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Abstract—Deep Convolutional Neural Networks (CNNs) have
been widely used in image classification tasks, but the process
of designing CNN architectures is very complex, so Neural
Architecture Search (NAS), automatically searching for optimal
CNN architectures, has attracted more and more research in-
terests. However, the computational cost of NAS is often too
high to be applied to real-life applications. In this paper, an
efficient particle swarm optimisation method named EPSOCNN
is proposed to evolve CNN architectures inspired by the idea of
transfer learning. EPSOCNN successfully reduces the computa-
tion cost by minimising the search space to a single block and
utilising a small subset of the training set to evaluate CNNs
during the evolutionary process. Meanwhile, EPSOCNN also
keeps very competitive classification accuracy by stacking the
evolved block multiple times to fit the whole training dataset.
The proposed EPSOCNN algorithm is evaluated on CIFAR-
10 dataset and compared with 13 peer competitors including
deep CNNs crafted by hand, learned by reinforcement learning
methods and evolved by evolutionary computation approaches.
It shows very promising results with regard to the classification
accuracy, the number of parameters and the computational
cost. Besides, the evolved transferable block from CIFAR-10 is
transferred and evaluated on two other datasets — CIFAR-100
and SVHN. It shows promising results on both of the datasets,
which demonstrate the transferability of the evolved block. All
of the experiments have been performed multiple times and
Student’s t-test is used to compare the proposed method with
peer competitors from the statistical point of view.

Index Terms—convolutional neural network, evolutionary com-
putation, evolving deep neural networks, neural architecture
search

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have demonstrated
the dominance in image classification tasks by continuously
increasing the state-of-the-art classification accuracy on var-
ious benchmark datasets, from AlexNet [1], VGGNet [2]
to very deep CNNs such as ResNet [3] and DenseNet [4].
However, the complex process of designing the above CNN
architectures is time-consuming and error-prone, which also
requires speciality and expertise in both CNN architectures
and the dataset.

As a result, automatically designing CNN architectures
has naturally drawn the research interest. Both reinforcement
learning (RL) methods, e.g. [5] and [6], and evolutionary
computation (EC) approaches, such as [7], [8], [9], and [10],
have been used to automatically design CNN architectures

in recent years. Although automatically designed CNN archi-
tectures have achieved promising results compared to hand-
crafted CNNs, it is hard to balance the trade-off between
efficiency and effectiveness of automatically designing CNN
architectures. For example, [9] worked efficiently by compro-
mising the effectiveness; while [5] and [6] set the state-of-the-
art classification accuracy with intimidating computational cost
of 22,400 GPU-days for [5] and 2,000 GPU-days for [6]. In
this paper, an efficient PSO method will be proposed to evolve
CNN architectures without compromising the classification
accuracy.

Goals: The overall goal of this paper is to propose an effi-
cient EC-based method to speed up the evolutionary process of
automatically designing CNN architectures for image classifi-
cation without compromising the classification accuracy. The
proposed method will be evaluated on the CIFAR-10 dataset
and compared with the state-of-the-art methods consisting of
hand-crafted CNNs, CNNs found by RL methods, and CNNs
obtained by other EC approaches. In addition, the evolved
block will be transferred and evaluated on two other datasets
— CIFAR-100 and the Street View House Numbers (SVHN)
dataset. The goal will be achieved through the following effort
and contributions:

• Firstly, the search space is minimised by integrating the
existing expertise of hand-crafted CNNs. As the search
space of CNNs without any constraints can be infinite, it
is not possible to explore the search space both effectively
and efficiently. However, by introducing the expertise of
hand-crafted CNN architectures, the search space can be
considerably reduced. In the proposed method, DenseNet
[4] is used as the prior expertise to minimise the search
space by encoding only the hyper-parameters of one
dense block, where the details can be found in Section
III-B. The same methodology can be applied to any of
the state-of-the-art CNN architectures such as ResNet [3].

• Secondly, a transferable block is learnt from a small
subset of the training dataset. This is inspired by the idea
of transfer learning, which is to learn a model on a smaller
dataset and transfer the learned model on a larger dataset.
In order to mitigate the bias introduced by only using a
small subset, Adam optimisation [11] is used to train the
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Fig. 1: DenseNet architecture (Image taken from [4])

CNNs instead of SGD optimisation [12]. The reasons will
be discussed in Section III-C.

• Thirdly, an automatic and progressive process of stacking
the learned block is proposed to increase the capacity
of the final neural network. As the small subset of the
dataset may only require a CNN with much less capacity
to achieve the best classification accuracy, in order not
to compromise the classification accuracy on the whole
dataset, the proposed method stacks the learned block
multiple times to obtain a CNN with more capacity,
which will be depicted in Section III-E.

• Lastly, the transferable block learned from one dataset
is transferred to two other datasets, which demonstrates
the transferability of the learned block. The transferable
blocks evolved only once from one dataset will be stacked
according to the stacking mentioned in the third effort
to form a neural network that can achieve a promising
performance without any further NAS process on two
other datasets.

II. BACKGROUND

A. DenseNet

A DenseNet [4] is composed of several dense blocks illus-
trated in Fig. 1. A 1×1 convolutional layer followed by a 2×2
average pooling layer is added to connect dense blocks. The
hyper-parameters of dense blocks are dependent on specific
image classification tasks, which are the number of layers
in the dense block and the growth rate of the dense block.
The growth rate is the number of output feature maps for
each convolutional layer in the dense block. The output xl is
calculated according to Formula (1), where [x0, x1, ..., xl−1]
refers to the concatenation of the feature maps obtained from
layer 0, 1, ..., l−1, and Hl represents a composite function of
three consecutive operations, which are batch normalization
(BN) [13], a rectified linear unit (ReLU) [14] and 3 × 3
convolution (Conv).

xl = Hl([x0, x1, ..., xl−1]) (1)

B. Particle Swarm Optimisation

Particle Swarm Optimization (PSO) [15] is a population-
based EC algorithm, which can be used for solving optimiza-
tion problems lacking of domain knowledge. The population is
constituted of a number of particles. Each of them represents
a candidate. It searches for the best solution by updating
velocity and particle vector according to Equations (2) and
(3), respectively, where vid represents the velocity of the

particle i in the dth dimension, xid represents the position of
particle i in the dth dimension, Pid and Pgd are the local best
and the global best in the dth dimension, r1, r2 are random
numbers between 0 and 1, w, c1 and c2 are inertia weight
and acceleration coefficients for exploitation and acceleration
coefficient for exploration, respectively. Since the encoded
vector in the proposed method is fixed-length and consists of
decimal values, and PSO is effective to search for the optimal
solution in a fixed-length search space of decimal values, the
proposed method will use PSO as the search algorithm.

vid(t+1) = w∗vid(t)+c1∗r1∗(Pid−xid(t))+c2∗r2∗(Pgd−xid(t))
(2)

xid(t+ 1) = xid(t) + vid(t+ 1) (3)

C. Related Work

One of the research works of employing EC to evolve CNNs
is GeNet [9]. GeNet proposed an encoding strategy of using
a fixed-length binary string to represent CNN architectures,
with which the standard Genetic Algorithm can be easily
applied. It can be noticed that GeNet only consumes 20 GPU-
days to evolve CNN architectures, but it has compromised the
classification accuracy, which we believe may be because of
not reaching the global optima or some good local optima near
the global optima due to the huge search space.

Another successful EC method is AmoebaNet [16], which
performs EC search in the same search space as that of NAS
[5]. It set up the state-of-the-art classification accuracy on
several image classification tasks, which was the first time for
utilising an EC method to produce the state-of-the-art image
classifier; however, the computational cost has gone much
higher than that of GeNet, which rose significantly to 3,150
GPU-days approximately.

In summary, it can be seen that it is hard to balance the
trade-off between efficiency and effectiveness of automatically
designing CNN architectures as GeNet worked efficiently by
compromising the effectiveness and AmoebaNet set the state-
of-the-art classification accuracy with very high computational
cost. In this paper, an efficient PSO method will be proposed
to evolve CNN architectures without compromising the clas-
sification accuracy.

III. THE PROPOSED METHOD

The proposed method will achieve the goal of efficiently
evolving deep CNNs without compromising the classification
accuracy through the following aspects. Firstly, the encoding
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Fig. 2: The overall framework of the proposed method

strategy will minimise the search space by leveraging the
expertise of the state-of-the-art CNN architecture. Secondly,
a transferable block will be learned from a small subset of
training dataset instead of the whole training dataset, which
will considerably reduce the time consumed by fitness eval-
uation. Thirdly, the evolved block will be stacked multiple
times to improve the classification accuracy. In the end, the
transferable block learned from the CIFAR-10 dataset will be
transferred to the CIFAR-100 and SVHN datasets.

A. Overall Framework

The overall framework of the proposed method is illustrated
in Fig. 2. Firstly, the dataset is split into a training set and a
test set, and then a small subset of the training set is randomly
sampled from the training set, which will be passed to the PSO
evolutionary process. Furthermore, the small subset is used
during the PSO evolutionary process. The primary reason of
using a small subset of the training set for fitness evaluation
is to reduce the computational cost because given a CNN
architecture, it takes less time to train it and requires less
memory when the dataset is smaller, which will be further
discussed in Section III-C. Instead of evolving the whole
network architecture, the PSO is only utilised to evolve the
optimal Dense Block on the small subset. The details of the
intuition will be analysed in Section III-B. Next, the proposed
method stacks the evolved Dense Block various number of
times to produce a set of CNN architectures, and the best
CNN architecture is then selected to be the final evolved
CNN architecture, where the details will be written in Section
III-E. Finally, the classification accuracy of the final CNN
architecture will be reported.

B. Encoding Strategy to Minimise The Search Space

As the proposed method concentrates on the efficiency, the
encoding strategy endeavours to minimise the search space.
Inspired by the idea of learning the CNN architecture from
smaller datasets and transferring the learned architecture to
larger datasets [6], instead of evolving multiple blocks as
[17], the proposed method only evolves a single dense block.
By doing the simplification of the encoding strategy, the
search space has been significantly reduced, which has turned
a complex search problem to a simple search task. In the

Algorithm 1: Fitness Evaluation
Input: number of layers nol, growth rate gr, a small subset

of training set dt;
1: accbest, epochbest, epoch, acc← 0, 0, 0, 0;
2: dttrain, dttest ← Randomly split dt into 80% as training

part dttrain and 20% test part dttest;
3: block ← Build the dense block according to nol and gr;
4: while acc >= accbest or epoch− epochbest < 5 do
5: Apply Adam optimisation [11] to train block on

dttrain for one epoch;
6: acc← Evaluate block on dttest;
7: if acc > accbest then
8: accbest, epochbest ← acc, epoch;
9: end if

10: epoch← epoch+ 1;
11: end while
12: return accbest

research of learning transferable architectures [6], it has proved
that the learned block was transferable from CIFAR-10 dataset
to ImageNet dataset. Inferring from that, the block learned
from the small subset of the training set is more likely to be
transferable to the whole training dataset, which will be further
tested by the experimental results. Therefore, the final encoded
vector only consists of two dimensions, which are the growth
rate and the number of layers.

C. Fitness Evaluation of Transferable Blocks

Fitness evaluation of PSO, whose pseudo-code is shown
in Algorithm 1, is crucial to the computational cost of the
proposed method. Since the essential target of the proposed
method is to boost the efficiency of evolving deep CNNs,
two methods are utilised to reduce the computational cost.
Firstly, only a small subset of training dataset is used to train
and evaluate the particle, which holds the hyper-parameters
of the dense block. Therefore, both the memory required
to train the CNNs and the training time will be reduced.
Furthermore, an adaptive training algorithm referred as Adam
optimisation [11] is adopted to train the CNNs during the
fitness evaluation, whose ability of fast convergence has been
proved, so the fitness evaluation using Adam optimisation
is faster than those relying on Stochastic Gradient Descent
(SGD) [12]. By combining the strategies of cutting down the
training data for fitness evaluation and adopting the adaptive
training algorithm, the proposed method is expected to reduce
the computational cost.

Apart from the perspective of improving the efficiency, the
proposed fitness evaluation arguably tends to select the best
transferable block. In the research of learning transferable
block [6], it has been proved that the learned block from a
smaller dataset is transferable to a larger dataset even though
the two datasets are quite different both in terms of the number
of classes and the image resolutions. By following the same
idea, the small subset of training data is sampled to only learn



a single block instead of learning the final CNN architecture.
Since the similarity between the sampled small subset and
the target dataset is closer than the similarity between two
different datasets, the theory of learning transferable block
should also apply to the proposed method, which is expected
to produce a good classification accuracy when stacking the
learned block multiple times for the whole dataset. In addition,
Adam optimisation is designed to adapt the learning rate
according to the specific CNN during the training process;
while, when using other non-adaptive optimisation such as
SGD, they need to be fine-tuned for a specific CNN on a
particular dataset. Reversely, if non-adaptive optimisation is
adopted with a specific set of settings, the specific CNN or
similar CNNs are more likely to be chosen [18]. Therefore,
the fitness value obtained by using Adam optimisation can
represent the quality of the block.

D. Evolving Dense Block By PSO

Algorithm 2: Evolving dense block by PSO
Input: population size popsize, generations gen;

1: pop← Random initialise the particles until the number
of particles reaches popsize;

2: gbest, i← Empty, 0;
3: while i < gen do
4: for particle p in pop do
5: p← Apply standard PSO operations to update the

position of p;
6: fitness← Use fitness evaluation in Algorithm 1 to

calculate the fitness for p;
7: Update the fitness of p by fitness;
8: if fitness > the fitness of the personal best then
9: Update the person best of p with the current p;

10: end if
11: end for
12: gbest ← Update with the best particle among the

current gbest and pop;
13: i← i+ 1;
14: end while
15: return gbest;

After simplifying the encoded vector by the proposed en-
coding strategy, standard PSO can be applied to solve the
optimisation tasks, which is depicted in Algorithm 2. There
are still a couple of points that need to be carefully designed.
Firstly, due to the memory limit, the number of layers and
the growth rate are required to be constrained into a range.
On the other hand, the lower bound of the these two hyper-
parameters also need to be restricted as too few layers in a
block will not provide enough capacity for the model and a too
small growth rate will not capture enough feature information.
Therefore, two hyper-parameters of the proposed method need
to be defined before running it, which are the range of the
number of layers αl and the range of growth rate αg; however,
these two hyper-parameters are easy to choose as the default

values of αl and αg will suit most of the image classification
tasks. When initialising the particles, the number of layers
and the growth rate are randomly sampled within the range
of αl and αg , respectively. Secondly, during the evolutionary
process, the values of the hyper-parameters may fall out of
the range, so the proposed PSO method needs to rectify these
values by setting them to either the upper bound or the lower
bound of the range. Furthermore, as some of the dense block
may cause out of memory issue, the proposed PSO method
captures this error and set the fitness of particles to zero in
order to eliminate them.

E. Stacking and Selecting Best CNN

After the dense block is obtained by PSO as shown in
Algorithm 2, the dense block is stacked multiple times to
produce the candidates for the final model by progressively
stacking the dense block, i.e. the number of dense blocks starts
from 1 and increases by 1 each time. The whole training set
is used to train and evaluate the stacked candidate, and Adam
optimisation is chosen to train the stacked CNNs with the same
reasons described in Section III-C. Once the classification
accuracy of the stacked CNN candidate does not increase or
the stacked CNN requires more memory than the hardware
resource, the stacking process stops and the best candidate so
far is selected as the final solution.

Algorithm 3: Progressively stack and select the best
candidate
Input: Evolved block b, the whole training set dt;

1: dttrain, dttest ← Randomly split dt into 80% as training
part dttrain and 20% test part dttest;

2: cbest, i, acc← Empty best candidate, 0 as stacking
times, 0 as the accuracy of the stacked CNN;

3: while True do
4: i← i+ 1
5: c← Stack b for i times to generate a candidate;
6: Use Adam optimisation to train c on dttrain with the

same stopping criteria as that of fitness evaluation in
Section III-C;

7: acc← Evaluate the trained c on dttest;
8: if acc > accuracy of cbest then
9: cbest ← c;

10: else
11: break
12: end if
13: end while
14: return cbest

F. Transferring the Evolved Block

To validate the transferability of the evolved block, the
proposed method will learn the block on a small subset of
one dataset as the transferable block as shown in Section
III-D. By following the stacking method in Section III-E,
the transferable block will be stacked and selected for other
datasets without re-evolving the block. By applying transfer



learning of the transferable block, it will only evolve the
transferable block once even for multiple image classification
tasks. Given the evolutionary process consumes most of the
computational cost of the proposed method, the proposed
method will improve the efficiency of NAS especially when
multiple image classification tasks need to be solved.

IV. EXPERIMENT DESIGN

As EC is a meta-heuristic approach, it requires multiple
runs of one experiment and statistical analysis to draw a
conclusion. In our experiments, 10 runs are performed due
to the limited computational resources and Student’s t-test is
performed when comparing the proposed method with peer
competitors.

A. Benchmark Datasets and Peer Competitors

CIFAR-10 [19] is used as the benchmark dataset to evaluate
the proposed method. It is composed of 60,000 colour images
in 10 classes, with 6000 images in each class. The whole
dataset is split into training images of 50,000 and test images
of 10,000. CIFAR-10 is chosen because it has been widely
used to evaluate image classifiers, especially for automatically
designing CNN architectures. The results of the peer competi-
tors’ performance can be easily collected for comparisons.

The peer competitors of the CIFAR-10 dataset are se-
lected based on their performance and the relevance to the
proposed methods. Firstly, two state-of-the-art hand-crafted
CNN architectures will be compared, which are ResNet [3]
and DenseNet [4]. Secondly, several state-of-the-art CNN
architectures designed by automatic approaches are chosen,
which are categorised into two types. The first type utilises
RL methods, which includes EAS [20], NASNet [6], NASH
[21] and NAS [5]. The other type employs EC algorithms
to automatically evolve CNN architectures, which are Amoe-
baNet [16], Hier. repr-n [22], CGP-CNN [10], DENSER [23],
GeNet [9], CoDeapNEAT [24] and LS-Evolution [25].

In order to demonstrate the transferability of the learned
block, two other datasets are used to evaluate the transferable
blocks. The first dataset is the CIFAR-100 dataset [19]. It con-
sists of the same number of images with the same resolution
as the CIFAR-10 dataset, so the two domains of the CIFAR-
10 and CIFAR-100 datasets are very similar. However, the
number of classes is 100, which makes the classification task
more difficult. Therefore, CIFAR-100 is a good benchmark
dataset to evaluate the transferable block evolved from a
simpler dataset. The SVHN dataset [26] is used as another
dataset to evaluate the transferable block. It includes 73,257
images in the training set, 26,032 images in the test set, and
531,131 images for additional training. The two domains of the
SVHN and CIFAR-10 datasets are disparate, but the number
of classes is the same, so SVHN is suitable to evaluate how
the transferable block performs on a different domain with the
similar classification difficulty.

The performance results from six peer competitors on
CIFAR-100 and SVHN are collected and used in the com-
parisons to show the transferability of the transferable block.

TABLE I: EPSOCNN parameter settings

Parameter Value

EPSOCNN default hyper-parameters
range of number of layers αl [6, 32]

range growth rate αg [12, 32]

PSO parameters
inertia weight w 0.7298

acceleration coefficient c1 1.49618

acceleration coefficient c2 1.49618

population size 20

number of generations 20

These peer competitors are recent CNN architectures manu-
ally designed by experts, which are FractalNet [27], Deeply
Supervised Net [28], Network in Network [29], Wide ResNet
[30], ResNet [3] and DenseNet [4].

B. Parameter Settings

The parameters of the proposed method are listed in Table
I. The two parameters of the proposed method, the range of
number of layers αl and the range of growth rate αg , are
defined based on the GPU card (GeForce GTX 1080) used to
run the experiment. The parameters of PSO is set according to
[31]. Based on the computational resource and time limit, 20
has been chosen for both the population size and the number
of generations. In terms of the Adam Optimisation used in
both the fitness evaluation in Section III-C and the stacking
process in Section III-E, the default settings described in the
study [11] are utilised.

In order to evaluate the final evolved CNN architecture and
perform a fair comparison, the same training strategy adopted
by most of the peer competitors is adopted. The evolved CNN
is trained for 300 epochs and 40 epochs for the CIFAR and
SVHN datasets, respectively, by following DenseNet [4]. The
initial learning rate is set to 0.1, which is divided by 10 at 50%
and 75% of the total number of training epochs. The weight
decay and Nesterov momentum [12] are set to 1× 10−4

and 0.9 without dampening, respectively. A standard data
augmentation strategy [4] and weight initialisation method
[32] are used.

V. RESULT ANALYSIS

A. Performance Comparisons

1) Performance Comparisons on CIFAR-10: The classifi-
cation error rate, number of parameters and the computational
cost of searching for the CNN architecture are listed in Table
II. The best results and the mean and standard deviation
values from 10 runs of the proposed method are reported and
compared with all the peer competitors in three aspects. Firstly,
the best classification accuracy of the proposed method is the
third, but when comparing the number of parameters between
the proposed method and the other two peer competitors
having better classification accuracy, the model size is much
smaller, which is only less than one-third of either of the
other two models. By applying Student’s t-test on the 10 runs’



TABLE II: Performance comparison with peer competitors on
CIFAR-10

Method CIFAR-10
(Error rate%)

Number of
Parameters

Computational
Cost

ResNet-110 [3] 6.43 1.7M –

DenseNet(k =
40) [4]

3.74 27.2M –

EAS [20] 4.23 23.4M <10 GPU-days

NASNet-A (7
@ 2304) [6]

2.97 27.6M 2,000
GPU-days

NASH
(ensemble

across runs)
[21]

4.40 88M 4 GPU-days

NAS v3 max
pooling [5]

4.47 7.1M 22,400
GPU-days

AmoebaNet-B
(6,128) [16]

2.98 34.9M 3150
GPU-days

Hier. repr-n,
evolution

(7000 samples)
[22]

3.75 – 300 GPU-days

CGP-
CNN(ResSet)

[10]

5.98 1.68M 29.8 GPU-days

DENSER [23] 5.87 10.81M –

GeNet from
WRN [9]

5.39 – 100 GPU-days

CoDeapNEAT
[24]

7.3 – –

LS-Evolution
[25]

4.4 40.4M >2,730
GPU-days

EPSOCNN
(Best

classification
accuracy)

3.58 6.74M <4 GPU-days

EPSOCNN
(10 runs)

3.74±0.0154 4.79M±1.5363M <4 GPU-days

results of the proposed method and other peer competitors, the
proposed method does not outperform DenseNet(k = 40) and
Hier. repr-n, evolution (7000 samples) because the differences
are not statistically significant. Secondly, only two of the peer
competitors have fewer parameters than the proposed method
that achieved the best classification accuracy; however, the
error rate of the other two is more than 2% larger than that of
the proposed method. When performing the statistical analysis
on the 10 runs’ results, the differences between the proposed
method and all others are significant. None of them is better
than the proposed method in both the classification accuracy
and the number of parameters. Lastly but not least, all of the
CNN architectures from the 10 runs are achieved within 4
GPU-days. In comparison with other peer competitors, the
computational cost taken to automatically design the CNN
architecture of the proposed method is the smallest among
all of the peer competitors. Therefore, it can be concluded
that the proposed method has achieved very promising and
competitive result both in terms of classification accuracy and
the number of parameters, and it is the most efficient approach

among all of the peer competitors.

TABLE III: Error rate comparison with peer competitors on
CIFAR-100 and SVHN

Method CIFAR-100 SVHN

Network in
Network [29]

35.68 2.35

Deeply
Supervised Net

[28]

34.57 1.92

FractalNet [27] 23.30 2.01

Wide ResNet
[30]

22.07 1.85

ResNet [33] 27.22 2.01

DenseNet(k=12)
[4]

20.20 1.67

EPSOCNN
(Best)

18.56 1.84

EPSOCNN
(10 runs)

19.05±0.1874 1.89±0.0387

2) Transferability on CIFAR-100 and SVHN: To demon-
strate the transferability of the learned block in Section III-F,
the learned block on the CIFAR-10 dataset is transferred
to two different domains — the CIFAR-100 and SVHN
datasets. The classification error rates are listed in Table III.
Firstly, on CIFAR-100, the proposed method achieves the best
classification among all the peer competitors with almost 2%
more accuracy than DenseNet(k=12), which is the second
place. By performing Student’s t-test on the results from
10 runs of the proposed method with others, the proposed
method outperforms all others with statistical significances.
It demonstrates that the transferable block can be transferred
to a similar domain with more complexities. Furthermore, on
SVHN, the best classification accuracy of the proposed method
is the second best among all peer competitors. According
to the statistical analysis of Student’s t-test, the proposed
method ranks the third best, significantly better than four other
peer competitors. Overall, the transferable block has shown
promising results on the CIFAR-100 and SVHN datasets.

B. Convergence Analysis

The convergence of the proposed method is shown in Fig.
4. At the beginning of the evolutionary process, the fitness of
the global best particle grows fast until the fourth generation;
After that, the particles keep the search, but struggle to find
better solutions until the eighth generation; Starting from the
ninth generation, the particles manage to jump out of the local
optima and achieve another round of improvement until the
evolutionary process converges at the twelfth generation; once
it converges, the fitness of the global best becomes flat until the
end. It can be seen that the PSO converges fast due to effort of
minimising the search space in the proposed encoding strategy.

During the stacking and selection step, the evolved block
were evaluated by stacking it twice, three times and four times.
For the CIFAR-10 dataset, the best classification accuracy was
achieved by stacking it three times, which is the final evolved



Fig. 3: The training process of the final evolved CNN on CIFAR-10. X-axis: epochs; Y-axis: Error rate/Loss.

Fig. 4: Evolutionary plots. X-axis: generations; Y-axis: best
fitness value.

CNN architecture. Furthermore, the final CNN was evaluated
by using the fine-tuned SGD optimisation, whose process is
illustrated in Fig. 3. The red line is the training loss, the blue
line expresses the error rate on training set, and the green line
represents the error rate on test set. From left to right, the sub-
figures shows the evaluation processes of 0 to 140 epochs and
140 to 300 epochs, respectively. It can be observed that the
evolved CNN was trained fast at the beginning until 40 epochs
as shown in the left sub-figure and the reduction of error rate
was small after that; when the learning rate was divided at

150 epochs, there was a big plunge in terms of error rate;
furthermore, at the send division of the learning rate, a small
decrease of the error rate occurred, but it was not significant.
Overall, the scheduled learning rate strategy has demonstrated
its effectiveness of improving the classification accuracy.

C. Evolved CNN Architecture

While running the experiment, the server-client infrastruc-
ture developed in [18] was adopted, and 10 GPU cards were
used, which produced the final CNN architecture in about 9
hours. The hyper-parameters for the evolved block are 23 and
27 for the number of layers and the growth rate, respectively,
and the final CNN architecture is composed of three of the
evolved block. The computational cost of only spending 9
hours on 10 GPU cards to obtain a good CNN architecture
is efficient enough so that the proposed method is feasible
and computationally acceptable to be adopted to solve real-life
image classification tasks. Taking a step further, the proposed
method can be easily adjusted to evolve any of the state-of-
the-art CNN blocks such as ResNet blocks.

VI. CONCLUSION AND FUTURE WORK

To conclude, a PSO method has been proposed to evolve
the hyper-parameters of the sate-of-the-art CNN architectures,
which is efficient without compromising classification accu-
racy. The goal has been achieved by minimising the search
space with human expertise, learning a transferable block from
a small subset of the training set and stacking the learned
block multiple times to improve the classification accuracy.
By comparing with peer competitors on the CIFAR-10 dataset,
the proposed method achieved very competitive performance
in terms of the classification accuracy, the model size and the
computational cost of searching for the final CNN architecture.



The highlight of the proposed method is its efficiency as it
outperforms all of the peer competitors, whose results are
collected in this paper as to our best effort. In addition, the
transferability of the transferable block was evaluated on two
other datasets — CIFAR-100 and SVHN. From the experi-
mental results, the proposed method has achieved promising
classification accuracy, especially on CIFAR-100 by outper-
forming all of the peer competitors. Therefore, the transferable
block shows the promising potentiality of achieving good
performance in other domains through transfer learning.

The proposed method has first been evaluated on the
CIFAR-10 dataset due to a couple of reasons. The first reason
is that CIFAR-10 is good to initially evaluate a neural architec-
ture search method, which usually has a large computational
cost, and the second reason is that it is easier to collect
the results of peer competitors both from the deep learning
community and neural architecture search community. Then,
the transferable block learned from CIFAR-10 has been trans-
ferred to two other domains — the CIFAR-100 and SVHN
datasets to evaluate the transferability because CIFAR-100 is
similar to CIFAR-10 with more classes and SVHN has similar
complexity as CIFAR-10 but in a different domain. However,
it would be more convincing to evaluate the proposed method
on larger datasets such as ImageNet dataset [34]. Another
potential improvement is to explore more state-of-the-art CNN
architectures and develop a new method to design better CNN
blocks, which consists of multiple types of CNN architecture
without compromising the efficiency.
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