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Abstract—Surrogate model assisted evolutionary algorithms 
(SAEAs) have attracted much research attention in solving 
computationally expensive optimization problems. They show 
excellent performance on low-dimensional optimization 
problems by saving a large number of real fitness evaluations, 
but generally fail on high-dimensional problems due to the 
contradiction between the huge solution space and the limited 
computational resources. To alleviate this issue, this study 
attempts to scale up radial basis function (RBF), which is a kind 
of widely used surrogate model, by taking advantage of the 
random projection (RP) technique, and thus develops a RP-
based RBF (RP-RBF). Different from existing methods that 
directly train RBF in the original solution space, RP-RBF first 
randomly projects the original high-dimensional solution space 
onto many low-dimensional subspaces, and then trains an RBF 
in each subspace. The resulting low-dimensional RBFs are 
finally used together to approximate the fitness values of new 
candidate solutions. The introduction of RP greatly reduces the 
number of training samples required by RBF on the one hand, 
and helps RBF still capture the main characteristics of the 
original problems on the other hand. To verify the effectiveness 
of RP-RBF, this study integrates it with a differential evolution 
(DE) and develops a novel SAEA named RP-RBF-DE. 
Experimental results on a set of 12 benchmark functions 
demonstrate that RP-RBF significantly improves the accuracy 
of the traditional RBF and RP-RBF-DE outperforms the 
traditional DE and a general RBF-assisted DE. 

Keywords—high-dimensional expensive optimization, random 
projection, radial basis function, differential evolution 

I. INTRODUCTION 

With the rapid development of technology, optimization 
problems are becoming increasingly complex. Traditional 
optimization algorithms based on gradient information , such 
as Newton’s method [1] and conjugate gradient method [2], 
have been unable to meet actual needs in many scenarios 
because of the black-box characteristic most optimization 
problems possess and are gradually replaced by some 
potential evolutionary algorithms (EAs), such as differential 

evolution (DE) [3], genetic algorithms [4] and particle swarm 
optimization [5]. These EAs have been applied to many real 
world optimization problems, ranging from gene recognition 
[6], drug design [7] to wireless networks [8], and air traffic 
management [9]. A common characteristic of most EAs is that 
they generally require a large number of fitness evaluations 
(FEs) to find a promising solution. This would greatly restrict 
the performance of EAs in solving expensive optimization 
problems, such as antenna design [10], structural optimization 
[11] and circuit design [12], since a single real fitness 
evaluation of these problems would be very time-consuming 
and resource-consuming. 

Surrogate model assisted evolutionary algorithms (SAEAs) 
have received increasing attention in solving expensive 
optimization problems. The main idea of SAEAs is to build an 
approximate model for the original computationally 
expensive problem, and then evaluate candidate solutions 
based on the built model. Only those solutions that are 
identified as promising ones will be evaluated again by the 
real fitness function. This approach can effectively reduce the 
real fitness evaluations and thus improve the overall 
performance. The most commonly used surrogate models 
include polynomial regression [13], support vector machines 
[14], radial basis function (RBF) [15] and Gaussian processes 
[16]. Based on these surrogate models, many SAEAs have 
been proposed to solve expensive optimization problems, 
including surrogate-assisted DE [17], surrogate-assisted 
genetic algorithm [18] and surrogate-assisted particle swarm 
optimization [19]. 

At present, most SAEAs are mainly used to solve low-
dimensional or medium-dimensional problems with a 
dimension of 50 or less, and they can hardly be employed to 
solve high-dimensional problems with more than a hundred 
variables. One of the main reason is the so called “curse of 
dimensionality” [20]. The search space of an optimization 
problem will increase exponentially with the increase of the 
problem dimension, resulting in the EAs cannot fully explore 
the solution space within acceptable computational time. 
SAEAs also will need a large number of training samples to 
build sufficiently accurate approximate models with the 
increase of problem dimension, which is impracticable for 
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expensive optimization problems with limited computational 
resources. 

In recent years, there are a handful of attempts on solving 
high-dimensional expensive problems with SAEAs. Sun et al. 
[21] proposed a surrogate-assisted cooperative swarm 
optimization algorithm (SA-COSO) to solve high-
dimensional computationally expensive problems. SA-COSO 
built a global RBF surrogate to capture the profile of problem 
with the aim of locating promising solution regions, which 
would be further exploited by a local surrogate model. Cai et 
al. [22] introduced a generalized surrogated-assisted 
evolutionary algorithm (GSGA), which uses surrogate models 
to help guide the updating mechanism and prescreen 
promising solutions. Liu et al. [23] introduced Sammon 
mapping technique into a Gaussian process surrogate model 
which could reduce the dimension of solution space to make 
it easy for building surrogate models. 

In this paper, we propose a random projection-based [24] 
RBF surrogate model (RP-RBF) for fitness approximation of 
high-dimensional problems. Different from most existing 
methods that directly train the surrogate model in the original 
space, RP-RBF first projects the samples in high-dimensional 
space into many low-dimensional subspaces using RP 
technique, and then trains an RBF model in each subspace 
based on the projected samples to capture the characteristics 
of the original problem. Finally, these surrogate models in all 
subspaces will be integrated together to approximate the 
fitness values of new candidate solutions. Combining RP-
RBF and a DE algorithm, we further develop a novel SAEA 
named RP-RBF-assisted DE (RP-RBF-DE) to improve the 
performance of DE in solving high-dimensional expensive 
optimization problems. In order to demonstrate the 
performance of our method, RP-RBF-DE was tested on a set 
of standard benchmark functions with 100 and 200 
dimensions and compared with a general RBF assisted DE 
(RBF-DE) and a typical DE. Experimental results indicate that 
RP-RBF could effectively improve the approximation 
accuracy of RBF and RP-RBF-DE can have an edge over 
RBF-DE and DE on different kinds of high-dimensional 
expensive problems with limited real fitness evaluations. 

The rest of this paper is organized as follows. Section II 
briefly introduces the RBF model and the random projection 
technique. Section III describes the procedures of RP-RBF 
and RP-RBF-DE. Section IV gives the experimental results 
and discussions. The conclusion is finally presented in Section 
V. 

II. BACKGROUND 

A. Radial Basis Function 

Hardy [25] first proposed RBF as an approximation model. 
Compared with other models, RBF model is easy to train and 
not sensitive to the problem dimension. Therefore, the RBF 
model is employed as the basic surrogate model in our method. 
Our study employs the RBF model given in [26], which is 
defined as follows: 

Given n  distinct points 1 2 ,,
D

n  ,x x x , where their 
fitness values are 1 2( ), ( ), ( )…, nf f fx x x . In this paper, we 
use the following interpolating form: 

1 || ||ˆ ( ) ( ) ,
T Dn

i i if a      x x x b x x         (1) 

where ( )   denotes the basis function, || ||  denotes the 

Euclidean norm, and ( )1 2, , ,
n

n     
T

ω , 
D

 b  

and a  are corresponding parameters. There are different 
choices for the basis function, such as the Gaussian basis 
function, thin plate spline basis function and cubic basis 
function [27]. In this paper, we adopt the cubic basis function: 

3
( )r r   as the basis function in RP-RBF. 

With the given distinct points, the unknown parameters 
n

 ω , b
D

   and a  can be obtained by solving the 
following linear equations: 

γT

Φ P F

P


    
    
     00


                         (2) 

where Φ  is an n n  matrix with ||(|| )ij i jΦ Φ x x  and 

1 2

1 1 1

x x x
T T T

T nP 
 
 
 


, 1 2 )( , , ,

T
nω=    , 

= ( , )T Taγ b  and  1 2( ), ( ), , ( )
T

nF f f fx x x  . 

If and only if rank ( ) 1P D = , the (2) has a unique solution 

[26]. As a result, in order to get a unique RBF model, the 
number of distinct points must be greater than or equal to D
+1. 

B. Random Projection 

A very natural idea to solve high-dimensional problems is 
to perform dimensionality reduction. Random projection [24], 
as a dimensionality reduction method, projects the samples in 
original high-dimensional space into many uniformly and 
randomly generated low-dimensional subspaces. RP has been 
used in many fields, including computer science, signal 
processing and machine learning. It enjoys nice theoretical 
characteristics, among which the most attractive is the low 
distortion of the Euclidean geometry. The reason for its nice 
characteristics is that the theory of RP is based on Johnson-
Lindenstrauss Lemma [28] as follows: 

Johnson-Lindenstrauss Lemma: For an (0 0 5)  .   

and an integer n , let 2 2 1( , ) 9( 2 / 3) log 1k n n        . If 
2

( , )n k n  , then for any n -point set S  in 
n
 , there exists 

a map 
( , )

:
k n

f S  


 such that 
2 2 2

(1 ) ( ) ( ) (1 )u v f u f v u v         for all u , v  

in S . 

The specific proof of this lemma can refer to [28]. This 
Lemma guarantees that the relative distance of a set of points 
in the high-dimensional Euclidean space can be maintained in 
a certain error range when mapped to a low-dimensional space. 
This property makes RP suitable for models like RBF whose 
calculation and analysis are based on the distances among 
points since RP could guarantee the training accuracy of RBF 
in low-dimensional subspaces to a certain extent. Besides, an 
appropriate combination of estimates from a set of random 
subspaces also have smooth effect, which is helpful to ensure 



the approximation accuracy even with a small number of 
training samples. 

The specific process of random projection method can be 
described as follows: 

Given a set of samples DB  including N  points: 

1:( )d N d
i i NDB 

   x , and then we randomly generate 

M  different random matrices 1:( )
k d

i i MR


  with entries 

drawn i.i.d from a univariate Gaussian 
2

(0, )N  . Then we 

can get M  new population 1:( )
T

i i i MDB R DB   . In this 

way, we project sample points from 
d
  to 

k
 , where k  

represents the dimension of the low-dimensional subspace and 
M  represents the number of the low-dimensional subspaces. 

In this paper, we choose 
2

1 d  /  as recommended in [24] 
to make R  well approximate an orthonormal matrix on 
condition that k  is much lower than d . 

III. METHOD 

In this section, the random projection-based RBF (RP-
RBF) is first proposed. Then RP-RBF is integrated into a 
typical DE and the complete procedure of the resultant RP-
RBF-DE is presented. 

A. RP-RBF 

As mentioned in Section II (B), RP can guarantee the low 
distortion of the Euclidean geometry when projecting the 
samples in high-dimensional space into low-dimensional 
space. According to the interpolating form equation of RBF 
presented in Section II (A), we can find that the establishment 
of RBF is related to the distance between distinct points to 
some extent. Based on the above idea, we build RBF models 
in a set of low-dimensional subspaces generated by RP. 

Given a set of training samples with their real fitness 
values and a set of candidate solutions waiting for evaluation 
in the original space, RP-RBF first generates a number of low-
dimensional subspaces using the RP technique and projects 
the training samples and candidate solutions into every 
subspace. Then in each subspace, RP-RBF trains a RBF model 
based on these projected training samples and evaluate the 
fitness values of the projected candidate solutions with the 
trained RBF model. After the subspace training and evaluation 
process, the fitness value of a candidate solution in the original 
space is computed as the average of its corresponding fitness 
values in all the subspaces. The reason we use the average 
value lies in that these subspaces are all generated randomly 
using the RP technique and thus they possess the same weight. 
By training surrogate models in low-dimensional subspaces, 
fewer training samples are required and the approximation 
accuracy may also be improved. The detailed procedure of 
RP-RBF is presented in Algorithm 1. In step 1, RP-RBF 
initializes the parameters including the low-dimensional 
subspace dimensionality k  and the number of low-
dimensional subspaces M . In steps 3 to 7, training samples 
DB  and population PB  are mapped to M  k dimensional 
subspaces with random projection and then a RBF model is 
built in each k  dimensional space. Projected solutions in 
PB  are evaluated by these models and the results are stored 

in _PB value . It should be noted that the training and 

evaluation operations in different subspaces are independent 
of each other and thus they can be implemented in parallel to 
quicken the overall process. In step 9, the average of 

, 1,2,iPB value i M _  will be calculated as the final 

approximated fitness values of solutions in PB . 

Algorithm1: Procedure of RP-RBF 

Input: training samples 
1 2{ , , , }

N D
NDB X X X


   with their real fitness 

evaluations 1 2{ ( ), ( ), , ( )}NF f f f X X X  and solutions to be evaluated 

1 2{ , , , }LPB  X X X ; 

Output: the approximated fitness values PB value_  of solutions in PB ; 

1. Initialize parameters, including low-dimensional subspace dimensionality k  , 

number of low-dimensional subspaces M ; 

2. for 1 :i M  

3.    Generate a random projection matrix 
k D

iR


  ; 

4.    Project DB  into k-dimensions: [ ]
T T N k

i iDB R DB


    ; 

5.    Project PB  into k-dimensions: [ ]
T T L k

i iPB R PB


    ; 

6.    Build a RBF surrogate if̂  with iDB  and F ; 

7.    Evaluate iPB  with if̂  and store the values into 
1 L

iPB value


 _ ; 

8. end 

9. Calculate 
1 L

PB_value


   as the average of , 1, 2,iPB value i M _ . 

B. RP-RBF-DE 

To solve high-dimensional expensive optimization 
problems, we further integrate RP-RBF with a DE and 
develop a novel SAEA named RP-RBF-assisted DE (RP-
RBF-DE). DE has shown great success in many real-world 
optimization problems but it generally requires a large number 
of real fitness evaluations to find promising solutions. RP-
RBF can help DE save many real evaluations and RP-RBF-
DE has the potential to obtain better optimization results with 
limited computational resources. 

DE shares a similar framework with most evolutionary 
algorithms. It begins with an initial population 

{ 1,2, , }iP i NP  x  with size NP . In this paper, we use a 

variant of DE called DE/best/1, which uses the best solution 
in each generation as the base vector to speed up generating 
more promising candidates. 

Let xbest  be the best solution in P  and 

1 2( , , , ) D
Dx x x  x  be a solution in P . An intermediate 

vector is first produced by mutation operator: 

1 2( )best
r rF   v x x x                           (3) 

where 1xr  and 2xr  are two distinct solutions selected from 
P  randomly and are different form xbest . F  is the scaling 
factor. 

After mutation, a binary crossover operator generates the 
final child solution 1 2( , , , ) D

Du u u  u  as follows: 

,  if ( ) 

, otherwise

j j rand

j

j

v rand CR or j j
u

x

 
 


    

           
             (4) 

where jrand  is a uniformly distributed random number 
within (0,1), [0,1]CR  is called the crossover rate. 



In RP-RBF-DE, the trained RP-RBF model is used to 
evaluate the fitness values of the new solutions in each 
generation. Only some high-quality solutions selected by RP-
RBF will be further evaluated by the real fitness function. All 
the solutions evaluated by real functions and their fitness 
values will be maintained in a database as an archive for 
updating the RP-RBF model. As a result, the RP-RBF model 
will be more and more accurate and the performance of DE 
can be improved with limited computational resources. The 
detailed procedure of RP-RBF-DE is shown in Algorithm 2. 
In step 1, RP-RBF-DE initializes the parameters including 
population size NP , number of training samples  , number 
of new solutions added in the database in each generation  , 
scaling factor F  and crossover rate CR . In steps 2 and 3, the 
database is initialized randomly. In steps 5 and 6, NP  best 
solutions from the database are selected to form the population 
P  and NP  child solutions are generated by applying 
crossover and mutation operators. Then in step 7,   newest 
solutions in the database and their fitness values are used to 
build RP-RBF surrogate models and evaluate the child 
solutions generated in step 6. In steps 8 and 9, the best   
solutions are selected by their approximated fitness values. 
These solutions will be evaluated again by the real fitness 
function and added to the database together with their real 
fitness values. RP-RBF-DE repeats steps 4-9 until meeting the 
stopping criterion. 

Algorithm 2:Procedure of RP-RBF-DE 

1. Initialize parameters, including population size NP , number of training samples  , 

number of new solutions added in the database in each generation  , scaling factor 

F  and crossover rate CR .  

2. Randomly initialize N  solutions 1 2{ }NDB  X , X , , X ; 

3. Evaluate all solutions in DB  with the real function. Put these solutions and their real 

fitness values in the initial database; 

4. while the stopping criterion is not met do 

5.     Select NP  best solutions from the database to form a population P ; 

6.     Apply the mutation and crossover operators of DE on P  to generate NP  child 

solutions; 

7.     Take the   newest solutions from the database and their real fitness evaluations as 

the training samples to evaluate the NP  child solutions generated in step 6 by 

applying Algorithm 1; 

8.     Select the best   child solutions according to their approximated fitness values; 

9.     Evaluate the best   solutions get in step 8 with the real fitness function. Add these 

solutions and their real function values to the database; 

10. end 

11. Output the obtained best solution. 

IV. EXPERIMENTAL STUDIES 

In this section, the effectiveness of RP-RBF and RP-RBF-
DE were tested on a set of 12 benchmark functions ( 1 12-f f ) 

from IEEE CEC 2005 test suite [29]. These functions can be 
classified into two classes according to their characteristics, 
including 5 unimodal functions 1 5-f f  and 7 multimodal 

functions 6 12-f f . More details of them can be found in [29]. 

In our experiments, each algorithm was tested on these 
functions with 100 dimensions and 200 dimensions. An 
algorithm would be terminated when a maximum number of 
FEs was reached. The maximum number of FEs for functions 

with 100 dimensions and 200 dimensions were set to 20000 
and 30000, respectively. And 20 independent runs were 
conducted on each function. At each run, we recorded the 
function error value (FEV), i.e. ( ) ( )f f x x , to evaluate the 

performance of an algorithm, where x  is the obtained best 

solution and x  is the optimal one. 

A. Parameter Settings 

There are seven parameters need to be set in advance. 
Their settings are given as follows. 

1) The population size NP . Population size has great 
influence on the exploration and exploitation ability of an 
algorithm. A small size may cause premature convergence 
easily and a large size would bring slow convergence rate. 
According to our prior experiments, we set NP =50 in the 
following experiments, which is consistent with the setting in 
[23]. 

2) The scaling factor F  and the crossover rate CR  of DE. 
The setting of parameters in DE has been fully studied by 
many works, and we set both F  and CR  to 0.8 according to 
the suggestion in [30]. 

3) The number of training samples   for building RP-
RBF models. A large number of training samples can improve 
the model quality, but will also consume too much 
computational resources. Considering that the samples are all 
projected into the low-dimensional subspaces in RP-RBF, a 
smaller number of training samples would be sufficient for 
building models in subspaces. Based on the above 
considerations, we set  =110 for 100-dimensional problems 
and  =210 for 200-dimensional problems. 

4) The number of new solutions added to the database in 
each generation  . Based on the above settings, our 
preliminary experiments on   with different values taken 
from 1,10, 20, 30}{  showed that a smaller number of   

would bring a slight improvement to optimization results and 
more computational cost. Finally, we suggest setting  =20 in 
our experiments. 

The rest of this subsection mainly focuses on analyzing the 
influence of the parameters in the random projection 
technique, i.e. dimensionality of the projected low-
dimensional subspace k  and the number of low-dimensional 
subspaces M . According to [24], in order to cover as much 
solution space as possible, the number of M  must be set 
above the minimum min [ ]M D k / , where D  is the 

dimensionality of the original search space. In this paper, we 
set ceil(4 )M D k * / . Next we focus on setting the value of 

k  which should be much smaller than D  so that the RP 

technology can take effect. To find a proper value for k , we 
conducted experiments on benchmark functions with 100D 
when varying the value of k  from {1,3,5,10}  to observe the 

performance of RP-RBF-DE. For brevity, we only reported 
the results on three functions, i.e. unimodal functions 2f , 3f  

and multimodal function 7f . 

Fig.1 presents the results obtained by RP-RBF-DE on the 
three functions with different k  values. It can be vividly 



observed from Figs. 1(a)-(c) that when the value of k  
changes, the results obtained by RP-RBF-DE don’t have 
significant difference since they are all within the same order 
of magnitude. It indicates that RP-RBF-DE is relatively robust 
to k  in a sense. RP-RBF-DE performs best when 5k   and 

its performance would generally degenerate when k  is too 

small or too large. For a small value of k , the subspace is too 
narrow to reveal the characteristics of the original space and 

over-fitting may also occur when training a low-dimensional 
RBF model with too much samples in a subspace. On the other 
hand, if k  is set too large, the dimensional reduction effect of 
RP technique would decrease and thus cause performance 
deterioration. Based on the experimental results and to 
balance the performance on different functions, we suggest 
setting = 5k  in the following experiments.

                 

(a) 2f                                                             (b) 3f                                                               (c) 7f  

Fig. 1. Performance of RP-RBF-DE with different k  values

B. Performance of RP-RBF-DE 

In this section, the performance of RP-RBF-DE was 
evaluated on 12 benchmark functions from CEC 2005 test 
suite. As comparison, a basic DE and a RBF-assisted DE 
(RBF-DE) which directly trains RBF model in the original 
space are also included in our experiments. To make a fair 
comparison, the common parameters of RP-RBF-DE, RBF-
DE and DE were set to the same values. The only difference 
between RP-RBF-DE and RBF-DE lies in the adopted 
surrogate model, their comparison results can reflect the 
effectiveness of the RP-RBF model. The basic DE works as a 
baseline. 

Tables I and II report the final results obtained by RP-
RBF-DE, RBF-DE and DE. Cohen’s d  effect size [31] was 
used to measure the performance difference between RP-
RBF-DE and the other two algorithms, where “ + ”, “” and 
“  ” in Tables I and II denote that the result of the 
corresponding algorithm is better than, worse than and similar 
to that of RP-RBF-DE, respectively. Furthermore, the best 
results in Tables are highlighted in bold. 

From Tables I and II, we can summarize that: 

1) For all the 12 functions with 100D or 200D, RP-RBF-
DE performs no worse than RBF-DE on all the functions and 
they both have an edge over DE except 8f  (a complex shifted 

rotated Ackley’s function with global optimum on bounds), 
where they have similar performance on. More concretely, for 
unimodal functions 1 5-f f  with 100D and 200D, RP-RBF-DE 

could obtain better results than RBF-DE on all the 5 functions. 
As for the 7 multimodal functions, whatever with 100D or 
200D, RP-RBF-DE performs significantly better than RBF-
DE on 6 functions. The  results  demonstrate  that  surrogate-
assisted   DE   could effectively improve the performance of 
DE on different kinds of functions within limited real fitness 
evaluations. And the proposed RBF-DE could improve the 
performance of  RBF  on high-dimensional problems. 

TABLE I.  THE MEAN AND STANDARD DEVIATION (MEAN 
STANDARD DEVIATION) OF FEVS OBTAINED BY DE, RBF-DE AND RP-

RBF-DE ON 12 CEC 2005 BENCHMARK FUNCTIONS WITH 100D 

Fun. DE RBF-DE RP-RBF-DE 

f1 2.55E+04  3.37E+03   1.53E+04  2.72E+03   3.33E+03  1.05E+03 

f2 4.93E+05  4.43E+04   3.37E+05  3.88E+04   2.65E+05  5.45E+04 

f3 2.90E+09  3.80E+08   9.79E+08  2.56E+08   2.95E+08  9.17E+07 

f4 6.07E+05  5.73E+04   4.48E+05  4.97E+04   3.82E+05  6.84E+04 

f5 5.08E+04  3.59E+03   3.22E+04  3.38E+03   2.76E+04  5.30E+03 

f6 4.74E+09  2.10E+09   2.61E+09  9.46E+08   3.71E+08  1.92E+08 

f7 1.48E+04  1.02E+02   1.23E+04  3.55E+00   1.11E+04  2.38E-02 

f8 2.14E+01  2.67E-02   2.14E+01  2.44E-02   2.14E+01  2.28E-02 

f9 1.19E+03  1.15E+01   7.52E+02  5.59E+01   5.23E+02  1.12E+02 

f10 1.38E+03  6.62E+01   1.16E+03  5.51E+01   1.14E+03  4.56E+01 

f11 2.01E+02  5.83E-14   1.68E+02  1.49E+00   1.61E+02  1.30E+01 

f12 2.82E+07  1.49E+06   2.25E+07  2.33E+06   1.71E+07  3.57E+06 

No. of 
+/  /- 

0/1/11 0/1/11   

2) When the problem dimension changes from 100 to 200, 
the performance of the three algorithms would all degenerate. 
Even so, RP-RBF-DE could successfully find better solutions 
than the other two algorithms which means that the proposed 
RP-RBF has good scalability to the problem dimension. 

The last rows of Tables I and II report the overall 
comparison results, from which we can conclude that RP-
RBF-DE indicates significant superiority over RBF-DE on 
this set of benchmark functions with different dimensions. 
The success of RP-RBF-DE mainly benefits from the random 
projection technique, which could help to obtain more 
accurate RBF model with small number of samples in 
subspaces. 



TABLE II.  THE MEAN AND STANDARD DEVIATION (MEAN 
STANDARD DEVIATION) OF FEVS OBTAINED BY DE, RBF-DE AND RP-

RBF-DE ON 12 CEC 2005 BENCHMARK FUNCTIONS WITH 200D 

 

To further reveal the performance of RP-RBF-DE, its 
convergence    curves    on    different    test    functions    were  

recorded. For brevity, only the results on four functions, i.e. 
two unimodal functions 1f , 3f  and two multimodal functions 

6f , 12f , were presented. Figs. 2 and 3 present the 

convergence curves of RP-RBF-DE, RBF-DE and DE on the 
four functions with 100D and 200D, respectively. It can be 
observed from Figs. 2 and 3 that RP-RBF-DE generally has 
faster convergence rate than RBF-DE and DE on different 
functions. This results indicate that the proposed RP-RBF 
model performs well on high-dimensional problems and could 
effectively reduce the number of real fitness evaluations. 
Besides, the performance of RP-RBF-DE is also very stable 
on different functions with different dimensions, which is 
consistent with the results in Tables I and II. 

V. CONCLUSION 

In this paper, a random projection-based radial basis 
function (RP-RBF) surrogate model is proposed for fitness 
approximation of high-dimensional problems. Different from 
existing methods that directly train surrogate model in the 
original space, RP-RBF randomly projects the samples into 
low-dimensional subspaces and trains an RBF model based on 
the projected samples for each subspace. Then the models in 
all subspaces  are  synthetically  used  to  approximate  the   
fitness values of new candidate solutions. By transforming the 
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Fig. 2. Convergence curves on 4 functions with 100D 

 

Fun. DE RBF-DE RP-RBF-DE 

f1 9.92e+04  6.97e+03   8.56e+04  1.13e+04   2.78e+04  7.05e+03 

f2 1.99e+06  1.58e+05   1.36e+06  1.58e+05   9.99e+05  1.15e+05 

f3 1.04e+10  9.60e+08   3.58e+09  6.81e+08   1.27e+09  4.95e+08 

f4 2.42e+06  2.94e+05   1.74e+06  2.16e+05   1.61e+06  2.41e+05 

f5 1.09e+05  4.85e+03   7.79e+04  6.59e+03   6.98e+04  6.15e+03 

f6 2.97e+10  5.04e+09   2.79e+10  5.82e+09   7.92e+09  2.50e+09 

f7 8.73e+04  1.03e+03   6.55e+04  2.61e+01   6.39e+04  2.41e+00 

f8 2.15e+01  1.56e-02   2.15e+01  1.90e-02   2.15e+01  1.59e-02 

f9 2.49e+03  2.74e+01   1.97e+03  1.34e+02   1.48e+03  1.78e+02 

f10 3.35e+03  7.80e+01   2.82e+03  1.17e+02   2.66e+03  8.94e+01 

f11 4.03e+02  1.17e-13   3.53e+02  2.70e+00   3.51e+02  3.88e+00 

f12 1.50e+08  3.78e+06   1.19e+08  7.50e+06   7.35e+07  1.68e+07 

No. of 
+/  /- 

0/1/11 0/1/11   
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Fig. 3. Convergence curves on 4 functions with 200D 

 

model training and evaluation process into subspaces through 
random projection, the required number of training samples 
and the training difficulty are both reduced, which leads to 
more accurate approximation accuracy and more efficient 
performance. Moreover, the proposed RP-RBF is combined 
with a DE and a SAEA named RP-RBF-assisted DE (RP-
RBF-DE) is developed for solving high-dimensional 
expensive optimization problems. Experimental results on a 
set of 12 benchmark functions demonstrate that RP-RBF-DE 
performs very stable on different functions with different 
dimensions and can always achieve better results than RBF-
DE and DE with limited real fitness evaluations. 

Our future work will focus on investigating the robustness 
and efficiency of the RP-RBF model on higher-dimensional 
problems. It is also interesting to combine different surrogate 
models with RP technique to develop different models for 
high-dimensional problems. Moreover, we will put more 
emphasis on real-world optimization problems. 
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