums by using a transfer learning technique, called
transfer component analysis (TCA) [29].

The contributions of this work are as follows: First, we
only predict knee solutions in the new environment by ex-
ploiting the knee solutions from the past one environment.
That is, instead of predicting a large number of solutions, we
only predict a small number of high-quality solutions, knee
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solutions, to guide the population towards the Pareto-optimal
front, which can improve the computational efficiency. Second,
the knee solutions are mostly preferred by DMs without any
explicit preference. The knee-based MCDM approaches have
rich geometric interpretations and avoid subjective preference
inputs from DMs [30]. From a geometric perspective, the
knee solutions benefit from significant improvement in some
objectives at the cost of insignificant degradations in the other
objectives. In this way, providing knee solutions in DMOPs
can bring convenience and benefits to DMs. Third, although
there are some research [31], [32] involved using knee points
for prediction in DMOPs, but this is the first work that
combines transfer learning with MCDM.

The rest of the paper is organized as follows: In Section
II, we describes the basic concepts of DMOPs and presents
the related transfer learning method used in the KT-MCDM.
Section III gives the designed KT-MCDM in detail. In Section
IV, experimental results and analysis are shown. Conclusions
are drawn in Section V.

II. PRELIMINARY STUDIES AND RELATED
RESEARCH

In this section, we briefly describes the definition of
DMOPs, the MMD knee selection strategy, and the transfer
learning technique used in our proposed algorithm.

A. DMOPs

The mathematical form of DMOPs is as follows:

minimize F (x, t) = 〈f1 (x, t) , f2 (x, t) , ..., fM (x, t)〉

s.t. x ∈ Ω

where x = 〈x1, x2, . . . , xN 〉 is the decision vector and
t is the time or environment variable. fm (x, t) : Ω →
R (m = 1, . . . , M). The aim of solving DMOPs is to search
for the set of solutions at different times or environments, so
that all the objectives are as minimal as possible.

Definition 1: (Dynamic Decision Vector Domination) At
environment t, a decision vector x1 Pareto-dominates another
vector x2 denoted by x1 �t x2, if and only if{

∀m = 1, ...,M, fm(x1, t) ≤ fm(x2, t)

∃m = 1, ...,M, fm(x1, t) < fm(x2, t)
(1)

Definition 2: (Dynamic Pareto-Optimal Set, DPOS) If a
decision vector x∗ at environment t satisfies

DPOSt = {x∗|@x, x �t x
∗} , (2)

then x∗ is called dynamic Pareto-optimal solution, and the
set of dynamic Pareto-optimal solutions is called the dynamic
POS (DPOS).

Definition 3: (Dynamic Pareto-optimal Front) At envi-
ronment t, the Dynamic Pareto-optimal Front (DPOF) is the
corresponding objective vectors of the DPOS:

DPOFt = {F (x∗, t)|x∗ ∈ DPOSt}.

B. Identity Global Knee Solution by MMD

There are some advantages to MMD knee solution selection
strategy [30], [33]. Firstly, the MMD approach can be adapted
to various types of POF without geometrical limitations, such
as linear, non-linear, concave, convex, disconnected or degen-
erated geometries. This makes MMD selection can combine
the advantages of both optimization performance analysis
and geometrical information. Secondly, the MMD selection
is time-saving which is advantageous for those problems that
need to be quickly responded to. Therefore, in this paper, we
choose the MMD approach as the baseline method to identity
knee solutions.

The primary idea of MMD is to calculate Manhattan
Distance for each non-dominated solution under different
objective space and select the solution with the minimum
distance as the global knee solution. The procedure of the
MMD approach is given in Algorithm 1.

Algorithm 1: MMD Knee Selection
Input: Non-dominated Set NDS, the optimization

problem F (x) =< f1(x), . . . fM (x) >
Output: Global Knee Solution knee

1 dis(x) = 0, x ∈ NDS;
2 for m = 1 to M do
3 Identify minimum value fmin

m in objective m from
NDS;

4 Identify maximum value fmax
m in objective m from

NDS;
5 for x ∈ NDS do
6 dis(x) = dis(x) +

fm(x)−fmin
m

fmax
m −fmin

m
;

7 end
8 end
9 Select the global knee solution knee with minimum

dis(x);
10 return knee;

C. Tr-DMOEA

Jiang et al. [26] pointed out that the solution distributions
of different environments are not identical, and when the
distribution of training samples and prediction samples does
not satisfy identical distribution, the prediction methods based
on transfer learning tend to be more effective and more promis-
ing [34]–[36]. Therefore, a transfer learning based dynamic
multi-objective optimization framework is proposed, called
Tr-DMOEA. The transfer learning method used in the Tr-
DMOEA framework is TCA.

For the domain adaptation problem, TCA can well deal with
the situation that the source domain and the target domain
meet different data distributions. The main task of TCA is to
map the source domain Xso and the target domain Xta to a
latent space through the mapping function φ(·), so that the
data distribution in the two domains in the space as similar as
possible, which is P (φ(Xso)) ≈ P (φ(Xta)). Then the data in
the two domains in the space is further processed.



The Tr-DMOEA algorithm can be divided into the following
major steps: Firstly, an initial population is randomly gener-
ated at the very beginning, when the environment does not
change, it is considered as a static multi-objective optimization
problem, and a static multi-objective algorithm (SMOA) used
to solve it. Afterwards, when the change in the environment
is detected, the initial population at the next environment is
predicted using the transfer learning method combined with
the optimal solution information obtained at the previous
environment, Figure 1 is a schematic diagram. Then, a SMOA
is used to solve the new environment of the problem based on
the predicted initial population. Repeat the last two steps until
the end of the DMOP, and output the obtained optimal solution
at each environment.

In the Figure 1, Step I: Construct the latent space by
adapting to the solution distributions of two environments.
Step II: Map POFt−1 into the latent space to get mapped
solutions PLS through the mapping function. Step III: Find
the solution x in the new environment t such that the mapped
solution φ(Ft(x)) in the latent space is close to l ∈ PLS, and
the interior point algorithm can be used to solve this problem.
The found solution x is added into the initial population to
guide the evolutionary process. The detailed steps of predicting
the initial population in the Tr-DMOEA are shown in the
Algorithm 2.

The Tr-DMOEA combines transfer learning with evolution-
ary algorithms to improve the SMOA in solving the DMOPs,
it retains the advantages of the evolutionary algorithm itself.

Algorithm 2: Tr-IPG [26]
Input: The Dynamic optimization function Ft(·) and

Ft−1(·), the POFt−1 at Ft−1(·).
Output: The predicted initial population ip at Ft(·).

1 PLS = ∅;
2 Set the kernel function κ;
3 For Ft(·) and Ft−1(·), randomly generate two sets of

the solutions Xta and Xso;
4 Calculate the objectives of optimization functions

Ft(Xta) and Ft−1(Xso);
5 W = TCA(Ft(Xta), Ft−1(Xso), κ);
6 for every p ∈ POFt do
7 κp =

[κ(Ft−1(Xso(1)), p), . . . , κ(Ft(Xta(|Xta|)), p)];
8 φ(p) = WTκp;
9 PLS = PLS ∪ {φ(p)};

10 end
11 for every l ∈ PLS do
12 x = arg minx||φ(Ft(x))− l||;
13 ip = ip ∪ {x};
14 end
15 return ip;

III. PROPOSED ALGORITHM

A. Framework

The framework of KT-MCDM is illustrated in Algorithm 3.
At the first beginning, MOEA/D [37] solves the initial environ-

mental function F0 and the knee solutions are identified from
the non-dominated set POS0 by using KneeSelection. When
environment changes, the Tr-IPG utilizes the the objectives
ot−1 of knee solutions kneet−1 at the past one environment
t − 1 to generate a predicted knee points predictedKneet
for guiding the search towards the true POF, and the knee
solutions are identified from POSt for the next environmental
prediction. The details of KT-MCDM are presented in the
following section.

Algorithm 3: KT-MCDM
Input: The Dynamic optimization function Ft(·), the

parameter of subspaces p.
Output: the knee solutions kneet and objectives ot of

kneet of the Ft(·).
1 Initialization;
2 Use MOEA/D to solve F0(·) to get POS0;
3 knee0 = KneeSelection(POS0, p);
4 Compute objectives o0 of knee0;
5 while the environment has changed do
6 t = t+ 1;
7 predictedKneet = Tr-IPG(Ft(·), Ft−1(·), ot−1);
8 POSt = MOEA/D(Ft(·), predictedKneet);
9 kneet = KneeSelection(POSt, p);

10 Compute objectives ot of kneet;
11 return kneet and ot;
12 end

B. Knee Selection

DMs often desire more knee solutions in addition to the
global knee to handle the real-world applications. To address
this issue, the objective space in each dimension is divided
into several equally sized overlapped subspaces [30]. In each
subspace, a local knee solution is identified. The size of each
subspace of objective m at environment t is defined as

sizet,m =
fmax
t,m − fmin

t,m

p
. (3)

where fmax
t,m and fmin

t,m mean the maximum and minimum
value ft in objective m, respectively. The lower bound of i-th
subspace is

lowerboundt,m,i = fmin
t,m + i× sizet,m/2, (4)

and the upper bound is calculated according to the following
formula:

upperboundt,m,i = lowerboundt,m,i + sizet,m, (5)

where i = 0, . . . , 2 × p − 2. p determines the number of
divisions.

Once we have determined each subspace, the local knee
solution of each subspace is identified by MMD approach.
For the whole objective space, we also use MMD approach to
directly search for the global knee solution. The knee selection
process is given in Algorithm 4.



Fig. 1. Predicting the initial population using in Tr-DMOEA: Step I, construct the latent space by using environmental information in Ft−1 and Ft. Step II,
solutions in the Ft−1 are mapped into the latent space. Step III, generate the initial population.

Algorithm 4: KneeSelection
Input: Non-dominated Set NDS, the parameter of

subspaces p.
Output: The knee solutions set knee.

1 knee = ∅;
2 Determine all subspaces according to Formula (4) and

(5);
3 for each subspace do
4 Identify minimum value fmin

t,m in objective m from
NDS;

5 Identify maximum value fmax
t,m in objective m from

NDS;
6 for x ∈ NDS do
7 dis(x) = dis(x) +

ft,m(x)−fmin
t,m

fmax
t,m −fmin

t,m
;

8 end
9 Select the local knee solution with minimum

dis(x);
10 knee = knee ∪ {x};
11 end
12 Identify the global knee x by MMD approach;
13 knee = knee ∪ {x};
14 return knee;

C. Transfer Knee Solutions

The distribution of the knee solutions may vary at different
environments, so it is promising to use the transfer learning
technique to predict knee solutions in the new environment.
However, from the previous study, using TCA to predict the
initial population is very time-consuming, this is a disadvan-
tage to solve applications involved DMOPs. To overcome this
disadvantage, in this paper, we consider only to predict a small
number of high-quality solutions to reduces the consumption
of computing resources.

The transfer method used in the paper is similar to Tr-
DMOEA. However, in this paper, we only transfer several
high-quality solutions, local knee solutions and the global knee
solution for initializing population. Transferring knee solutions
rather than the a large number of solutions greatly reduces

the computation time in the transfer prediction, but has little
negative impact on the population quality. The improvement
of transfer prediction speed is significant in solving DMOPs.

In the following, we use Algorithm 2 to briefly describe
the process of transferring the knee solutions. Firstly, in Line
3 and Line 4 of Algorithm 2, the solutions at environment
t − 1 and t are sampled. In Line 5, the TCA is used for
domain adaptation, so that we can use the matrix W outputted
by TCA to construct the latent space. In this latent space,
mapped solution distributions of different environment are
similar. Then, in Line 6∼10, knee solutions from the t − 1
environment are mapped in this latent space, the mapped knee
solutions set is denoted as PLS. Finally, in Line 11∼14, we
find the predicted knee solution x, such that in the latent space,
φ(Ft(x)) is closet to l ∈ PLS in the latent space.

IV. EXPERIMENTS

A. Algorithms Compared, Test Problems, Performance Indi-
cators and Settings

The proposed KT-MCDM algorithm is compared against
several popular dynamic MOEAs including MDP [25],
MOEA/D-SVR [21], MOEA/D-KF [20], and PPS [24]. For
a fair comparison, most parameters of these algorithms are
set according to the original references, and the SMOA used
in PPS and MDP are replaced by the baseline algorithm
MOEA/D, and these two compared algorithms are denoted
as MOEA/D-PPS, MOEA/D-MDP, respectively.

All compared algorithms are evaluated based on 14 DMOPs
(DF1-DF14) selected from CEC 2018 DMO benchmarks [38].
The dynamics of a DMOP is governed by

t =
1

nt

⌊
τ

τt

⌋
, (6)

where τ , nt, and τt refer to the maximum generation counter,
severity of change, and frequency of change, respectively.

In this study, the following metrics are utilized to evaluate
the performance of algorithms.

1) Inverted Generational Distance (IGD): The IGD is a met-
ric for quantifying the convergence of the solutions obtained
by a multi-objective optimization algorithm. When the IGD



value is small, the convergence of the solution is improved.
IGD is defined as

IGD(POF ∗, POF ) =

∑
p∗∈POF∗ minp∈POF ‖p∗ − p‖2

|POF ∗|
,

(7)
where POF ∗ is the true POF of a multi-objective optimization
problem, POF is an approximation set of POF obtained by a
multi-objective optimization algorithm.

The MIGD metric is a variant of IGD and is defined as the
average of the IGD values in some time steps over a run.

MIGD(POF ∗, POF ) =

∑
t∈T IGD(POF ∗t , POFt)

|T |
, (8)

where T is a set of discrete time points in a run and |T | is
the cardinality of T .

2) KneeDist [30]: The Euclidean distance
KneeDist(knee∗, knee) between the obtained knee
solutions knee and the true knee solutions knee∗ in measure.
This metric is similarly modified to the IGD to act as a
performance metric for evaluating dynamic MOEAs.

MeanKD(knee∗, knee) =

∑
t∈T KneeDist(knee

∗
t , kneet)

|T |
(9)

It should be noted that we chose the solution obtained who
has the minimum distance to the true global knee solution as
the final obtained knee solution for comparison.

In the experiments, the dimension of decision variables is
set to 10, and the population size is set to 100 for bi-objective
optimization problems and 150 for tri-objective optimization
problems. The severity of the change nt is set to 5 and 10,
while the frequency of change τt is kept constant at 10.
The τ is set to 20 × τt. In our proposed KT-MCDM, the
parameter of subspaces p is set to 4. The parameters of TCA
are set according to [26]. All the problems are run 10 times
independently.

B. Performance on DF Problems

As can be seen from Table I, KT-MCDM achieves 16 out of
28 best results, MOEA/D-MDP has 9 best results, MOEA/D-
PPS has 1 best results and MOEA/D-SVR achieves 2 best
results. Specifically, KT-MCDM performs better on DF2, DF6,
DF7, DF10, DF11, and DF14 under all dynamic test settings.
On DF3, DF5, and DF8 problems with setting (τt = 10, nt =
5), and DF13 problem with setting (τt = 10, nt = 10),
KT-MCDM obtains well-converged solutions. In other cases,
KT-MCDM falls behind the corresponding best-performing
algorithms.

However, for some benchmark functions, such as DF9 and
DF12, which have a time-varying number of POF holes, KT-
MCDM leaves some room to be desired, and the reason may
be the time-varying POF holes lead to the knee solutions
distribution changes dramatically, which lead the Algorithm
Tr-IPG to the poor prediction performance.

Table II shows the MeanKD values of the five compared
algorithms. KT-MCDM performs the best on 14 out of the

28 problems, which is followed by MOEA/D-MDP gaining 8
best results, MOEA/D-SVR and MOEA/D-PPS gaining 3 and
2 best results, respectively, and MOEA/D-KF only gaining
1 best result. To be specific, KT-MCDM performs better on
DF2, DF5, DF7, DF8, DF11, and DF14 under all dynamic test
settings. On DF6 and DF13 with setting (τt = 10, nt = 10),
KT-MCDM performs better than other compared algorithms.

The feature of the proposed method can output some
knee solutions, which can greatly improve the efficiency of
decision-making. From the MeanKD values shown in Table II,
in most of cases, the KT-MCDM provides the knee solution
which is close to the true global knee solution. It means our
proposed KT-MCDM is better for DMs to make decisions. The
experimental results validate the effectiveness of our design.

V. CONCLUSION

Researchers have essentially focused on searching the well-
converged and well-diversified solutions quickly when solving
DMOPs. However, these algorithms often require large popu-
lations and output POS with large scales. If the size of POS
obtained by the algorithm is too large, it may lead to two
problems. First, a large amount of computing resources are
spent to find those solutions that will not be used at all, and
secondly, it also greatly increases the difficulty of decision-
making.

In this paper, we propose a dynamic multi-objective opti-
mization evolutionary algoritm, called KT-MCDM. The pro-
posed algorithm combines the knee points strategy and the
transfer learning method to address the above issues. In
the KT-MCDM, we only predict knee solutions in the new
environment by exploiting the knee solutions (local and global
knee points) from the past to improve the computational
efficiency, and the identified knee solutions are provided to
DMs to relieve the difficulty of decision-making. The experi-
ments validate that the proposed KT-MCDM can obtain knee
solutions which are close to the true knee solutions on most
test functions. In our future work, we will continue to explore
how to improve the computational efficiency and relieve the
burden of picking solutions in solving DMOPs.
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TABLE I
MEAN AND STANDARD DEVIATION VALUES OF MIGD METRIC OBTAINED BY COMPETING ALGORITHMS FOR DIFFERENT

DYNAMIC TEST FUNCTIONS UNDER VARIOUS TEST SETTINGS

Problems τt, nt KT-MCDM MOEA/D-PPS MOEA/D-SVR MOEA/D-MDP MOEA/D-KF

DF1
10,10 0.1413±7.790e-02 0.1133±1.345e-01 0.1089±1.006e-01 0.0777±5.079e-02 0.1749±1.059e-01
10,5 0.1023±4.562e-02 0.1190±7.716e-02 0.0933±5.695e-02 0.0890±3.515e-02 0.1947±9.592e-02

DF2
10,10 0.0806±8.121e-02 0.0916±5.994e-02 0.0897±5.537e-02 0.1242±7.592e-02 0.0966±2.430e-02
10,5 0.0883±4.726e-02 0.0933±6.158e-02 0.0964±4.758e-02 0.1369±6.294e-02 0.1066±8.752e-02

DF3
10,10 0.4079±1.823e-01 0.5052±2.217e-01 0.4401±1.699e-01 0.2372±9.923e-02 0.3648±1.489e-01
10,5 0.3475±2.071e-01 0.3991±2.494e-01 0.3662±1.733e-01 0.3861±1.041e-01 0.3669±1.406e-01

DF4
10,10 1.5455±4.383e-01 1.5114±2.936e-01 1.5401±5.058e-01 1.3368±3.015e-01 2.0044±8.663e-01
10,5 1.0788±6.346e-01 1.0427±7.003e-01 1.0003±6.831e-01 0.8965±5.486e-01 1.3369±9.160e-01

DF5
10,10 0.1463±1.261e-01 0.0826±1.040e-01 0.7430±5.357e-01 0.1051±5.300e-02 0.1108±7.386e-02
10,5 1.7480±2.754e+00 1.7532±2.281e+00 6.2743±7.292e+00 1.8374±2.313e+00 1.8212±2.263e+00

DF6
10,10 1.5125±1.769e+00 2.2158±3.649e+00 1.7620±2.011e+00 2.8952±3.503e+00 1.6657±1.523e+00
10,5 1.6575±1.815e+00 4.2490±6.414e+00 1.9151±2.492e+00 2.7470±3.417e+00 1.7962±1.831e+00

DF7
10,10 2.0330±3.750e+00 2.6881±3.076e+00 2.3395±3.274e+00 2.4637±2.848e+00 2.6119±2.522e+00
10,5 1.7954±3.053e+00 2.6055±4.558e+00 2.1534±2.854e+00 1.8325±2.107e+00 2.5606±3.029e+00

DF8
10,10 0.9319±4.485e-01 1.1585±4.979e-01 0.9060±3.795e-01 0.9724±3.799e-01 1.0552±4.172e-01
10,5 0.8577±4.402e-01 1.1705±5.928e-01 0.9389±4.534e-01 0.9311±3.610e-01 1.0896±5.133e-01

DF9 10,10 1.5748±2.434e+00 1.5269±1.550e+00 3.1623±3.229e+00 1.4790±1.504e+00 1.8594±1.662e+00
10,5 2.0647±2.123e+00 1.2717±1.249e+00 2.9173±3.111e+00 0.9844±9.726e-01 1.4211±1.200e+00

DF10 10,10 0.1577±6.581e-02 0.1822±6.925e-02 11.7191±4.272e+01 0.1724±5.037e-02 0.1840±5.094e-02
10,5 0.1853±8.699e-02 0.2123±8.827e-02 26.9726±8.487e+01 0.2135±4.828e-02 0.2184±8.453e-02

DF11
10,10 0.1462±2.317e-02 0.2302±2.090e-01 39.0376±1.109e+02 0.1568±3.818e-02 0.1685±4.055e-02
10,5 0.1471±1.713e-02 0.2964±1.674e-01 22.2910±4.308e+01 0.2167±9.135e-02 0.2530±9.064e-02
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