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Abstract—In this work, we face the vehicle routing problem
for the milk collection considering different qualities of milk and
blending. This problem can be considered as a multi-product
vehicle routing problem with blending. In this version, different
products can be mixed, generating an important reduction in
traveling costs but a reduced deterioration of milk quality related
to milk incoming. To solve this problem, we propose an iterated
local search approach. This approach works with unfeasible
solutions that are penalized in the evaluation function. Moreover,
it uses two movements that allow a strong intensification of the
search space during the search process. We test our approach
using two sets of problem instances. The first set considers well-
known vehicle routing instances in the literature. The second one
considers a real case in southern Chile with 500 nodes. From
the results, we can demonstrate the abilities of our local search
approach to solve small problem instances in reduced times and
to find high-quality solutions for real-world problem instances.

Index Terms—Vehicle routing problem with multi-product and
blending; milk collection problem; local search; iterated local
search

I. INTRODUCTION

Milk transportation from farms to processing plants implies
important logistic costs. Milk must be carefully treated due to
its perishable nature. Farmers are mostly distributed through-
out large rural geographical areas. Moreover, different farms
produce different qualities of milk. These different qualities
of milk are the raw material for producing different products
and, hence, have a different associated income per liter. In
most cases, the milk collection of different qualities implies
the use of different trucks or trucks with compartments, one for
each quality type. Notice that each compartment has a fixed
capacity. An alternative procedure is to allow the blending
of milk of different qualities. This option reduces the income
because the blending reduces the quality of the best milk, but it
also reduces the transportation costs of the collection process.

The milk collection corresponds to a vehicle routing prob-
lem. Also, if we consider different qualities of milk, it should
be considered as a multi-product vehicle routing problem.
Moreover, in this work, we study a special case that allows
the blending of products.

First and second authors acknowledge the support of FONDECYT project
11150787. Third author acknowledges support of FONDECYT project
11170102.

The main contributions of this paper are: (1) a local search
algorithm able to face problem real-world problem instances
of the milk collection problem with blending; (2) an evaluation
of the main parameters of the proposed iterated local search
approach ; and (3) a comparison with the results obtained by
several approaches from the literature.

In section II, we present the main variants of the vehicle
routing problem related to multi-product, blending, and milk
collection problems. In section III, we define the multi-product
as a blending version of the vehicle routing problem we face
in this work. Section IV describes the local search-based
approach we propose in this work. The approach is focused
mainly on facing large problem instances that cannot be faced
using exhaustive search algorithms. Section V describes the
problem instances used to evaluate our approach. We used
synthetic problem instances based on well- known instances of
the vehicle routing problem and real-world problem instances
based on the distribution of 500 milk farms from the south
of Chile. Moreover, we present the results obtained and a
comparison with the results of an exact method proposed
in [15]. Conclusions and future research lines are presented
in section VI.

II. LITERATURE REVIEW

The vehicle routing problems comprise a set of combinato-
rial optimization problems that consider a set of clients that
should be visited by a set of vehicles. Those visits can be
related to delivery or pick-up of goods (or a combination of
them). Trucks have limited capacity. Clients must be visited
at most once. The vehicle routing problem corresponds to a
generalization of the traveling salesman problem that considers
only one vehicle. As the traveling salesman problem, the NP-
hard nature of the vehicle routing has already been demon-
strated [10].

The classic vehicle routing problem can be extended in sev-
eral ways, modifying or adding some features. Some changes
can be related to features of the truck fleet that can be ho-
mogeneous or heterogeneous. Some additional features can be
related to time windows for the visits [20]. The time window is
usually considered a hard constraint, but some studies indicate
that it could be relaxed under complex scenarios [6]. Moreover,
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some variants consider dynamic requests [16], dynamic trans-
portation times [11], periodic visits [3], simultaneous pickup
and delivery [23] and split deliveries [1]. All these studies
consider the transportation of only one type of product. The
multi-product vehicle routing problem considers the pick-up
and delivery of products of different types. A reduction in
transportation costs can be obtained when different types of
products are transported in the same truck [12]).

Depending on the industry that tries to solve the vehicle
routing, new features can be included in the model: Cold
chain, time windows, compartments, and blending. In [14], au-
thors propose a vehicle routing problem with multiple-product
mixing to reduce costs and risks during the transportation of
several hazardous materials. In their work, they propose an
integer linear programming model is used to solve a real-
world problem instance of 167 nodes divided into 7 zones.
For the complex zone (32 nodes), the optimal solution was
found using between 300 and 50.000 seconds.

The first approaches to milk collection consider only one
type of milk [18], [22]. Moreover, when different qualities of
milk were considered, the compartment approach was used [4],
[8]. In 2015, Lahrichi [9] used tabu search to solve the
milk collection problem. In [5] and [19] authors used genetic
algorithms to solve the milk collection with different qualities
of milk, but without milk blending. In [15], the authors present
the milk collection problem with blending. Moreover, they
propose a three-step heuristic to solve real-world problem
instances. Moreover, it considers the blending of three different
qualities of milk and 100 trucks for collection. The approach
starts dividing the farms into clusters using clustering algo-
rithms, and then milk quotas and trucks are assigned to each
cluster. Finally, each cluster is solved using a branch-and-cut
approach. Best results were obtained when dividing the farms
into 13 geographic zones. It required around 16 hours to find
that solution. In section V, we compare our results with those
obtained in [15].

III. PROBLEM DEFINITION

The milk collection problem with blending involves deter-
mining routes for a set of trucks. Each route starts and ends in
the processing plant. During a route, each truck visits a set of
farms that produce milk of different quality. The milk income
obtained by each truck is proportional to the final quality of the
blended milk collected. When two types of milk are mixed,
the final quality of the total milk corresponds to the worst
milk type in the blend of the truck. The blending reduces the
quality of milk but is allowed because it reduces in greater
proportion the transportation costs. Each truck has a limited
capacity. In each visit, the truck collects all the milk produced
by the farm.

A quota of each type of milk must be satisfied with the
collection process. It is possible to mix different qualities of
milk both in the trucks and in the processing plant. Indepen-
dent of milk quotas, all milk should be collected because the
company works as a cooperative business.

The objective of the problem is to find the set of routes
for the trucks that satisfy the quotas of each type of milk
and represents the biggest difference between the total income
related to the milk collected and the transportation costs.

Fig. 1 shows an example of the milk collection problem
with blending.

Fig. 1. Small instance with 13 farms, three trucks, three types of milk, and
one processing plant.

The instance considers 13 farms that produce three different
qualities of milk. Circles represent farms that produce milk of
the best quality (A). Hexagons represent farms that produce
milk of good quality (B). Squares represent farms that produce
milk of regular quality (C). The diamond in the center of
the figure represents the processing plant. Truck routes are
displayed using arrows between nodes. Three trucks are used
in this problem instance; hence, three routes are displayed.

The first truck (dotted arrows) starts its path in the pro-
cessing plant, visits farms 4, 2, 1 and 5. At the end of its
route, it returns to the processing plant. This truck collects
only milk A. The second truck (solid arrows) starts its path
in the processing plant, visits farms 7, 3, 10, 13, 12 and 9,
and then returns to the processing plant. Farms 7, 10, 12 and
9 produce milk B and farms 3 and 13 produce milk A. The
milk produced by farms 3 and 13 is mixed in the truck with
milk B and, hence, degraded to this type of milk. Farms 3
and 13 are geographically distant from the other farms that
produce milk A. Hence they are visited by the truck that visits
nearby farms, generating a deterioration of their milk quality
but a more important reduction of transportation costs. The last
truck (dashed arrows) starts its path in the processing plant,
visits farms 11, 8 and 6, and then returns to the plant. Only
milk C is collected by this truck.

The mathematical model of the milk collection problem
with blending studied in this work can be found in [15].

IV. ITERATED LOCAL SEARCH APPROACH

In this work, we propose an iterated local search approach
to find high-quality solutions in reduced times to real-world
problem instances. The search process starts generating ran-
dom initial solutions. These initial solutions are allowed to
be infeasible regarding the capacity of trucks and the quotas
of each type of milk required by the processing plant. Then,



a local search process is performed until a local optimum
is found. A new initial solution is then created, applying
perturbations to the current best solution. Next, we explain
the main components of our iterated local search algorithm.
First, we explain the representation, the evaluation function,
and the initialization process. Then, we present the structure
of the iterated local search approach, and we explain in detail
its main processes.

A. Representation
Each solution considers a set of routes, one route for

each truck. Each route contains a sequence of farms to visit.
Fig. 2 shows the representation of the solution of the problem
instance shown in Fig. 1. Each farm is represented by its
identification number, as shown in Fig. 1.

Truck 1 4 2 1 5
Truck 2 7 3 10 13 12 9
Truck 3 11 8 6

Fig. 2. Representation of solution presented for problem instance in Fig. 1.

In order to reduce the stored information, the plant is not
included in the representation because it is always at the
beginning and end of each route.

B. Evaluation function
The quality of solutions is measured according to the

objective function presented in [15] and shown in equation (1).
It considers the difference between the income of the total
collected milk and the route costs. The income depends on
the resulting quality of each liter of milk after truck and plant
blending.

Max
∑
t∈T

∑
r∈T

αrvtr −
∑

(i,j,k)∈AK

ckijx
k
ij (1)

Here ckij represents the travel cost between nodes i and j using
a given truck k. αt represents the income by liter of milk of
quality t. Moreover, xkij is a binary variable that represents
that truck k travels from node i to node j and vtr represents
the volume of milk of quality t delivered to the plant that used
it as quality r.

Moreover, our evaluation function introduces two penalties.
The first penalty (Pq) ponders each unsatisfied liter of milk
for the plant quotas (lq). The second penalty (Pc) ponders
each liter of milk that exceeds the capacities of trucks (lc).
These penalties are incorporated in the evaluation function to
allow the algorithm to search infeasible areas of the search
space. Equation (2) shows the evaluation function used in our
approach.

f(s) =
∑
t∈T

∑
r∈T

αrvtr−
∑

(i,j,k)∈AK

ckijx
k
ij− Pq ·lq− Pc ·lc (2)

In order to ponder the infeasibility with respect to plant quotas,
blending is first checked. To fulfill the quotas of milk of lower
quality, leftovers of milk of higher quality are used. When the
quota of the best quality of milk is not satisfied, no possible
blend is checked.

C. Generation of initial solutions

The generation of initial solutions is focused on assigning
farms to trucks randomly. Thus, farms that produce the same
quality of milk are grouped. For this purpose, we first order
the trucks randomly in each solution. Then, the procedure tests
the allocation of each farm to each truck. There is a slack
parameter that controls the tolerance of the truck’s capacity
to the allocation of farms. It is initialized in zero, and it
is increased when farms do not fit in any truck. The slack
parameter allows the initialization procedure to generate high-
quality solutions in terms of quotas compliance but reducing
its feasibility in terms of truck capacities.

Algorithm 1 – Generation of initial solution
1: procedure RANDOM SOLUTION()
2: solution← empty
3: trucks← randomly sorted trucks
4: farms← farms sorted by type
5: slack ← 0
6: while farms > 0 do
7: fr ← select random (farms)
8: allocated← 0
9: for tr in trucks do

10: if fits(fr, tr, slack) and same(fr, tr) then
11: add in tr a visit to fr;
12: remove fr from farms;
13: allocated++;
14: break;
15: end if
16: end for
17: if allocated == 0 then
18: slack + = 10
19: end if
20: end while
21: return solution
22: end procedure

D. Iterated local search

Iterated local search [13] is a heuristic-based algorithm
that, starting from an initial random solution, searches on
neighborhood structures to find better quality solutions. This
process is repeated until no neighbor has better quality, i.e., a
local optimum is found. At this point, an iterated local search
algorithm performs a perturbation to the current solution and
repeats the process. The general structure of our approach is
shown in algorithm 2.

The algorithm considers two stopping criteria: the maximum
quality and the maximum execution time. Moreover, it requires
the setting of the penalties of the evaluation function (Pq and
Pc according to equation (2)) and the perturbation factor (pf )
that we will describe in section IV-D3.

The procedure starts defining the variables global local to
detect stagnation and extra local and intra local to store
the best solutions obtained from each local search process.
A random feasible solution is generated in line 2 according



to the procedure previously explained in section IV-C. The
best solution to the search process is initialized as the first
initial solution. An iterative process is performed between
lines 4 and 2. In this cycle, two local search procedures are
performed. In line 7 an extra routes swap procedure and in
line 8 and intra swap routes procedure. From each procedure,
the best solution is returned. The better procedure replaces
the current solution in line 14. Once this cycle is finished,
the quality of the local optimum found is compared with the
best solution found so far. Finally, in line 19, a perturbation to
the current solution is performed. This perturbation generates
a new solution performing random changes to the current
one. The perturbation level is controlled by the parameter
perturbation factor (pf ).

Algorithm 2 – Iterated local search
1: procedure ILS(max Q, max T , Pq , Pc, pf )
2: solution← random feasible solution();
3: best solution← solution;
4: while f(solution) < max Q and t < max T do
5: global local← false;
6: while ! global local do
7: extra local← extra routes ls(solution);
8: intra local← intra routes ls(solution);
9: best← best(extra local, intra local);

10: if f(best) > f(solution) then
11: solution← best;
12: else
13: global local← true;
14: end if
15: end while
16: if f(solution) > f(best solution) then
17: best solution← solution;
18: end if
19: solution← perturbation(best solution, pf);
20: end while
21: return best solution
22: end procedure

When one of the termination criteria is reached, the algo-
rithm returns the best solution found during the whole search
process (line 21).

1) Extra routes local search: This local search procedure
aims to generate new routes by swapping farms between
routes. At each step, a random farm is selected, and its visit
is changed to all possible positions in other trucks. The set
of all possible re-allocations to other routes is considered the
neighborhood of this movement. This process has O(n2) in
the worst case due to the use of a first improvement strategy.

2) Intra routes local search: This local search procedure
is focused on improving the quality of routes by changing
the order of their visits. The set of all possible orders using
the 2-opt movement is considered as the neighborhood of
this movement. This process has O(n2) in the worst case.
However, it implements a first improvement strategy and a
delta evaluation approach that compute only the changes in

the current solution to compute the improvement/deterioration
of neighbor solutions.

Algorithm 3 shows the pseudocode of the extra and intra-
routes local search procedures. In each case, the current
solution is received as a parameter. While not stagnation is
detected, the procedure generates and evaluates the neighbor-
hood of the current solution. If a better quality solution is
found the current solution is replaced, and the corresponding
search process is stopped.

Algorithm 3 – Extra/Intra local search
1: procedure LS(solution)
2: local← false;
3: while ! local do
4: local← true;
5: N ← neighborhood(solution);
6: for neighbor in N in random order do
7: if f(neighbour) > f(solution) then
8: solution← neighbour;
9: local← false;

10: break;
11: end if
12: end for
13: end while
14: end procedure

3) Perturbation: The perturbation process of iterated local
search aims to allow the search process to escape from local
optima. These perturbations are usually performed as random
modifications to the current solution. In our algorithm, pertur-
bations are performed by selecting a random farm and chang-
ing it to any position on any route. Thus, this modification
can produce external or internal changes in routes. Moreover,
it can generate infeasible solutions. Parameter pf controls the
number of perturbations and was implemented as a percentage
of the number of farms of the instance. Algorithm 4 shows the
pseudocode of the perturbation process of our approach.

Algorithm 4 Perturbation
1: procedure PERTURBATION(solution, pf )
2: perturbations← farms lenght ∗ fp
3: for pf do
4: r1← random route from solution
5: r2← random route from solution
6: node← random node from r1
7: pos← random position from r2
8: solution← move(solution, r1, r2, node, pos)
9: end for

10: return solution
11: end procedure

V. EXPERIMENTS AND RESULTS

In this section, we present the experiments and results
obtained from the evaluation process of our algorithm. The
main objectives of our experiments are:



• Evaluate the relevance of the main parameter of our
algorithm: perturbation factor.

• Compare the results obtained with the results published
in the literature.

• Analyze the convergence of or approach when solving
real-world problem instances.

A. Test instances

For the experiments, we consider two test sets. The first one
considers 37 well-known instances from the vehicle routing
problem adapted to the milk collection problem. This set
of problem instances is called small instances set. All these
instances consider three trucks. The second set was generated
from the data of 500 farms located in the south of Chile. This
set is called real-world instances set. All problem instances
consider three qualities of milk.

1) Small instances set: This test set is composed of 37
problem instances that were used by Paredes et al. in [15].
Augerat instances from a33 to a80 obtained from [2]. Taillard
instances from tai75A to tai75D and instances c50 and c75,
obtained from [21]. Fisher instances f45, f71 and f72 obtained
from [7]. Reinelt instances eil22 to eil76 and att48, obtained
from the TSPLib [17]. Details of these problem instances
can be found in [15]. According to [15] most of Augerat’s
instances can be solved using one truck for each quality of
milk. In a few cases, it is necessary to blend milk of different
qualities. Taillard and Fisher problem instances show higher
quotas than productions of low qualities milk. Hence, the
blending is mandatory in these cases. Reinelt’s instances show
low quotas compared to productions and capacities.

2) Real-world instances set: This set was built with the
information of 500 farms distributed along 9.600 km2 in
southern Chile. Fig. 3 shows the distribution of farms and the
processing plant. Circles, triangles, and squares differentiate
farms according to the quality of milk they produce. Daily

Fig. 3. Distribution of 500 farms in the south of Chile.

production of farms varies from 57 to 25.000 liters as shown

in the histogram in Fig. 4. From 500 farms, 313 produce milk
A (1.430.715 liters), 159 produce milk B (268.564 liters), and
28 produce milk C (100.000 liters of milk of quality C). The
income of milk A is 0, 015 per liter, 0, 0105 per liter for milk
type B, and 0, 0045 per liter of milk of quality C.

Fig. 4. Histogram of milk production in liters.

Table I summarizes the features of problem instances gener-
ated from the data of the 500 farms. For each problem instance,
we show its name, number of nodes, number of trucks, and
aggregated capacity of trucks. In [15] authors considered 100
trucks for this problem instance. This case corresponds to
r500-100 in table I. Based on the results obtained there, we
also studied three new versions of the instances varying the
number of trucks (72 trucks, 77, and 88 trucks). To generate
these problem instances, we discarded the trucks of lower
capacity.

TABLE I
REAL-WORLD PROBLEM INSTANCES FROM PAREDES-BELMAR [15].

Instance Size Capacities Number of trucks
r500-100 500 2.500.000 100
r500-88 500 2.320.000 88
r500-77 500 2.115.000 77
r500-72 500 2.015.000 72

B. Experimental setup

Since the stochastic nature of the proposed algorithm,
all the experiments were executed 30 times using different
random seeds. Tests were performed in an Intel Core i5-4690K
3.50GHz, with 16GB of RAM at 2.400GHz.

In all our experiments we fixed the termination criteria
based on the quality of the best solution and the time re-
quired by Paredes et al. in [15]. Even though the times are
not comparable, these can limit the execution effort of our
approach. Moreover, parameters Pc and Pq were both set to 10.
Using these values, the unfeasible solutions that are generated
in some cases quickly become feasible when submitted to the
local search process.



C. Components evaluation

Here, we analyze the relevance of the perturbation factor
parameter on the performance of our iterated local search
approach.

Tables II, III and IV show the performance of the iterated
local search algorithm on the small instances set, considering
four different values for pf : 0, 05; 0, 10; 0, 15 and 0, 20.
In each table, we show the name of the problem instance,
the best objective function and time (in seconds) obtained
in [15]. The time is displayed only for reference because
these experiments were performed in a different experimental
environment. Moreover, for each value of the perturbation
parameter, we show the gap for the objective function and
the time (in seconds). A ”-” in the gap column, indicates that
the best-known solution was reached in these cases. A ”-” in
the time column, indicates that the time required in these cases
to reach the optimum was much lower that one second.

TABLE II
RELEVANCE OF PERTURBATION FACTOR ON AUGERAT INSTANCES.

Instance [15] pf = 0, 05 pf = 0, 10 pf = 0, 15 pf = 0, 20
Objective time gap time gap time gap time gap time

a33 29.417 62 - - - - - - - -
a34 30.496 40 - - - - - - - -
a36 29.233 110 - - - - - - - -
a37 24.837 45 - - - - - - - -
a38 28.596 570 - 1 - 1 - 1 - 15
a39 30.808 110 - - - - - - - -
a44 38.771 101 - - - - - - - 2
a45 40.282 136 - - - - - - - -
a46 40.696 66 - - - - - - - -
a48 39.800 230 - - - - - - - -
a53 46.662 183 - - - - - - - -
a54 22.414 304 - - - - - - - -
a55 24.694 270 - - - - - - - 3
a60 25.041 3,5 1,8 3,5 1,8 3,5 1,8 3,5 1,8 3,5
a61 60.644 561 - - - - - - - -
a62 22.917 1.022 - - - - - - - 1
a63 24.447 2.930 - - - 1 - 2 - 1
a64 24.100 5.395 - - - 13 - 69 - 141
a65 28.046 478 - - - - - 1 - 3
a69 25.822 1.552 - - - 1 - 1 - 15
a80 29.977 5.626 - - - - - 2 - 21

As can be observed, the only problem instance that cannot
be solved in Augerat set was a60. No matter, the value of pf
used, the approach was unable to reach the optimum value. For
the other problem instances, it can be observed that increasing
the value of pf only increases the time required to solve it.

In the remaining problem instances, the same behavior can
be observed. There is a set of problem instances where the
increase of the perturbation factor only generates an increase
in solving time. Moreover, there is a set of problem instances
that the iterated local search cannot solve consistently. Table V
summarizes the gaps and execution times of these three sets.
Total gaps are equal in all cases showing that a change in pf
parameter does not affect iterated local search performance.
Moreover, no statistical differences were detected between
different values of pf tested. Concerning the execution times,
the best parameter value was pf = 0, 05 which generates

TABLE III
RELEVANCE OF PERTURBATION FACTOR ON TAILLARD AND FISHER

INSTANCES.

Instance [15] pf = 0, 05 pf = 0, 10 pf = 0, 15 pf = 0, 20
Objective time gap time gap time gap time gap time

c50 84 66,2 1,1 84 1,1 84 1,1 84 1,1 84
c75 13.760 46,2 8,1 13,8 8,1 13,7 8,1 13,7 8,1 13,7

tai75A 4.806 43,0 5,8 4,8 5,8 4,8 5,8 4,8 5,8 4,8
tai75B 15.056 48,2 - 4 - 21 - 123 - 203
tai75C 4.537 26,0 - 1 - 4 - 3 - 8
tai75D 2.645 43,9 3,2 2,6 3,2 2,6 3,2 2,6 3,2 2,6

f45 80 23,7 - - - - - - - -
f71 3.483 72,9 - 19 - 348 - 418 - 994
f72 3.659 72,1 - 2 - 1 - 9 - 21

TABLE IV
RELEVANCE OF PERTURBATION FACTOR ON REINELT INSTANCES.

Instance [15] pf = 0, 05 pf = 0, 10 pf = 0, 15 pf = 0, 20
Objective time gap time gap time gap time gap time

eil22 12 15,9 - - - - - - - -
eil23 6 7,2 - - - - - - - -
eil30 99 7,1 - - - - - - - -
eil33 58 20,4 - - - - - - - -
eil51 154 50,1 - - - - - - - -
eil76 1.700 91,5 - 1 - 6 - 20 - 31
att48 284 17,4 - - - - - - - -

enough changes on solutions that allow the process to escape
from local optimum efficiently.

TABLE V
SUMMARY OF PERMUTATION FACTOR EVALUATION.

Perturbation factor Total gap Total time
pf = 0, 05 19,9 24,9
pf = 0, 10 19,9 25,3
pf = 0, 15 19,9 25,5
pf = 0, 20 19,9 26,3

D. Real-world problem instances

We first present an analysis of the performance obtained
using the iterated local search approach proposed. Moreover,
in this case, we compare the performance of the algorithm with
the performance obtained using a hill-climbing algorithm. For
this, we replaced the perturbation step of the iterated local
search by a restart procedure. Each algorithm was executed
40 times using different random seeds. The maximum time
considered for these tests was set to 5.959 seconds. This time
was the maximum time used in [15] to find a local maximum
without using a clustering approach.

Fig. 5 shows the convergence of 40 executions of search
processes performed by both, hill-climbing and iterated local
search. Orange squares show the convergence of the hill-
climbing approach, and blue circles show the convergence of
the iterated local search. The black horizontal line in the upper
area shows the maximum objective value found in [15] using
the clustering approach. The gray line shows the maximum ob-
jective value found without applying the clustering approach. It
is clear from the plot that the performance of the iterated local
search algorithm is strongly superior to the performance of the
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Fig. 5. Convergence of problem instance r500-100 using hill-climbing
(Orange squares) and iterated local search (blue points).

TABLE VI
WILCOXON TEST: ITERATED LOCAL SEARCH VERSUS HILL-CLIMBING

Comparison Neg. Ranks Pos. Ranks Ties p-value
ILS vs HC 0 40 0 0.00

hill-climbing approach. Moreover, the hill-climbing approach
was unable to reach none of the maximum found in [15]. In
contrast, the iterated local search reaches the first maximum
(13.173) in around 100 seconds and the second maximum
(14.155) in around 1.000 seconds. Table VI shows the pair-
wise Wilcoxon tests comparing the performance obtained by
our iterated local search approach and the performance of
the hill-climbing algorithm. Negative ranks show the number
of times hill-climbing found a better solution than iterated
local search, positive tanks the number of times iterated local
search found a better solution than hill-climbing. For this,
we compare the quality of the best solution found in the 40
executions previously displayed in Fig. 5. Here we can observe
that our iterated local search approach shows a significantly
better performance than the hill-climbing algorithm.

1) Real-world instances comparison: The number of trucks
considered for a problem instance strongly affects the size of
the search space traversed by the algorithms. From the results
presented in [15], we observed that it was possible to find
feasible solutions using only 72 trucks. From this, we created
the set of problem instances shown in table I. Fig. 6 shows the
convergence of these problem instances. Yellow circles show
the convergence when solving the instance that uses at most
72 trucks; green circles show the instance that considers 77
trucks; violet circles the instance that considers 88 trucks and
blue circles the instance that considers 100 trucks. From these
results, is it clear that reductions in the number of trucks allow
the iterated local search approach to find high-quality solutions
in a short time. In this case, the instance that considers only
72 trucks reaches the best objective function in around 500

TABLE VII
WILCOXON TEST: ITERATED LOCAL SEARCH FOR REAL-WORLD PROBLEM

INSTANCES.

Comparison Neg. Ranks Pos. Ranks Ties p-value
r500-100 vs r500-88 20 20 0 0.662
r500-100 vs r500-77 28 11 1 0.006
r500-100 vs r500-72 20 20 0 0.762
r500-88 vs r500-77 24 16 0 0.256
r500-88 vs r500-72 23 17 0 0.793
r500-77 vs r500-72 24 16 0 0.256

seconds.
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Fig. 6. Convergence of real-world problem instances using iterated local
search.

Table VII shows the pair-wise Wilcoxon tests comparing the
performance obtained by our iterated local search approach
when solving the four variants of the real-world case studied.
For this, we compare the quality of the best solution found
in the 40 executions previously displayed in Fig. 6. Here
we can observe that there is only one comparison presenting
a significant difference. The iterated local search solving
the instance that uses 77 trucks shows a significantly better
performance the base case solution. Moreover, in most cases,
there is no important difference between the performance
of our approach when solving these four different problem
instances.

2) Long term convergence: Since the optimum value of
real-world problem instances is unknown, we performed a
convergence study of the performance of iterated local search
in two problem instances considering an extended execution
time of 26.500 seconds. Fig. 7 shows the convergence of
instances r500-72 (yellow circles) and r500-100 (blue circles).
In our experiments, the best value obtained for the instance
r500-72 was 14.844 after 23.361 seconds, and for the instance
r500-100 was 14.846 after 26.432 seconds. Even when these
execution times can be considered large, the time required
in [15] to find its best value of 14.155 was 57.962 seconds.
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Fig. 7. Convergence of problem instances r500-72 and r500-100 using iterated
local search with a maximum execution time of 26.500 seconds.

VI. CONCLUSIONS & FUTURE WORK

Vehicle routing problems have been studied in specialized
literature and practitioners for a couple of decades. Today it
is still a research goal because of its high relevance in the
supply chain of companies. The milk collection is one type of
vehicle routing problem that has a special feature related to the
multiple-product collection. Moreover, in this article, different
qualities can be blended in the same truck, generating losses in
income but a greater reduction in transportation costs, resulting
in better profits for the company. Some exhaustive approaches
have been formulated to face this problem. These approaches
have solved small instances in quite reasonable times but can
not solve real-world large size problem instances.

In this work, we proposed a local search-based algorithm
to find high-quality solutions to large size problem instances
of the milk collection problem with blending. Our iterated
local search procedure implements two local search proce-
dures allowing changes intra and inter routes generating the
diversification and intensification the search process requires.
Also, it implements a perturbation process able to generate
variations repairable by both types of local search. We tested
our approach using two sets of problem instances. From
small instances, we can conclude about the abilities of our
approach for solving these small instances in very reduced
times. Moreover, from large size instances, we emphasize the
abilities of our approach in finding better quality solutions than
an exhaustive approach. A large size instance can be run in a
short time if a requirement is changed (e.g., milk production,
available trucks, costs, incomes, etc.)

As future work, we plan to improve our local search-
based approach to explore more specialized approaches that
can reach better solutions for large size problem instances.
Moreover, we are interested in studying other versions of
blending, were the result of mix depends on the concentration

of microorganisms in milk and their proportions in the blend.
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