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Abstract—Gene regulatory networks are generally robust in
nature. However, unwanted perturbations arising out of ex-
treme environmental conditions or external pathogen attacks
may lead them to malfunction. Potentially, this can have an
adverse effect on the biochemical functions of a living system.
In this work, we have proposed a computational model based
on negative feedback control to eliminate the effects of such
unwanted perturbations. We have implemented the recurrent
neural network formalism for modelling the underlying network
dynamics from a given time-series gene expression dataset. The
artificial bee colony optimisation technique has been employed
for model parameter estimation. The controller used in this work
is of the proportional-integral-derivative type. To the best of our
knowledge, this is one of the first research works in this domain
to consider a completely non-linear scenario. A 10-gene DREAM4
benchmark network has been considered in this work. The results
obtained herein show that the proposed formalism can mitigate
the unwanted effects of external disturbances effectively.

Index Terms—artificial bee colony, DREAM4, feedback control,
gene regulatory networks, recurrent neural network.

I. INTRODUCTION

Genes are the fundamental units of all living systems, from
tiny single-cell entities to complicated multi-cellular organ-
isms. The critical biochemical activities, viz. organ develop-
ment, resistance to diseases, etc., take place inside living cells
as a result of the intricate regulatory relationships amongst
genes. The end products of gene expression are proteins, and
they, in turn, act as the medium of communication amongst
the genes. A gene regulatory network or a GRN is usually
used to denote the regulatory inter-relationships between genes
graphically. The nodes in a GRN represent the genes, while the
edges signify the regulations [1]. Genetic regulations can be
of two types, viz. activation and repression. If the expression
of a gene is initiated or the rate of expression increases, under
the influence of a gene/s, the type of regulation is known as
activation. On the other hand, when the expression of a gene
stops or the rate of expression reduces, the type of control is
known as inhibition or repression.

Although GRNs are robust in nature, they can be sus-
ceptible to extreme environmental conditions like pollution,

or pathogen attacks. Complex networks, other than GRNs,
such as the world wide web, power grids used for electrical
supply, social networking websites and applications, etc., are
also vulnerable to external disruptions that can have an un-
favourable affect on the entire network action. Some prominent
examples of such unwanted effects are: (i) the circulation of
malware through the internet with malicious intent, (ii) power
outage in residential as well as industrial area due to the
failure of the supply mechanism, (iii) the rapid propagation of
baseless rumours and fabricated news via social networks, etc.
in addition to the malfunction of critical biochemical functions
in living things. Thus, researchers are becoming increasingly
inspired to develop suitable strategies for eliminating the
unwanted and harmful effects of external disturbances on the
operation of complex networks.

Traditionally, researchers in the domain of network science
[2], [3] have attempted to reduce the effects of external
disturbances by concentrating on numerous network related
notions, like hubs, components, degree of centralities, etc.
Only recently, however, some researchers have turned their
attention towards the concepts of feedback control [4], [5],
[6], [7], and have proposed to eliminate the unwanted effects
of perturbations in large-scale networks using the same. These
research works consider external perturbations to be similar in
nature to external disturbances in traditional control systems.
Such systems need suitable control actions to guarantee that
the output remains within the desired or feasible operating
range. Hence, the problem of perturbation mitigation can be
visualised as the problem of rejecting an external disturbance
from the point of view of feedback control theory.

Thus, we have proposed a computational framework based
on the concept of negative feedback control in this paper to
eliminate the potentially harmful effects of external perturb-
ations on a GRN. For this, we have considered a 10-gene in
silico benchmark network taken from the DREAM4 challenges
[8], [9]. We have used the recurrent neural network (RNN)
[10] formalism to model the underlying dynamics from the
given temporal gene expression profiles. The artificial bee
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colony (ABC) [11] optimisation technique has been imple-
mented for the RNN model parameter training. We have used a
proportional-integral-derivative or PID controller [12] to elim-
inate the potentially harmful effects of external perturbations
on the considered network.

The rest of the paper has been organised as follows. Section
II contains a brief overview of GRNs and their modelling, and
the basics of RNN and ABC. We have presented the proposed
methodology based on a PID controller in detail in Section
III. The experimental results have been provided in Section
IV along with relevant discussions. Section V concludes this
work posing some future research opportunities.

II. PRELIMINARIES

The basics of GRN analysis, the RNN formalism, the ABC
algorithm, and the basic concepts of negative feedback control
have been explained in Sections II-A through II-D

A. Modelling of Gene Regulatory Networks

The investigation of GRNs has developed into a critical
topic of research in Molecular Biology because it can po-
tentially reveal the reasons behind a disease and thus its
lead to a prospective treatment. The reconstruction of GRNs
from time-series gene expression datasets is a challenging
task, nevertheless. With the rapid technological progress in
the domain of genetic research, an extraordinary volume
of gene expression related information has been produced.
Notwithstanding some minor restrictions, the straightforward
nature of present gene expression profiling strategies enables
researchers to obtain large-scale concurrent measurements of
gene expression values [13], [14], [15]. This has, in turn, made
it feasible for scientists to investigate the dynamic behaviour
[16] and communications amongst genes that are vital for the
elucidation of key cellular activities, illustration of genetic
activities, disease diagnosis, assessment of the effects of new
drugs [17], [18], etc.

The extent and diversity of this available information offer
the fundamental impetus to researchers worldwide to inves-
tigate and thereby build computational tools for the biolog-
ically credible analysis of the available data. The essential
outcome of this investigation has led to the development
of effective means for network identification, finding the
gene(s) responsible for a specific ailment, etc. The well-known
methodologies are Boolean Networks [19], Bayesian Networks
[20], Information Theory based approaches [21], Regression
based approaches [22], RNN [10], S-systems [23], etc. Chai et
al. [24] and Kaini et al. [25] have provided a thorough review
of the existing computational approaches in the contemporary
literature for the reverse engineering of GRNs from temporal
expression profiles.

The problem of reverse engineering GRNs from time-series
expression data is an ill-posed problem, and thus is susceptible
to overfitting. However, real GRNs are sparse [26]. Yet, the
majority of the techniques available in this domain have
been unable to predict network architectures with complete
accuracy, even for small-scale GRNs. Few techniques have
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Fig. 1: The representation of a GRN using an RNN model. The
network shown is unfolded from t = t1 to t = t3. All possible
connections amongst the genes have been shown, whereas,
real-world networks are sparse.

been able to identify all the correct relationships till now, but
even they also infer a significant amount of false regulations.
Augmenting the proposed models with supplementary biolog-
ical information seems beneficial in enhancing the accuracy
of the identified network architectures [27], but the accurate
identification of large-scale GRNs are yet to be achieved.
This is the primary reason that we have considered a known
benchmark network in this work, such that we can implement
the synthetic controller on an accurate network without false
predictions. The proposed methodology assumes (at least for
this work) that the genetic regulations are known to us. Only
the nature of the relationships have been obtained by training
the RNN model parameters from the temporal expression
datasets.

B. Recurrent Neural Networks

The regulation of the expression of a specific gene by some
other gene/s can be represented using the RNN [10] framework
shown in Fig. 1. The nodes denote genes while the edges
signify the regulations among them. Each layer of the neural
network (Fig. 1) represents the expression level of the genes
at a specified time ti. The amount/level of expression of any
gene i, at any point of time, ti+1 = ti + dt, depends on the
expression levels of all the genes, xj at the preceding timepoint
ti and the corresponding edge weights, wi,j . Thus, the overall
regulation on gene i can be encapsulated by the following:

gi =

N∑
j=1

[wi,jxj + βi] , (1)

where βi denotes an external input that can be thought of as
a reaction delay parameter. This relation can be transformed
to the interval [0, 1] with the help of a sigmoid function as
shown in [10]. A larger value of βi is symbolic of a reduced
influence of wi,j on gi. The rate of gene expression can then
be modulated by a multiplicative constant, χ1, which denotes
the peak expression of a gene. The rate of expression of gene



i can be defined as the difference between the sum total effect
of the regulators, δi and its self-degradation, γi, as follows:

dyi
dt

= δi − γi, (2)

where the degradation factor, γi can be defined on the basis
of the kinetic structure of a first-order biochemical equation
as:

γi = χ2i · yi (3)

On the other hand, δi can be defined as:

δi = χ1i · f (gi) (4)

The constant χ2 is the rate constant for the self-degradation
part of the gene i. Thus, using (2), (3), and (4), we arrive to
the following:

dyi
dt

= χ1i · f

 N∑
j=1

wi,jxj + βi

− χ2i · γi, (5)

where f(·) is a sigmoid transfer function, defined as:

f (a) =
1

1 + e−a

and xj is the concentration of any element, j, in a given system
(for j = i, xj = yi). Equation (5) describes the dynamics of
gene expression and represents a node function [10], where
each such can be connected to all other nodes to form a neural
network as shown in Fig. 1.

The weight matrix, W = [wi,j ] defines all the regulations
or connections between the nodes of the network. A non-zero
value of wi,j signifies the existence of regulation of gene i
by gene j. The magnitude of the weight wi,j signifies the
intensity of regulation. The neural network can be fully defined
with the help of the differential equations corresponding to a
specific gene (node), and the number of equations is defined
by the number of nodes present, i.e. the number of genes in the
network (N ). The level of expression of gene i at time-point t
can easily be computed from the set of differential equations.
Equation (5) is a special instance of a class of RNNs, which
are generally described as follows:

τi ·
dxi
dt

= f

 N∑
j=1

wi,jxj + βi

− xi (6)

If wi,j is symmetric, the network represented by the model
reaches stability in finite time [10]. Now, in real-world sce-
narios, data can only be obtained at discrete time-points only.
As a result, assuming:

dxi
dt
≈ ∆xi

∆t
=
xi (t+ ∆t)− xi (t)

∆t
,

(6) can be rewritten in its discrete format as follows:

τi ·
xi (t+ ∆t)− xi (t)

∆t
= f

 N∑
j=1

wi,jxj (t) + βi

− xi (t)

Simplifying the above, we get:

xi (t+ ∆t) =
∆t

τi
· f

 N∑
j=1

wi,jxj (t) + βi


+

(
1− ∆t

τi

)
· xi (t) (7)

C. Artificial Bee Colony Optimisation

The artificial bee colony (ABC) optimisation, proposed by
Karaboga [11], mimics the cooperative foraging action of a
group of bees. There are three different types of bees in an
artificial bee colony, viz. employed, onlooker, and scout bees.
At first, each employed bee chooses a food source randomly
from the search space. The quality of each food source is
estimated with the help of the given objective to assess their
viability. The best solution, i.e. the food source with the
maximum amount of nectar is stored in memory as well as
shared within the swarm. The employed bees find a new food
source (solution) in the neighbourhood of the chosen solution
according to the following:

vi = xi + φi · (xi − xj), (8)

where vi is the newly found food source within the neighbour-
hood of the present one, xi, being visited by the i-th virtual
bee, such that i 6= j, and φi is a random number in the range
[−1, 1].

Next, the quality (fitness) of all the food sources (solutions)
generated using (8) are calculated and subsequently compared
with the earlier ones. If a virtual bee is able to find a better food
source, it replaces the position of the old one with the current
solution. The onlooker bees now enter the foraging process and
calculate the probability of the food sources being selected by
them. This information is shared with the other onlooker bees.
We have calculated the probabilities in this work according to
the approach proposed by Babayigit et al. [28]:

pi = exp

(
−1

ρ · f i

)
, (9)

where pi and f i are the probability and the normalized fitness
of the i-th food source, respectively; ρ is a control (input)
parameter set to 1 here. In the subsequent step, the onlooker
bees search for new food sources in the neighbourhood of the
current best source according to the following:

vi = xbest + pi ·
(
xbest − xj

)
, (10)

where the current global best solution is represented by xbest.
Here, j can be the same as best, unlike (8). Every time

a new food source is found, the quality (fitness) of the
food source (solution) is re-calculated, and the new source is
selected if it is better than the old one. If any solution cannot be
improved over a certain number of iterations, the food source
is deemed to have been exhausted and the accompanying
virtual bee becomes a scout, which then again generates a
new food source randomly. The swarm size and the threshold
number of iterations before a source can be assumed to be
exhausted are two control parameters of ABC.
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r (t) refers to the desired expression value of the most vulnerable gene or the set-point, d (t) is the external
disturbance, and y (t) is the observed expression value of the most vulnerable gene after control action.

Fig. 2: A block diagram of the proposed PID controller.

D. Negative Feedback Control

Feedback is one of the most commonly used concepts in
control theory, and is usually achieved with the help of a
variety of approaches, viz. state space, full state feedback, etc.
From the perspective of control theory, feedback is conven-
tionally presumed to be negative [29]. The most frequently
used all-purpose controller based on the concept of negative
feedback loop is the proportional-integral-derivative or PID
controller [12]. The terms of a PID controller can be explained
based on time. The proportional part term is related to the
current error. The integral part depends on the accumulation
of past errors. Lastly, the derivative part provides an estimation
of the expected error, based on the present error rate. A block
diagram of the proposed PID controller has been shown in
Fig. 2.

III. PROPOSED METHODOLOGY

Real-world GRNs existing in complex living systems
are robust enough to reject small external disturbances or
perturbations. However, extreme environmental conditions or
pathogen infections can lead to malfunctioning of the genetic
networks. This may lead to up-regulation or down-regulation
of certain regulated gene/s in the network. This, in turn, may
result in a respective increase or decrease in concentration
of the end products of expression of those genes, i.e. the
corresponding protein(s). This can hamper the functioning of
the concerned proteins, which include life-critical activities
like regulating the expression of other genes (that may belong
to an altogether different network), forming protein complexes
for acting as enzymes for metabolic reactions and other vital
biochemical reactions, etc. This forms the primary motivation
behind the present research endeavour.

Here, we have proposed a computational technique to miti-
gate the effects of external disturbances, based on the concept
of feedback control theory. The present work can be divided
into two main parts: (i) RNN model parameter training using
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Fig. 3: A 10-gene DREAM4 [8], [9] Challenge network ex-
tracted from GNW [30]. The arrowheads represent activation,
and the open circles denote inhibition.

the given time-series expression data to generate a suitable
model, and (ii) designing a PID controller to eliminate the
effects of an externally added disturbance to the trained model.

Let us consider the network given in Fig. 3. It is a DREAM4
[8], [9] Challenge network comprising 10 genes and 15
regulations. In this network, two genes (G1 and G9) are
not regulated by any other gene of the network, and act as
regulators only. Hence, these genes have been termed as the
dominant genes (DG-s) of the network. External perturbations
(EP-s) can disrupt the normal functioning of the network, if
only they can either increase or reduce the rate of expression
of these DG-s. On the other hand, gene G4 is the most
susceptible to the effects of any such perturbation, and hence
such genes have been termed as the most vulnerable gene
(MVG). This is because there are several redundant pathways
from the dominant genes to gene G4 (e.g., G1→ G4,G1→
G3→ G4,G1→ G3→ G7→ G4). As a result, the effect
of any fluctuation in the level of expression of the dominant
genes has a high probability of propagating to gene G4 and
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(a) The first perturbation mitigation approach.
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(b) The second perturbation mitigation approach.

Fig. 4: (a) The first configuration of the proposed negative feedback controller used to eliminate the harmful effects of EP
through DG1 (i.e. gene G1). (b) The second configuration of the proposed negative feedback controller used to eliminate the
harmful effects of EP through DG2 (i.e. gene G9). EP stands for external perturbation; DG stands for dominant genes;
MVG stands for the most vulnerable gene (i.e. gene G4), PIDC stands for the PID controller; SP stands for set-point; and
CO stands for control output.

affecting its expression.
We have proposed to eliminate this problem by using a

negative feedback control mechanism as shown in Fig. 4. It
can be clearly seen from Fig. 4 that there are two possible
configurations of the network. In the first configuration (shown
in Fig. 4(a)), gene G1 is the DG that is perturbed, while in
the second configuration (shown in Fig. 4(b)), gene G9 is
the DG which is perturbed. Firstly, the edge weights have
been estimated using RNN and ABC from the given temporal
expression profiles. The RNN model used for training has been
defined by (11)–(20):

x1 (t′) = λ1 · f (β1) + (1− λ1) · x1 (t) (11)

x2 (t′) = λ2 · f

 ∑
j=1,6,8

w2,jxj (t) + β2


+ (1− λ2) · x2 (t) (12)

x3 (t′) = λ3 · f

 ∑
j=1,4,7,10

w3,jxj (t) + β3


+ (1− λ3) · x3 (t) (13)

x4 (t′) = λ4 · f

 ∑
j=1,3,7,10

w4,jxj (t) + β4


+ (1− λ4) · x4 (t) (14)

x5 (t′) = λ5 · f (w5,1x1 (t) + β5) + (1− λ5) · x5 (t) (15)
x6 (t′) = λ6 · f (w6,8x8 (t) + β6) + (1− λ6) · x6 (t) (16)
x7 (t′) = λ7 · f (w7,3x3 (t) + β7) + (1− λ7) · x7 (t) (17)
x8 (t′) = λ8 · f (β8) + (1− λ8) · x8 (t) (18)
x9 (t′) = λ9 · f (β9) + (1− λ9) · x9 (t) (19)
x10 (t′) = λ10 · f (w10,9x9 (t) + β10)

+ (1− λ10) · x10 (t) (20)

Here,

t′ = t+ ∆t and λi =
∆t

τi

The set of all the parameters, i.e. all the τ -s, β-s, and the wi,j-s
has been estimated with the help of ABC. Here, the objective
function that has been used for the ABC based parameter
estimation has been defined as follows:

msei =
1

T
·

T∑
t=1

[xi (t)− x̃i (t)]
2
, (21)

where T is the number of time-points available in the dataset,
xi is the original level of expression of gene i, and x̃i is the
predicted level of expression of gene i. The process of ABC
based model parameter estimation has been explained in detail
using Algorithms 1 and 2.

The network model described by (11)–(20) constitutes the
process of the proposed PID controller. The original level of
expression of the most vulnerable gene has been assumed
as the set-point for the controller. An external perturbation
has been applied to one of the dominant genes and the
change in the level of expression of the most vulnerable gene
has been observed. This change is treated as the error for
the controller to produce a control output. Subsequently, the
generated control action has been used to alter the rate of
expression of the other dominant gene. Again, the change
in the level of expression of the most vulnerable gene has
been observed and a new control output has been generated.
This process has been repeated until the effect of the external
disturbance is eliminated to the maximum possible extent. A
schematic of the proposed controlling mechanism has been
shown in Fig. 4.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this work, we have implemented our proposed technique
on the 10-gene network shown in Fig. 3. The network is a



Algorithm 1 ABC Optimisation

Input: The number of genes in the GRN (N); the maximum number of iterations of ABC (maxit); and the population of
the hive in BAPSO (ph).

Output: The weight matrix representing the structure of the inferred network (W ).
1: for gene g = 1 to N do
2: Initialise position vector, Pg = [pgi ]1×ph randomly.
3: Each element, pgi is defined as: pgi = [wg

i1, w
g
i2, . . . , w

g
iN , β

g
i , τ

g
i ], where N is the number of genes.

4: Calculate the fitness, ergi , of each of the employed bees using Algorithm 2 and store them in the fitness vector,
Eg ← [ergi ]1×ph.

5: Store the minimum (best) fitness, fitbest ← minimum (Eg) and its index in min.
6: Calculate the global best solution, gbg ← pgmin.
7: for iter = 2 to maxit do
8: Calculate position of new food sources (vgi ) for employed bees using 8.
9: Calculate the fitness, tergi , of the updated food sources using 2 and store them in T Eg ← [tergi ]1×ph.

10: For each bee, update pgi ← vgi and ergi ← tergi , if tergi < ergi .
11: Update fitbest , min, and gbg .
12: Calculate probability of selection using (9).
13: Calculate position of new food sources using (10).
14: Calculate the fitness, ergi , of the onlooker bees using 2 and store them in Eg ← [ergi ]1×ph.
15: Update fitbest, min, and gbg .
16: end for
17: Store gbg at the end of maxit iterations.
18: end for
19: Combine the stored gbg (for 1 ≤ g ≤ N ) to get an N × (N + 2) matrix.
20: Extract the first N elements from each row to get an N ×N matrix, [wij ]N×N .
21: Return W ← [wij ]N×N .

Algorithm 2 Fitness calculation of particles, i.e. obtaining the predicted time-series using RNN.

Input: The time-series gene expression dataset (X); the gene being considered (g); and the particle positions (Pg).
Output: Fitness of the swarm (Eg).

1: Extract the number of genes, N , from X .
2: Extract the number of time-points, tp, from X .
3: Extract the population size, ps, from Pg .
4: for i = 1 to ps do
5: Extract

[
wg

ij

]
1×N , βg

i , and τgi from pgi .
6: for t = 2 to tp do
7: Calculate the predicted expression level, x̃gi (t) of gene g from the original expression level at the previous

time-point, i.e. xgi (t− 1), using (11)–(20).
8: end for
9: Calculate the fitness of particle pgi and store it in ergi using (21).

10: end for
11: Return Eg ← [ergi ]1×ps.

benchmark challenge for DREAM4 [8], [9] and can be found in
the GNW [30] database. We have produced the corresponding
time-series expression datasets with the help of GNW using
DREAM4 settings. The dataset consists of 41 time-points. The
swarm size of ABC and the maximum number of iterations
has been set to 100 and 1000, respectively. The experiments
have been performed on MATLAB 2019b, using a desktop
computer with an Intel® CoreTM i7 8700 processor and 32GB
RAM. The training and validation errors have been presented
in Table I.

It is clear from Fig. 3 that the given GRN has two DG-
s, i.e. gene G1 and gene G9. We have first disturbed gene
G1 using EP. This perturbation has affected gene G4 (i.e.
the MVG) the maximum, through the pathways, G1→ G4,
G1→ G3→ G4, G1→ G3→ G7→ G4. Control action
has been imparted to the other unperturbed DG (i.e. gene G9)
to mitigate the harmful effects of EP, i.e. to bring back the
expression of gene G4 to its normal level.

In the next case, the reverse has been done, i.e. gene G9
has been disturbed by EP resulting in a disturbance in the
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(a) Results for the first approach (Fig. 4(a)).
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(b) Results for the second approach (Fig. 4(b)).

Fig. 5: (a) The expression profiles of the most vulnerable gene, MVG (i.e gene G4) for the setup shown in Fig. 4(a). (b) The
expression profiles of gene G4 for the setup shown in Fig. 4(b). The black curve indicates the original unperturbed expression
profile of gene G4. The red curve represents the expression profile under the influence of external perturbation EP. The green
curve shows the expression level when the proposed negative feedback control action has been provided to rectify the effects
of external perturbation.

TABLE I: The training and validation errors.

Gene Training Error Validation Error

G1 0.0384 0.0402
G2 0.0043 0.0083
G3 0.0009 0.0124
G4 0.0053 0.0070
G5 0.0084 0.0093
G6 0.0013 0.0005
G7 0.0005 0.0008
G8 0.0032 0.0042
G9 0.0273 0.0137
G10 0.0036 0.0051

expression level of gene G4 (the MVG) to the maximum
extent, via the following paths: G9 → G10 → G3 → G4,
G9 → G10 → G3 → G7 → G4, G9 → G10 → G4.
In this case, control action has been imposed on gene G1 to
bring back gene G4 to normalcy. The two cases have been
respectively shown in figures 5(a) and 5(b). Here, the PID
controller constants, KP, KI, and KD have been estimated
using PSO. Table II presents the estimated values of the
controller parameters for both the experimental setups.

The original expression level of the MVG (i.e. gene G4)
has been considered as the set-point or observation point for
the proposed PID controller. The error drives the controller,
PIDC, to generate a control action, CO, which is subse-
quently given to the other unperturbed DG. The outcome of
the control action given by the controller has been shown
in Fig. 5, which represents the expression profiles of the
MVG (i.e. gene G4) under the unperturbed, perturbed, and
remediated cases. The expression profiles of gene G4 for

TABLE II: Estimated values of the coefficients of the pro-
portional, integral, and derivative terms of the proposed PID
controller for the network shown in Fig. 3.

Configuration KP KI KD

The First Approach (Fig. 4(a)) -0.389 0.023 -0.240
The Second Approach (Fig. 4(b)) 0.338 0.032 1.000

the experimental setups shown in figures 4(a) and 4(b) have
been presented in figures 5(a) and 5(b), respectively. It can
be observed from Fig. 5 that the proposed PID controller
has been able to effectively counteract the reduction in the
expression levels of the MVG (i.e. gene G4) due to the
external disturbance (EP) acting on either of the two DGs,
i.e. gene G1 or gene G9.

V. CONCLUSION

GRNs are quite robust in real-life. However, some ex-
treme environmental conditions or pathogen infections can
cause unwanted external disturbances. Such disturbances, if
present over a prolonged period of time, can hamper the
proper functioning of a GRN, which may cause breakdown
of vital biochemical processes potentially leading to disease.
In this work, we have proposed a novel methodology based
on the concepts of negative feedback control to eliminate
the unwanted effects of the external perturbations. For our
investigation, we have considered a 10-gene DREAM4 [8], [9]
benchmark network available in the GNW [30] database.

We have used the RNN formalism to model the network
from the given gene expression data. The model parameter
estimation has been done using ABC. Based on the derived



model structure, we have proposed a self-adaptive PID contr-
oller to eliminate the unwanted effects of perturbations. The
obtained results suggest that the PID controller is able to
restore the expression level of the affected gene almost to the
original level.

The proposed technique is promising and can lead to
personalised drug design endeavours in the future. For this,
the biological representation of the synthetic control output
needs to be investigated, which may be in the form of
externally supplied protein molecule(s). The design of a real-
time biological observer also requires further investigation.
The scenario considered here is a simple single-input-single-
output or SISO type. However, in large-scale networks, there
may be an opportunity to impart additional control outputs
to multiple DG-s, thus leading to a multiple-input-multiple-
output or MIMO type system. In other words, more than
one DG may be perturbed in a network containing multiple
MVG-s, which may require more than one of the remaining
DG-s for controlling purpose. Also, the proposed model is
limited by the fact that it requires prior biological knowledge
regarding the network structure. All these provide further
scope of research in the future.
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