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Abstract—Knowledge transmitted between generations by non-
genetic means can be understood as culture. The capacity of indi-
viduals from certain species to teach and learn plays a fundamen-
tal role in directing the evolutionary process. The Neuroevolution
of Augmenting Topologies (NEAT) framework enables evolving
neural structures to iteratively solve a given learning problem.
However, the NEAT approach does not consider cultural aspects
in its formulation. In such a context, the aim of this paper is to
propose and evaluate ways of enhancing the NEAT framework
with additional learning approaches. The parameters involved
in the analysis comprise the Backpropagation and the Extreme
Learning Machine (ELM) learning algorithms, the individuals
to be taught, the moment when culture manifests in the system,
and the nature of the lessons to be learned. Empirical results on
sequential learning tasks indicate that cultural enhancements,
as well as some of the proposed variations, accelerate the
neuroevolution convergence.

Index Terms—NEAT, neuro-evolution, cultural enhancement,
learning strategies.

I. INTRODUCTION

Neuroevolution of Augmenting Topologies (NEAT) is a
method for evolving the architecture and the weights of neural
networks using genetic algorithms [1]. NEAT was designed to
avoid the problem of competing conventions, allowing mean-
ingful crossover between individuals with different genetic
length. Its training procedure produces networks of increasing
complexity starting from simple ones and protects topological
innovations that may initially display lower fitness but later
develop into powerful solutions [2].

The NEAT algorithm has attracted much attention from
researchers due to its simple formulation and remarkable
performance in various problems. Several variants have been
proposed in recent years such as rtNEAT [3], HyperNEAT [4],
cgNEAT [5], odNEAT [6], and CoDeepNEAT [7]. However,
none of the previous works evaluate the impact of cultural
enhancements in the NEAT algorithm.

In this line of research, the authors in [8] observed that
the evolution of neural networks architectures may achieve
better learners than better agents. In [9], the authors proposed

a strategy in which young individuals learn from the older
ones, resulting in an improved final model. It is argued in
[10] that during the neuroevolution the ability to learn may
be more important than the ability to execute. In [11], the
author showed the benefits of having the fittest individual as a
tutor of the youngest individuals. The definition of a syllabus
based on parents experience was also proposed in [11], where
the offspring receives the same sensory input received by its
parents.

According to [11], culture is a transmission of traits from
one generation to the next via nongenetic means. In the
context of neuroevolutionary computational methods, culture
can be seen as any strategy that may enhance the performance
of neural models but is not directly related to the learning
algorithm itself.

In this paper, we aim to propose and evaluate various
cultural enhancements strategies for the NEAT framework. The
cultural enhancements comprise different ways to use learning
algorithms to optimize the weights of the neural models. We
propose to evaluate the impact of the cultural enhancement
strategies in two well known sequential decision benchmark
tasks, namely the Cart-Pole and the Mountain-Car.

The remainder of the paper is as follows. Section II presents
the basic concepts of the NEAT algorithm and the two learning
methods considered in this paper. Section III presents the
cultural enhancement strategies that were tested. Section IV
describes the experiments carried out to evaluate the proposed
strategies and the obtained results. Finally, conclusions and
future research directions are discussed in section V.

II. BACKGROUND

In this section, we briefly summarize the methods that
comprise the basis of this paper: the NEAT framework, the
stochastic optimization approach via genetic algorithms and
two neural networks training strategies: the backpropagation
algorithm and the extreme learning machine (ELM).
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A. NeuroEvolution of Augmenting Topologies (NEAT)

NEAT is a technique for evolving Artificial Neural Net-
works (ANNs) using an evolutionary algorithm. It was origi-
nally developed to evolve ANNs to solve control and sequen-
tial decision tasks [4].

According to [1], the remarkable performance of the
original NEAT can be explained by three main particular
aspects that differ from other neuroevolutionay methods.
These aspects are listed below, and more detailed information
on the NEAT framework can be found in [1].

• NEAT starts with a population of chromosomes of min-
imal complexity and, over generations, the structure of
such chromosomes becomes more complex, leading to
increasingly sophisticated behavior.

• NEAT keeps track of the genes by assigning a unique his-
torical marking to every new piece of network structure
that appears. The marking is a number assigned to each
gene corresponding to its order of appearance over the
course of evolution. The numbers are inherited during
crossover unchanged, which allows NEAT to perform
crossover among diverse topologies without the need
for expensive topological analysis [4]. This procedure
allows ANN structures to increase in complexity over
generations.

• NEAT speciates the population so that individuals
compete primarily within their own niches instead of
with the whole population. In that way, topological
innovations are protected and have time to optimize their
structure before they have to compete with other niches
in the population [3].

B. Genetic Algorithms

Genetic algorithms (GA) are a class of stochastic search-
based optimization methods inspired by Charles Darwin’s
evolution theory [12], [13]. Although there is not a unique
formulation, GA implementations present the following basic
concepts: a population of individuals, a selection strategy and
one or more crossover and mutation operators [14].

In summary, each individual is represented by a single
chromosome, a vector that encodes a solution candidate for
the optimization task. First, a random population of individuals
is generated. Then, at each generation (algorithm iteration), a
subset of individuals is chosen to proceed to the mating step.
Such selection is random, but must consider the fitness of each
individual, which is proportional to its correspondent value in
the optimization objective function. Thus, the fittest candidate
solutions have a higher probability of being chosen.

The selected individuals (parents), generate an offspring
of new candidate solutions, following the application of the
crossover and mutation operators. The former randomly com-
bines the components of the mating chromosomes, while the
latter randomly changes the values of a few components of the
resulting candidate solution. Finally, an additional step must
choose which individuals among the original population and

the new offspring should proceed to the next generation. We
refer the reader to the book [15] for details on several GA
variants.

C. Artificial Neural Networks Training Algorithms

The Multilayer Perceptron (MLP) is one of the most
commonly used ANN architectures. In its simplest shallow
form, it is comprised of a hidden layer of weights and an
output layer, where the input of each layer usually includes an
independent bias term. Such configuration provides a powerful
parametric structure that acts as adaptive basis functions. It
is well known that the MLP network with nonlinear hidden
activation functions is a universal approximator [16].

In a regression context, the main goal is to learn a nonlinear
mapping between a given set of N inputs xi|Ni=1 and a
corresponding set of outputs yi|Ni=1. Here, a single dimension
output is considered for the sake of simplicity. The values of
the network parameters define how the network transformation
process behaves. Thus, the network output is parameterized by
the hidden biases b and weights wj |NH

j=1 associated with the
NH hidden units, and the output bias d and weights m, and
is given by:

ŷi =m
>hi + d,

hi = φ1(Wxi) = [φ1(w
>
1 xi + b1), . . . , φ1(w

>
NH
xi + bNH

)]>,

where W is a matrix whose the j-th row is given by the
weight vector wj and φ(·) is the activation function of the
hidden layer.

D. Learning Methods

As follows, we briefly describe two distinct approaches
to tackle the parameter learning task in MLP networks: the
backpropagation and the extreme learning machine algorithms.

1) The Backpropagation Algorithm (BPG): The main
idea behind the well known BPG algorithm [17] consists
in providing a way to learn the network parameters fol-
lowing a gradient-based approach. First, a loss function
E
(
wj |NH

j=1, b,m, d
)

is defined in terms of the hidden biases

b and weights wj |NH
j=1, and the output bias d and weights m.

Then, the BPG proceeds by computing the gradients
∂E/∂θ, where θ =

{
wj |NH

j=1, b,m, d
}

contains all the net-
work parameters. Such gradients are computed by following
the standard chain rule of calculus. Finally, the parameters are
updated in a gradient descent fashion:

θ ← θ − αBPG
∂E

∂θ
,

where αBPG is a learning step towards the opposite direction
of the loss gradient. The loss and the gradients are often com-
puted only on a subset of training samples at each iteration,
which results in a stochastic gradient descent procedure. Since
the loss is a nonlinear function of the network parameters,



the optimization problem is non-convex and prone to local
minima.

2) The Extreme Learning Machine (ELM): The ELM
network [18] is an alternative approach to training feedforward
neural networks. In the ELM framework, the hidden weights
and biases are randomly chosen and only the output weights,
i.e. from the hidden neurons to the output, are analytically
determined, usually via the Ordinary Least Squares (OLS)
algorithm. The fast learning procedure and the easiness of
implementation are the main advantages of the ELM in
comparison with over the standard BPG algorithm.

In the ELM configuration, there is usually no output bias
and, following the OLS algorithm, the output weights m are
computed in batch according to (1).

m = (HH>)−1Hy, (1)

where y contains the N target training outputs, and H is
a matrix whose columns are given by the hidden activation
vectors hi|Ni=1.

Alternatively, the ELM algorithm can follow an iterative
approach based on the Least Mean Squares (LMS) algorithm
to optimize the output weights [19].

III. PROPOSED APPROACH

In the original version of the NEAT framework, both
topology and weights are evolved according to an evolutionary
algorithm. Indeed, the knowledge encoded in the weights is
transferred to the next generation by genetic operators like
mutation and crossover.

Although this approach completely agrees with the evolu-
tion theory metaphor, some authors believe that adding knowl-
edge by non-genetic means may improve the performance of
neuroevolutionary methods, as we discuss in the following
lines.

A. The Baldwin Effect and the Lamarckian Inheritance

The culture developed by a population is capable of direct-
ing the evolutionary process, even if behaviors acquired after
birth are not transmitted to the next generations by genetic
means. This is the so-called Baldwin effect [20]. Its main
justification is that the learning capacity of the individuals is
also a genetic feature. Thus, in scenarios where the culture
plays an important role for individual success, the genetic
patterns of good learners have more probability of being
perpetuated. Inspired by those ideas, the authors in [21] and
[8] have argued that the Baldwin effect may improve the
performance of neuroevolutionary algorithms.

Before Darwin’s work [12], Jean-Baptiste Lamarck de-
fended that changes acquired along the lives of animals could
be transmitted via mating [22]. Nowadays, such a hypothesis
is not accepted as a general rule for the continuity of heritable
traits observable in nature. However, it remains as a possible
strategy within computational simulations.

In the context of neuroevolutionary approaches which in-
clude learning procedures, the so-called Lamarckian inheri-
tance may be implemented by updating the network param-
eters encoded in the chromosomes after the training step,
simulating a genetic change triggered by a modification in
the phenotype. Such a strategy can be understood as if the
experience of other population members could influence the
performance of an individual. Some previous works, such as
[23], [24] and [25], have already discussed the positive conse-
quences of considering the Baldwin effect and the Lamarckian
inheritance in neuroevolutionary algorithms.

Given the above discussion, cultural enhancement strategies
for the NEAT framework proposed in this paper are presented
in the next section.

B. Cultural Enhancement Strategies

Besides the choice of the learning method, i.e. one of
the two methods presented in the previous section (BPG or
ELM), it is necessary to define three main points:

1) When the learning process is going to start.
2) Who is going to be trained.
3) Which input-output pairs will be used in the learning

procedure.

For the first point (the start of the learning process), we
will evaluate the performance of NEAT when the learning
process starts either at the beginning of the NEAT execution
or a late start, where the original NEAT is used in the first
iterations and the learning procedure starts afterward. The
intention of the late start variant is to enable a more extensive
exploration of the search space in the first NEAT iterations. We
emphasize that the learning step aims to improve an individual
via the chosen learning strategy, while the NEAT iterations
aim to improve the population as a whole via evolution. Both
mechanisms should cooperate to achieve better solutions for
the task under consideration.

With respect to the chromosomes that will be modified
during the learning process, we have decided to evaluate two
variants, where the offspring or the parents are modified. While
the first option has been used in previous works such as
[26], training the parents before the crossover step aims to
preserve genetic variability of NEAT since directly training
the offspring may lead to very similar parents in the next
generation.

Finally, the input-output pairs are generated by providing
inputs to tutor ANNs. The tutor of each generation is the ANN
with the best fitness value among the entire population. In
[11], the author recommended that a knowledge base, named
syllabus, should be formed by 20 to 40 lessons (questions
and answers): questions are inputs to the tutor ANN and
answers are the correspondent network outputs. Therefore,
a syllabus of size 30 is used in this paper. The nature of
the inputs may be either random, as suggested in [26], or
a specialized one, according to the task under consideration.



In this paper, we present results for experiments involving
random and specialized inputs.

We name our proposal, which considers the above strategies
in the context of the NEAT framework, as culturally enhanced
NEAT (ceNEAT). The numerical experiments carried out to
evaluate its performance will be presented and discussed in
the next section.

IV. EXPERIMENTS AND RESULTS

We conducted tests with two well-known sequential deci-
sion benchmark problems to evaluate the performance of all
proposed NEAT variants: the Cart-Pole and the Mountain-Car
problems. Fig. 1 illustrates the benchmark problems. A brief
description of each problem is presented as follows.

A. The Cart-Pole Problem

In this task, the goal is to balance a pole of length 1m
and mass 0.1kg vertically, attached to a cart of mass 1.0kg,
which can move to the left or right without friction. The
pole is connected to the cart by one end and is free to rotate
clockwise and counterclockwise according to the gravitational
acceleration of 9.8m/s2. To achieve the goal, the intelligent
agent can interfere in the system by applying a horizontal
force on the cart of 10.0N or -10.0N. The ANN has access
to the readings of four sensors: position and speed of the
cart, as well as the angle and the angular velocity of the
pole. The evaluation environment used is an adaptation of
the experiment defined in [27]. The simulation ends when at
least one of the following conditions is verified:

• The cart distances more than 2.4m from the center
(failure);

• The angle between the pole and the vertical axis becomes
greater than 12o (failure);

• The evaluation lasts 500 iterations without violating the
previous conditions (success).

For each iteration, the agent’s fitness is incremented by
1/(1 + d), where d is the distance in meters to the center
of the environment.

B. The Mountain-Car Problem

In this task, the car needs to climb the mountain but does
not have sufficient acceleration to climb it in a single step.
Therefore, the solution is to behave like a pendulum until

Fig. 1. Illustration of the Cart-Pole (left) and the Mountain-Car (right)
problems

it achieves enough speed to reach the flag at the top of
the mountain. The minimum horizontal position is -1.2m,
the maximum is 0.6m and the target flag is at 0.5m. The
maximum modulus for the horizontal velocity is 0.07m/s
and the gravitational acceleration is simulated by a simple
harmonic motion governed by a cosine function. The agent
can interfere in the system by accelerating to the left, to
the right or not accelerating at all. The ANN has access to
the readings of two sensors: the horizontal position and the
speed of the car. The environment used is an adaptation of
the problem proposed in [28]. The simulation ends when at
least one of the following conditions is verified:

• The evaluation lasts 500 iterations (failure);
• The car climbs the mountain and reaches the flag

(success).

At the end of the evaluation, the fitness of the agent is equal
to (xmax + 0.5)×104/t, where xmax is the maximum position
reached by the car and t is the duration of the simulation (in
number of iterations).

C. Results and Discussion
The goal of the experiments is not to find the best set of

parameters for each problem, but to validate the influence of
the variants on the quality of the solutions. The population was
composed of 100 individuals and, in each generation, each of
the individuals was evaluated three times. Their fitness were
defined as the average of the fitness attained in each evaluation.
The graphs were generated by averaging the fitness of the best
agent of each generation since the experiments were repeated
500 times for each setup.

The experiments were implemented in Python 2.7.14, based
on the open libraries NEAT-Python 0.92 and Gym 0.9.4.
The experiments were performed on the Arch Linux x86 64
operating system, Kernel 4.15.14-1-ARCH, which had an Intel
i5-7200U (4) processor at 3.1 GHz and sufficient RAM (7.6
GiB).

As an initial test, we designed the culturally enhanced
NEAT (ceNEAT) with variants that were previously used in
other neuroevolutionay approaches. Here, we use the BPG
algorithm along with a random syllabus and the training
offspring strategy. All cultural modifications started at the
beginning of the execution. This configuration will be used
in the subsequent tests as a baseline for further comparisons.
The results obtained by NEAT and ceNEAT are presented in
Fig. 2.

As can be noticed, in both benchmark problems the baseline
ceNEAT was able to find better individuals (higher fitness)
after a few iterations of the method. This result corroborates
with our hypothesis that cultural enhancement strategies may
improve the performance of NEAT. In the next sections,
we evaluate the performance impact of all other cultural
enhancements strategies when the training procedure is either
the BPG or the ELM algorithms.



Fig. 2. Baseline results for NEAT and ceNEAT

1) Results Using the BPG Algorithm: In the first of three
tested scenarios, we evaluated the impact of training parents or
offspring along with the iterations. The results are presented
in Fig. 3.

The obtained results indicate that training parents instead
of offspring could not lead to any improvement of the best
individual found at each iteration. Even though the parents
training strategy did not achieve good results, it is important to
highlight that in such variant the number of trained individuals
is reduced, since the number of parents is lower than the
number of individuals in the offspring. Thus, this variant could
provide, at least, the benefit of a reduced computational cost.

In the second experiment, we investigated the impact of
performing the training procedure just after a few iterations of
ceNEAT. Fig. 4 shows the result obtained for both benchmark
problems.

Based on the results, we could not verify the benefit of
postponing the beginning of the training procedure. Although
we expected a more extensive exploration of the search space
in the initial iterations, we could not find any evidence that
this happened or impacted the final result.

The last variant consisted of designing a syllabus based on
the experience achieved in the tackled problems. This approach
is an alternative to the standard random generation of the input
patterns. Fig. 5 shows the results for this scenario.

Although both the baseline and the modified ceNEAT
achieved similar results, it is possible to verify an improvement
in both benchmark tasks when using the syllabus that considers
specialized inputs based on previous experiences.

2) Results Using the ELM Algorithm: In the second set
of experiments, all three modifications were evaluated once
again but using the ELM training algorithm. We also started
our analysis by comparing NEAT, the baseline ceNEAT with
BPG and the baseline ceNEAT with ELM. The results are
shown in Fig. 6.

Once again we observed that both ceNEAT versions were
able to outperform the standard NEAT. We also could verify
that the ELM variant was able to achieve better results in the

Mountain-Car problem.
The results for all other variants (training parents, late start

and experienced syllabus) are shown in Figs. 7, 8 and 9
respectively.

In general, for the Cart-Pole problem, we can observe that
no ELM variant could outperform the BPG-based learning
approach. Concerning the comparison among variants of the
ELM-based ceNEAT, the results were very similar to the ones
found for the BPG, only experienced syllabus obtained better
results.

An interesting result can be noticed for the Mountain-Car
problem: in all tested scenarios, ELM variants reached signifi-
cantly better results than BPG variants. Again, the only variant
that presented significant improvements was the experienced
syllabus.

V. CONCLUSIONS AND FURTHER WORK

The results observed in the experiments indicate that our
approach, ceNEAT, which includes cultural enhancements,
was able to improve the quality of the solutions found by
the standard NEAT on both benchmark problems.

With respect to the choice of the learning algorithm, both the
BPG and the ELM achieved better results than those achieved
with standalone NEAT. However, BPG was more appropriate
for the Cart-Pole problem, while ELM attained better results
on the Mountain-Car problem.

We have also observed that teaching only the parents and
triggering the cultural process belatedly may simplify the
teaching process, but such variations may also diminish the
benefits of cultural enhancement.

The strategy of extracting the lessons from tutor experiences
also achieved good results on both problems, regardless the
learning algorithm. Thus, such a strategy can be seen as a
generally good practice to implement cultural enhancements
on the NEAT algorithm.

In this paper, culture was treated as knowledge transmitted
from one generation to the next by non-genetic means. How-
ever, this process was done in a rigid way, that is, there was
a phase in each generation in which some individuals were



Fig. 3. Results for ceNEAT (offspring training) and ceNEAT-PARENTS (parents training)

Fig. 4. Results for ceNEAT (training since the beginning) and ceNEAT-LATE (training belatedly)

Fig. 5. Results for ceNEAT (random inputs) and ceNEAT-EXP (specialized inputs)

destined to go through a training procedure. But how would
culture manifest in a freer system?

A coding for neuroevolutionary algorithms was proposed
in [29] in order to study the emerging patterns when there is
no explicitly defined objective function and when individuals
are able to interact with each other since they share the same
simulation environment. Such work is a door to research the
above question.

By giving agents the ability to learn from those in their
surroundings and to choose whether they would do so, would
it be possible to verify whether culture would arise by some
interpretable pattern? Would individuals become more judg-
mental as to whom they would choose as tutors in advanced
generations? Since individuals have different network topolo-
gies and therefore different learning capabilities, would groups
of good learners emerge? All these questions motivate further



Fig. 6. Baseline results for ceNEAT-ELM

Fig. 7. Results for ceNEAT, ceNEAT-ELM (offspring training), and ceNEAT-ELM-PARENTS (parents training)

Fig. 8. Results for ceNEAT, ceNEAT-ELM (training since the beginning), and ceNEAT-ELM-LATE (training belatedly)

research in the themes of this paper.
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