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Abstract—In recent years, the multi-armed bandit
(MAB) framework has attracted a lot of attention in
various applications, from recommender systems and in-
formation retrieval to healthcare and finance. This success
is due to its stellar performance combined with attractive
properties, such as learning from less feedback. The multi-
armed bandit field is currently experiencing a renaissance,
as novel problem settings and algorithms motivated by var-
ious practical applications are being introduced, building
on top of the classical bandit problem. This article aims to
provide a comprehensive review of top recent developments
in multiple real-life applications of the multi-armed bandit.
Specifically, we introduce a taxonomy of common MAB-
based applications and summarize the state-of-the-art for
each of those domains. Furthermore, we identify important
current trends and provide new perspectives pertaining to
the future of this burgeoning field.
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sert

I. INTRODUCTION

Many practical applications require sequential
decision-making problems, where an agent must
choose the best action out of several alternatives.
Examples of such applications include clinical trials [1],
recommender systems in temporal settings [2] and
anomaly detection [3]. In some cases, side information,
or context, is associated with each action (e.g., a user’s
profile), and the feedback, or reward, is limited to the
chosen option. For example, in clinical trials [?], [1]
the context is the patient’s medical record (e.g., health
condition, family history, etc.), the actions correspond
to the treatment options being compared, and the reward
represents the outcome of the proposed treatment (e.g.,
success or failure). An important aspect affecting the
long-term success in such settings is finding a good
trade-off between exploration (e.g., trying a new drug)
and exploitation (choosing the best known drug so far).
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This inherent trade-off between exploration and ex-
ploitation exists in many sequential decision-making
problems, and is traditionally formulated as the multi-
armed bandit (MAB) problem, which is stated as follows:
Given K possible actions, or “arms”, each associated
with a fixed but unknown reward probability distribution
[4], [5], at each iteration (time point) an agent selects an
arm to play and receives a reward, sampled from the
respective arm’s probability distribution independently
from the previous actions. The task of an agent is to learn
how to choose its actions so that the cumulative rewards
over time are maximized. Note that the agent needs to
try different arms in order to learn their rewards (i.e.,
explore the payoff), and also use this learned information
in order to receive the best payoff (exploit the learned
payoffs). There is a natural trade-off between exploration
and exploitation. For example, trying each arm exactly
once and then playing the best one among them forever
is often likely to lead to highly suboptimal solutions
when the rewards from the arms are uncertain. Different
solutions have been proposed for this problem, based
on a stochastic formulation [4]–[6] and a Bayesian
formulation [7]; however, these approaches did not
account for the context or side information available to
the agent.

It is noteworthy that the multiarmed bandit problem
can be seen as the simplest form of reinforcement learn-
ing, in which the agent is stateless. When the system is
not stateless, the actions causes changes in states and
the rewards also depend on the states. Therefore, in
general reinforcement learning, the rewards in different
steps are not independent of one another. In fact, the
classical algorithms for reinforcement learning (with
states) often use solutions to the multiarmed bandit
problem as subroutines for defining policies in (general)
reinforcement learning. For example, the well-known ε-
greedy algorithm in multi-armed bandits is often com-
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bined with Bellman’s dynamic programming algorithm
for reinforcement learning in order to define choices
of actions. Furthermore, many reinforcement learning
algorithms, when applied to stateless systems, reduce to
multi-armed bandit algorithms.

A particularly useful version of the MAB is the
contextual multi-arm bandit (CMAB), or simply the con-
textual bandit problem, where at each iteration, before
choosing an arm, the agent observes an N -dimensional
context, or feature vector. The agent uses this context,
along with the rewards of the arms played in the past, to
choose which arm to play in the current iteration. Over
time, the agent’s aim is to collect enough information
about the relationship between the context vectors and
rewards, so that it can predict the next best arm to
play by looking at the current context [8], [9]. Different
algorithms were proposed for the general case, including
LINUCB [10], Neural Bandit [11] and Contextual
Thompson Sampling (CTS) [9], where a linear depen-
dency is typically assumed between the expected reward
of an action and its context.

We will now provide an extensive overview includ-
ing various applications of the bandit framework, both
in real-life problem setting arising in multiple prac-
tical domains (healthcare, computer network routing,
finance, and beyond), as well as in computer science and
machine-learning in particular, where bandit approaches
can help improve hyperparameter tuning and other im-
portant algorithmic choices in supervised learning, active
learning and reinforcement learning.

II. REAL-LIFE APPLICATIONS OF BANDIT

As a general mathematical framework, the stochastic
multi-armed bandit setting addresses the challenges as-
sociated with the presence of uncertainty in sequential
decision-making. This type of uncertainty has a com-
plex interplay with the exploration versus exploitation
dilemma, and therefore provides a natural formalism for
most real-life online decision-making problems.

A. Healthcare

Clinical trials. Collecting data for assessing treat-
ment effectiveness on animal models during the full
range of disease stages can be difficult when using
conventional random treatment allocation procedures,
since poor treatments can cause deterioration of subject’s
health. The authors in [1] aim to design an adaptive
allocation strategy to improve the efficiency of data
collection by allocating more samples for exploring
promising treatments. They cast this application as a

contextual bandit problem and introduce a practical algo-
rithm for exploration vs. exploitation in this framework.
The work relies on sub-sampling to compare treatment
options using an equivalent amount of information. They
extend the sub-sampling strategy to the contextual bandit
setting by applying sub-sampling within Gaussian Pro-
cess regression.

Warfarin is the most widely used oral anticoagulant
agent in the world; however, administering an accurate
dosage remains a significant challenge, as the appropriate
dosage can be highly variable among individuals due to
various clinical, demographic and genetic factors. Physi-
cians currently follow a fixed-dose strategy: they start
patients on 5mg/day (which is the appropriate dosage for
the majority of patients) and slowly adjust the dose over
the course of a few weeks by tracking the patient’s anti-
coagulant levels. However, an incorrect initial dosage can
result in highly adverse consequences such as stroke (if
the initial dose is too low) or internal bleeding (if the
initial dose is too high). Thus, the authors in [12] tackle
the problem of learning and assigning an appropriate
initial dosage to patients by modeling the problem as
a multi-armed bandit with high-dimensional covariates,
and propose a novel and efficient bandit algorithm based
on the LASSO estimator.

Brain and behavioral modeling. Drawing inspira-
tions from the behavioral studies of human decision
making in both healthy controls and patients with dif-
ferent mental disorders, the authors in [13] propose a
general parametric framework for multi-armed bandit
problem which extends the standard Thompson Sam-
pling approach to incorporate reward processing biases
associated with several neurological and psychiatric con-
ditions, including Parkinson’s and Alzheimer’s diseases,
attention-deficit/hyperactivity disorder (ADHD), addic-
tion, and chronic pain. They demonstrate empirically,
from the behavioral modeling perspective, that their
parametric framework can be viewed as a first step
towards a unifying computational model capturing re-
ward processing abnormalities across multiple mental
conditions.

B. Finance

In recent years, sequential portfolio selection has been
a focus of increasing interest at the intersection of the
machine learning and quantitative finance. The trade-off
between exploration and exploitation, with the goal of
maximizing cumulative reward, is a natural formulation
of the portfolio choice problems. In [14], the authors
proposed a bandit algorithm for making online portfolio
choices via exploiting correlations among multiple arms.



By constructing orthogonal portfolios from multiple
assets and integrating their approach with the upper-
confidence-bound bandit framework, the authors derive
the optimal portfolio strategy representing a combination
of passive and active investments according to a risk-
adjusted reward function. In [15], the authors incorporate
risk-awareness into the classic multi-armed bandit setting
and introduce a novel algorithm for portfolio construc-
tion. Through filtering assets based on the topological
structure of financial market and combining the optimal
multi-armed bandit policy with the minimization of a
coherent risk measure, they achieve a balance between
risk and return.

C. Dynamic Pricing

Online retailer companies are often faced with the
dynamic pricing problem: the company must decide on
real-time prices for each of its multiple products. The
company can run price experiments (make frequent price
changes) to learn about demand and maximize long-
run profits. The authors in [16] propose a dynamic
price experimentation policy, where the company has
only incomplete demand information. For this general
setting, authors derive a pricing algorithm that balances
earning an immediate profit vs. learning for future prof-
its. The approach combines multi-armed bandit with
partial identification of consumer demand from eco-
nomic theory. Similar to [16], authors in [17] consider
high-dimensional dynamic multi-product pricing with an
evolving low-dimensional linear demand model. They
show that the revenue maximization problem reduces to
an online bandit convex optimization with side infor-
mation given by the observed demands. The approach
applies a bandit convex optimization algorithm in a
projected low-dimensional space spanned by the latent
product features, while simultaneously learning this span
via online singular value decomposition of a carefully-
crafted matrix containing the observed demands.

D. Recommender Systems

Recommender systems are frequently used in various
applications to predict user preferences. However, they
also face the exploration-exploitation dilemma when
making a recommendation, since they need to exploit
their knowledge about the previously chosen items the
user is interested in, while also exploring new items
the user may like. The authors in [18] approach this
challenge by using the multi-armed bandit setting, es-
pecially for large-scale recommender systems that have
a really large or an infinite number of items. They
propose two large-scale bandit approaches in situations

when no prior information is available. Continuous
exploration in their approaches can address the cold
start problem in recommender systems. In context-aware
recommender systems, most existing approaches focus
on recommending relevant items to users, taking into
account contextual information, such as time, location,
or social aspects. However, none of those approaches
has considered the problem of user’s content evolution.
In [19], the authors introduce an algorithm that takes
this dynamics into account. It is based on dynamic
exploration/exploitation and can adaptively balance the
two aspects, deciding which situation is most relevant for
exploration or exploitation. In this sense, [20] propose
to study the ”freshness” of the user’s content through
the bandit problem. They introduce the Freshness-Aware
Thompson Sampling algorithm for recommendation of
fresh documents.

E. Influence Maximization

The authors in [21] consider influence maximization
(IM) in social networks, which is the problem of max-
imizing the number of users that become aware of a
product by selecting a set of “seed” users to expose
the product to. They propose a novel parametrization
that not only makes the framework agnostic to the
underlying diffusion model, but also statistically efficient
to learn from data. They give a corresponding monotone,
submodular surrogate function, and show that it is a
good approximation to the original IM objective. They
also consider the case of a new marketer looking to
exploit an existing social network, while simultaneously
learning the factors governing information propagation.
For this, they develop a LinUCB-based bandit algorithm.
The authors in [22] also study the online influence
maximization problem in social networks but under the
independent cascade model. Specifically, they try to learn
the set of “best seeds or influencers” in a social network
online while repeatedly interacting with it. They address
the challenges of combinatorial action space, since the
number of feasible influencer sets grows exponentially
with the maximum number of influencers, and limited
feedback, since only the influenced portion of the net-
work is observed. They propose and analyze IMLinUCB,
a computationally efficient UCB-based algorithm.

F. Information Retrieval

The authors in [23] argue that Information Retrieval
iterative selection process can be naturally modeled as
a contextual bandit problem. The multi-armed bandit
model leads to highly effective methods for document
adjudication. Under this bandit allocation framework,



they propose seven new document adjudication methods,
of which five are stationary methods and two are non-
stationary methods. This comparative study includes
existing methods designed for pooling-based evaluation
and existing methods designed for metasearch. In mobile
information retrieval, the authors in [24] introduce an
algorithm that tackles this dilemma in Context-Based In-
formation Retrieval (CBIR) area. It is based on dynamic
exploration/exploitation and it can adaptively balance
the two aspects by deciding which user’s situation is
most relevant for exploration or exploitation. Within a
deliberately designed online framework, they conduct
evaluations with mobile users.

G. Dialogue Systems

Dialogue response selection. Dialogue response se-
lection is an important step towards natural response
generation in conversational agents. The existing work
on conversational models mainly focuses on offline su-
pervised learning using a large set of context-response
pairs. In [25], the authors focus on online learning of
response selection in dialog systems. They propose a
contextual multi-armed bandit model with a nonlinear
reward function that uses distributed representation of
text for online response selection. A bidirectional LSTM
is used to produce the distributed representations of dia-
log context and responses, which serve as the input to a
contextual bandit. They propose a customized Thompson
sampling method that is applied to a polynomial feature
space in approximating the reward.

Pro-activity dialogue systems. An objective of pro-
activity in dialogue systems is to enhance the usability
of conversational agents by enabling them to initiate
conversations on their own. While dialogue systems
have become increasingly popular recently, current task-
oriented dialogue systems are mainly reactive, as human
users tend to initiate conversations. The authors of [26]
propose to introduce the paradigm of contextual bandits
as framework for proactive dialog systems. Contextual
bandits have been the model of choice for the problem
of reward maximization with partial feedback since they
fit well to the task description, they also explore the
notion of memory into this paradigm, where they pro-
pose two differentiable memory models that act as parts
of the parametric reward estimation function. The first
one, Convolutional Selective Memory Networks, uses
a selection of past interactions as part of the decision
support. The second model, called Contextual Attentive
Memory Network, implements a differentiable attention
mechanism over the past interactions of the agent. The
goal is to generalize the classic model of contextual

bandits to settings where temporal information needs to
be incorporated and leveraged in a learnable manner.

Multi-domain dialogue systems. Building multi-
domain dialogue agents is a challenging task and an open
problem in modern AI. Within the domain of dialogue,
the ability to orchestrate multiple independently trained
dialog agents, or skills, to create a unified system is of
particular significance. In [27], the authors study the task
of online posterior dialogue orchestration, where they
define posterior orchestration as the task of selecting
a subset of skills which most appropriately answers
a user input using features extracted from both the
user input and the individual skills. To account for the
varied costs associated with extracting skill features,
they consider online posterior orchestration under a skill
execution budget. This setting is formalized as Context-
Attentive Bandit with Observations, a variant of context-
attentive bandits, and then evaluate it on simulated non-
conversational and proprietary conversational datasets.

H. Anomaly Detection

The problem of anomaly detection on attributed net-
works finds nodes whose behaviors deviate significantly
from the majority of nodes. The authors in [3] investigate
the problem of anomaly detection in an interactive set-
ting by allowing the system to proactively communicate
with the human expert in making a limited number of
queries about ground truth anomalies. Their objective
is to maximize the true anomalies presented to the
human expert after a given budget is used up. Along
with this line, they formulate the problem through the
principled multi-armed bandit framework and develop
a novel collaborative contextual bandit algorithm, that
explicitly models the nodal attributes and node depen-
dencies seamlessly in a joint framework, and handles the
exploration-exploitation dilemma when querying anoma-
lies of different types. Credit card transactions predicted
to be fraudulent by automated detection systems are
typically handed over to human experts for verification.
To limit costs, it is standard practice to select only
the most suspicious transactions for investigation. The
authors in [28] claim that a trade-off between exploration
and exploitation is imperative in enabling adaptation to
changes in behavior. Exploration consists of the selection
and investigation of transactions with the purpose of
improving predictive models, and exploitation consists
of investigating transactions detected to be suspicious.
Modeling the detection of fraudulent transactions as re-
warding, they use an incremental regression tree learner
to create clusters of transactions with similar expected
rewards. This enables the use of a contextual multi-



armed bandit (CMAB) algorithm to provide the explo-
ration/exploitation trade-off.

I. Telecommunication

In [29], a multi-armed bandit model was used to de-
scribe the problem of best wireless network selection by
a multi-Radio Access Technology (multi-RAT) device,
with the goal of maximizing the quality perceived by
the final user. The proposed model extends the classical
MAB model in a twofold manner. First, it foresees
two different actions: to measure and to use; second,
it allows actions to span multiple time steps. Two new
algorithms designed to take advantage of the higher
flexibility provided by the muMAB model were also
introduced. The first one, referred to as measure-use-
UCB1 is derived from the UCB1 algorithm, while the
second one, referred to as Measure with Logarithmic
Interval, is appositely designed for the new model so
to take advantage of the new measure action, while
aggressively using the best arm. The authors in [30]
demonstrate the possibility to optimize the performance
of the Long Range Wide Area Network technology.
The authors suggest that nodes use multi-armed ban-
dit algorithms, to select the communication parameters
(spreading factor and emission power). Evaluations show
that such learning methods allow to manage the trade-
off between energy consumption and packet loss much
better than an Adaptive Data Rate algorithm adapting
spreading factors and transmission powers on the basis
of Signal to Interference and Noise Ratio values.

J. Bandit in Real-Life Applications: Summary and Fu-
ture Directions

TABLE I
BANDIT FOR REAL LIFE APPLICATION

Non- Non-
MAB stationary CMAB stationary

MAB CMAB
Healthcare

√ √

Finance
√

Dynamic pricing
√

Recommendr system
√ √ √ √

Maximization
√

Dialogue system
√

Telecomunication
√

Anomaly detection
√

Table I provides a summary of bandit problem for-
mulations used in various domain-specific applications.
The choice of bandit model is often domain-specific.
For example, it is evident that non-stationary bandit
was not used in healthcare applications, as significant
changes are not expected to the process of making

the treatment decisions, i.e. no transition in the state
of the the patient; such transitions, if they occurred,
would be better modeled using reinforcement learning
rather than non-stationary bandit. There are clearly other
domains where the non-stationary bandit is a more
appropriate setting, but it looks like this setting was not
yet been significantly investigated in healthcare domains.
For example, anomaly detection, is a domain where non-
stationary contextual bandit could be used, since in this
setting the anomaly could be adversarial, which means
that any bandit applied to this setting should have some
kind of drift condition, in-order to adapt to new types of
attacks. Another observation is that none of the existing
work tried to develop an algorithm that could solve these
different tasks at the same time, or apply the knowledge
obtained in one domain to another domain, thus opening
a direction of research on multitask and transfer learning
in bandit setting. Furthermore, given an online nature of
bandit problem, continuous, or lifelong learning would
be a natural next step, adapting the model learned in the
previous tasks to the new one, while still remembering
how to perform earlier task, thus avoiding the problem
of ”catastrophic forgetting”.

III. BANDIT FOR BETTER MACHINE LEARNING

In this section we are describing how bandit algo-
rithms could be used to improve other algorithms, e.g.
various machine-learning techniques.

A. Algorithm Selection

Algorithm selection is typically based on models of
algorithm performance, learned during a separate offline
training sequence, which can be prohibitively expen-
sive. In recent work, they adopted an online approach,
in which a performance model is iteratively updated
and used to guide selection on a sequence of problem
instances. The resulting exploration-exploitation trade-
off was represented as a bandit problem with expert
advice, using an existing solver for this game, but this
required using an arbitrary bound on algorithm runtimes,
thus invalidating the optimal regret of the solver. In
[31], a simpler framework was proposed for representing
algorithm selection as a bandit problem, using partial
information and an unknown bound on losses.

B. Hyperparameter Optimization

Performance of machine learning algorithms depends
critically on identifying a good set of hyperparame-
ters. While recent approaches use Bayesian optimization
to adaptively select optimal hyperparameter configura-
tions, they rather focus on speeding up random search



through adaptive resource allocation and early-stopping.
[32] formulated hyperparameter optimization as a pure-
exploration non-stochastic infinite-armed bandit prob-
lem where a predefined resources, such as iterations,
data samples, or features are allocated to randomly
sampled configurations. This work introduced a novel
algorithm, Hyperband, for this framework and analyze
its theoretical properties, providing several desirable
guarantees. Furthermore, Hyperband wascmpared with
popular Bayesian optimization methods on a suite of
hyperparameter optimization problems; it was observed
that Hyperband can provide more than an order-of-
magnitude speedup over its competitors on a variety of
deep-learning and kernel-based learning problems.

C. Feature Selection

In a classical online supervised learning the true label
of a sample is always revealed to the classifier, unlike in
a bandit setting were any wrong classification resuls into
zero reward, and only the single correct classification
yields reward 1. The authors of [33] investigate the
problem of Online Feature Selection, where the aim is to
make accurate predictions using only a small number of
active features using epsilon greedy algorithm. The au-
thors of [34] tackle the online feature selection problem
by addressing the combinatorial optimization problem
in the stochastic bandit setting with bandit feedback,
utilizing the Thompson Sampling algorithm.

D. Bandit for Active Learning

Labelling all training examples in supervised classi-
fication setting can be costly. Active learning strategies
solve this problem by selecting the most useful unla-
belled examples to obtain the label for, and to train
a predictive model. The choice of examples to label
can be seen as a dilemma between the exploration and
the exploitation over the input space. In [35], a novel
active learning strategy manages this compromise by
modelling the active learning problem as a contextual
bandit problem. they propose a sequential algorithm
named Active Thompson Sampling (ATS), which, in
each round, assigns a sampling distribution on the pool,
samples one point from this distribution, and queries
the oracle for this sample point label. The authors of
[36] also propose a multi-armed bandit inspired, pool-
based active learning algorithm for the problem of binary
classification. They utilize ideas such as lower confi-
dence bounds, and self-concordant regularization from
the multi-armed bandit literature to design their proposed
algorithm. In each round, the proposed algorithm assigns
a sampling distribution on the pool, samples one point

from this distribution, and queries the oracle for the label
of this sampled point.

E. Clustering

[37] considers collaborative clustering, which is
machine-learning paradigm concerned with the unsuper-
vised analysis of complex multi-view data using several
algorithms working together. Well-known applications
of collaborative clustering include multiview clustering
and distributed data clustering, where several algorithms
exchange information in order to mutually improve each
others. One of the key issue with multi-view and collab-
orative clustering is to assess which collaborations are
going to be beneficial or detrimental. Many solutions
have been proposed for this problem, and all of them
conclude that, unless two models are very close, it is
difficult to predict in advance the result of a collabora-
tion. To address this problem, the authors of [37] propose
a collaborative peer to peer clustering algorithm based
on the principle of non stochastic multi-arm bandits to
assess in real time which algorithms or views can bring
useful information.

F. Reinforcement learning

Autonomous cyber-physical systems play a large role
in our lives. To ensure that agents behave in ways aligned
with the values of the societies in which they operate, we
must develop techniques that allow these agents to not
only maximize their reward in an environment, but also
to learn and follow the implicit constraints assumed by
the society. In [38], the authors study a setting where an
agent can observe traces of behavior of members of the
society but has no access to the explicit set of constraints
that give rise to the observed behavior. Instead, inverse
reinforcement learning is used to learn such constraints,
that are then combined with a possibly orthogonal value
function through the use of a contextual bandit-based
orchestrator that picks a contextually-appropriate choice
between the two policies (constraint-based and environ-
ment reward-based) when taking actions. The contextual
bandit orchestrator allows the agent to mix policies in
novel ways, taking the best actions from either a reward
maximizing or constrained policy. The [39] tackles the
problem of online RL algorithm selection. A meta-
algorithm is given for input a portfolio constituted of
several off-policy RL algorithms. It then determines at
the beginning of each new trajectory, which algorithm
in the portfolio is in control of the behaviour during
the next trajectory, in order to maximise the return. A
novel meta-algorithm, called Epochal Stochastic Bandit
Algorithm Selection. Its principle is to freeze the policy



TABLE II
BANDIT IN MACHINE LEARNING

MAB Non- CMAB Non-
stationary stationary
MAB CMAB

Algorithm Slection
√

Parameter Optimization
√

Features Selection
√ √

Active Learning
√ √

Clustering
√

Reinforcement learning
√ √ √

updates at each epoch, and to leave a rebooted stochastic
bandit in charge of the algorithm selection.

G. Bandit for Machine Learning:
Summary and Future Directions

Table II summarizes the types of bandit problems
used to solve the machine-learning problems mentioned
above. We see, for example, that contextual bandit was
not used in feature selection or hyperparameter optimiza-
tion. This observation could point into a direction for
future work, where side information could be employed
in feature selection. Also, non-stationary bandit was
rarely considered in these problem settings, which is also
suggesting possible extensions of current work. For in-
stance, the non-stationary contextual bandit could be use-
ful in the non-stationary feature selection setting, where
finding the right features is time-dependent and context-
dependent when the environment keeps changing. Our
main observation is also that each technique is solving
just one machine learning problem at a time; thus, the
question is whether a bandit setting and algoritms can be
developed to solve multiple machine learning problems
simultaneously, and whether transfer and continual learn-
ing can be achieved in this setting. One solution could
be to model all these problems in a combinatorial bandit
framework, where the bandit algorithm would find the
optimal solution for each problem at each iteration; thus,
combinatorial bandit could be further used as a tool for
advancing automated machine learning.

IV. CONCLUSIONS

In this article, we reviewed some of the most no-
table recent work on applications of multi-armed bandit
and contextual bandit, both in real-life domains and
in automated machine learning. We summarized, in an
organized way (Tables 1 and 2), various existing applica-
tions, by types of bandit settings used, and discussed the
advantages of using bandit techniques in each domain.
We briefly outlines of several important open problems
and promising future extensions.

In summary, the bandit framework, including both
multi-arm and contextual bandit, is currently very active
and promising research areas, and there are multiple
novel techniques and applications emerging each year.
We hope our survey can help the reader better under-
stand some key aspects of this exciting field and get a
better perspective on its notable advancements and future
promises.
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