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Abstract—We consider a dynamic bi-objective vehicle routing
problem, where a subset of customers ask for service over
time. Therein, the distance traveled by a single vehicle and
the number of unserved dynamic requests is minimized by
a dynamic evolutionary multi-objective algorithm (DEMOA),
which operates on discrete time windows (eras). A decision
is made at each era by a decision-maker, thus any decision
depends on irreversible decisions made in foregoing eras. To
understand effects of sequences of decision-making and interac-
tions/dependencies between decisions made, we conduct a series
of experiments. More precisely, we fix a set of decision-maker
preferences D and the number of eras nt and analyze all |D|nt

combinations of decision-maker options. We find that for random
uniform instances (a) the final selected solutions mainly depend
on the final decision and not on the decision history, (b) solutions
are quite robust with respect to the number of unvisited dynamic
customers, and (c) solutions of the dynamic approach can even
dominate solutions obtained by a clairvoyant EMOA. In contrast,
for instances with clustered customers, we observe a strong
dependency on decision-making history as well as more variance
in solution diversity.

Index Terms—Transportation, vehicle routing, decision mak-
ing, multi-objective optimization, combinatorial optimization,
orienteering, dynamic optimization

I. INTRODUCTION

In industry, especially logistics [17] and 24/7 production
[26], many decisions must be made under uncertain knowl-
edge about future events. Production planning problems may
include tasks appearing over time, which is often expressed
via release dates [30], while logistic problems like the trav-
eling salesperson problem (TSP) may be augmented with
dynamically changing traffic [11] or – more abstract – with
dynamically changing distance matrices [33].

Here, we consider the scenario that repeated decision re-
quests are not independent from the previous ones; rather, ev-
ery decision reduces the number of possible actions/decisions
in future affecting the quality of the best possible solution that
can be achieved. If optimization methods are used to support
the decision process, an optimizer could iterate for short
time intervals (eras). After each era, a human decision maker
(DM) may decide whether the proposed solution is executed
or not. This situation is studied in the field of interactive
optimization [23] (headword: human-in-the-loop).

In analyzing the quality of optimization algorithms it is
quite common to replace the human DM by a software agent
(automatic decision maker) [2] to speed up experiments or

to make it amenable to a theoretical analysis. The software
agent may obey some simple guidelines or even a complex
set of user-supplied preferences to arrive at a decision. The
situation becomes even more complex in case of multiple
objectives [10]; if the multi-objective optimizer uses the a-
posteriori approach, the (automatic) DM must additionally
decide, which non-dominated solution should be picked from
the Pareto-front.

Here, we also take the approach of replacing the human by
an automatic decision maker in case of a dynamic bi-objective
vehicle routing problem, where the goal is to minimize both
the distance traveled by a single vehicle and at the same
time minimize the number of unvisited customers which
ask for services over time. This special variant of the TSP
problem includes the additional problem of subset selection
of serviced customers and is similar to the so-called TSP with
profits [1]. However, the problem considered here comprises
a dynamically growing set of customers, who request service
over time.

It is important to note, that the focus of this work is not on
the performance of the optimization algorithm but (1) on the
impacts of specific (automatic) decision making rules on the
final solution and (2) the visualization of subsequent decisions
and solutions as a preliminary step towards an (interactive)
decision support system. The dynamically generated solutions
are compared to the solution of the so-called clairvoyant
optimizer which has complete knowledge about the future,
i.e., request times of dynamic customers. In our study we run
experiments for all possible combinations of a fixed set of
automatic DM decision rules to scrutinize as many aspects of
the decision rule as possible.

The work is organized as follows: Section II details the dy-
namic multi-objective problem before describing the dynamic
multi-objective evolutionary optimization algorithm support-
ing the decision maker in Section III. The experimental
setup (including the automatic decision maker) and results are
described in Section IV. The conclusion and the prospects
of this work towards inclusion in interactive decision support
systems are presented in Section V.

II. PROBLEM DESCRIPTION

We consider a dynamic vehicle routing problem for which
the overall goal is to have a single service vehicle visiting
customer locations from the set C of all customer locations.
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The dynamic character of this problem originates in the
time-dependent appearance of customers from C. The set of
customers C \ {1, N} = Cm ∪Co is divided into two disjoint
subsets: Mandatory customers Cm are known at time t = 0
and must be visited by the vehicle while dynamic customers
c ∈ Co ask for service at request time rt(c), t > 0 as time
passes by. They can either be visited or not. In a real-world
context, we may imagine the vehicle as a customer service
vehicle with fixed orders and spare time to handle dynamically
emerging service requests.

We assume that the vehicle leaves w.l.o.g. at a start depot
1 ∈ C and ends at an end depot N ∈ C.1 The optimization
task is to (1) minimize the overall tour length and at the
same time (2) minimize the number of unserved dynamic
customers. Undoubtedly, the goals conflict with each other and
we are faced with a complex dynamic combinatorial multi-
objective optimization problem (MOP), for which we strive
to find a set of (near) optimal compromises. Here, we adopt
the notion of Pareto-dominance for a definition of optimal
compromise solutions: for two vehicle tours x and y we say
that x dominates y, if x is not worse in any objective and
strictly better in at least one objective [12]. The set of all
non-dominated solutions is termed the Pareto-set, its image
in the objective space is called the Pareto-front. Hence, in
our scenario for each point in time t ≥ 0 a bi-objective
problem needs to be solved and the problem can be fully
described by the sequence of all trade-off solution sets. Since
time is continuous, this approach is infeasible in practice. A
common approach is to discretize the time horizon, i. e., the
time interval in which dynamic customers pose requests, into
a number of phases nt, so-called eras, of length ∆ ∈ R≥0

(see, e. g. [31]).
At the beginning of each era j time t = (j − 1) · ∆

has already passed and we may consider the set Cm ∪ Co≤t,
with Co≤t being the set of dynamic customers, which asked
for service before time t, as a static MOP. Tackling this
static MOP with the algorithm of our choice results in an
approximation of the Pareto-set. Finally, a decision maker
(DM) is given the resulting set of trade-off solutions in each
era j and has to decide on how to guide the vehicle on the
road until the beginning of the next era where then, more
knowledge about dynamic customers becomes available. A
crucial aspect here is that in each era j > 0 time already passed
and consequently the vehicle might already have visited a
subset of mandatory and/or optional customer locations. These
decisions are irreversible and (1) may have a strong impact on
the achievable solution quality (this is because a part of the
solution space may become infeasible) and (2) exhibit a strong
dependence on the decisions made by the DM in foregoing
eras.

Static formulations of bi-objective vehicle routing problems
or so-called traveling salesperson problems with profits [14]
have been addressed by several authors so far, e. g. proposing

1This assumption is more general than starting and ending at the same
depot, although a circular tour may be the normal case in real-world scenarios.

exact ε-constraint methods [4], approximations schemes [15]
or meta-heuristics [1], [20]. Additionally, dynamic decision
making gained some attention in the context of vehicle
routing problems in general [24], [29]. However, work on
the intersection, i. e. dynamic multi-objective vehicle routing
problems is still rare. Braekers et al. [9] show in their extensive
literature review that less then 3% of the literature between
2009 and 2015 address dynamic aspects. According to them,
mentionable research includes work by [32], [22], [21], [18],
and [3]. This list may be extended by mostly evolutionary
approaches of [28], [16]. Although of dynamic nature, the
problem formulations have very diverse characteristics like
moving service time windows, multiple vehicles, or changing
structures of the network. Own work addressed a clairvoyant
and non-dynamic variant of the here discussed problem with
an evolutionary multi-objective algorithm (EMOA) [25]. We
enhanced the EMOA in a follow-up work by local search
integration into the evolutionary search process [7]. This
clairvoyant approach is considered here as reference approach.
A sophisticated dynamic variant was presented in [8].

III. THE DYNAMIC MULTI-OBJECTIVE EVOLUTIONARY
ALGORITHM

We adopt the DEMOA introduced in [8]. Note that the
focus of this work is on the influence of subsequent decision-
making. Therefore, and due to space limitations, we omit most
implementation details and present the working principles. For
detailed pseudo-code we refer the interested reader to [8]. Also
the implementation is available in a public GitHub repository2.
We advice the reader to consult Fig. 1 for visual support while
reading the following text.

The input for the DEMOA is a problem instance C =
{1, N} ∪ Cm ∪ Co, a time resolution ∆, a number of eras
nt and a population size µ. The optimization process starts at
time t = 0 and the algorithm treats the problem as a sequence
of nt static MOPs (see Section II). Note however, that the first
era is a special case, since Co≤t = ∅, i. e., no dynamic requests
arrived so far, and there is no possibility to vary the second
objective. Hence, in the 1st era, a single-objective Hamiltonian
path problem (HPP) on the set {1, N}∪Cm has to be solved.
An approximate solution is calculated with the state-of-the-art
solver EAX [27] for the symmetric Travelling-Salesperson-
Problem (TSP) after reducing the HPP to a symmetric TSP
problem by a sequence of transformations [19]. Note that in
the first era the decision-maker has no choice as there is just
a single solution (see era 1 in Fig. 1). In subsequent eras
j = 2, . . . , nt time t = (j − 1) · ∆ already passed, Co≤t is
non-empty and as a consequence the problem turns into a
true multi-objective problem. Here, the DEMOA calls a static
EMOA whose internals are discussed in the following. The
EMOA initializes a multi-set P of µ candidate solutions. Each
candidate solution x ∈ P is fully described by three vectors of
length N − 2. A binary vector x.b = (b2, ..., bN−1) indicates
which customers are to be visited by the service vehicle (note

2https://github.com/jakobbossek/dynvrp



that the depots 1 and N need to visited in any case and are
thus not encoded).3 Another vector x.t holds a permutation of
Cm ∪Co = {2, . . . , N − 1}, i.e., the actual tour where during
fitness evaluation only those entries i with bi = 1 are con-
sidered. Finally, the vector x.p = (p2, . . . , pN−1) ∈ [0, 1]N−2

stores per-customer mutation probabilities. If x.pi = 0, the
corresponding customer is fixed and not affected by mutation.
While in the second era individuals are generated at random
(fixing mandatory customers by setting x.bi = 1 and x.pi = 0
for i ∈ Cm), in eras j ≥ 3 more effort is put into the
initialization to transfer as much information from the solution
set of the preceding era j−1 as possible. The challenge here is
that once era j ≥ 3 starts, the vehicle may already have visited
dynamic customers with request times rt(i) ≤ (j−2) ·∆ (this
is illustrated by means of example in Fig. 1 last column. Here,
bold edges show the fixed, already driven initial tour) given
by the decision at the end of the previous era. Fig. 1). As a
consequence, those customers cannot be inactive and hence
need to be treated as mandatory customers by the EMOA in
all upcoming eras. Moreover, the initial tour, i.e., the part of
the tour that has already been driven by the vehicle, needs to
be identical for all feasible individuals. Here, the EMOA relies
on a sequence of repairing mechanisms.

Given the population P the algorithm continues by adopting
a (µ + λ)-strategy with NSGA-II [13] survival selection.
Variation is based on feasibility-preserving mutation. Here,
each bit x.bi is flipped independently with probability pi.
Subsequently, swap-mutation alters the permutation string x.t:
with probability pswap ∈ (0, 1) a sequence of σswap exchanges
is performed. In addition, every k generations the population
is boosted towards shorter tours by applying EAX local-search
where the EMOA accounts for the fact that certain nodes have
already been visited. Once the stopping condition has been
triggered, e.g., a maximum number of generations has been
reached, the solution set is presented to a decision-maker who
has to decide on exactly the solution which determines the
adaptation of the ongoing vehicle route and which serves as
a template for the initialization of the population in the next
era.

IV. COMPUTATIONAL EXPERIMENTS

A. Experimental Setup

In order to gain insights into the decision making process
we conducted a two-stage study. In a first series of experiments
we perform a systematic study of decision making strategies.
Subsequent experiments focus on a selected sample of decision
making strategies on a broader set of instances in order to
confirm the lessons learned.

For the exhaustive experiments we selected three struc-
turally different instances from the pool of instances intro-
duced in [25]: one instance with customer locations spread

3We want to point out that the current implementation knows the total
number N of customers in advance for legacy reasons. However, it only
operates on those customers, who asked for service before time t. Clearly, it
is straight forward to adapt the implementation into a true black-box scenario,
where the number of dynamic requests is not known a-priori.
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Fig. 1. Exemplary illustration of three eras of the DEMOA. The scatterplots
show the Pareto-front approximations at eras j = 1, 2, 3. Here, solutions
selected by the DM are highlighted ( ). Below, the selected tours are
visualized (depots , mandatory customers and dynamic customers ).
The thick solid path highlights the fixed partial tour already driven by the
vehicle at the beginning of the corresponding era. Note that in this example
solutions with three unvisited customers are infeasible in the 3rd era since
one dynamic customer is already served.

uniformly at random in the Euclidean plane and two clustered
instances with two and three groups of instances respec-
tively. All instances share |Cm| = 25 mandatory customers
(including depots) and |Co| = 75 dynamic customers with
N = 100 customers in total. For details on the generation
process we refer to [25]. We fixed the number of eras nt = 7
and considered three different ranking based rules for the
decision maker in each era. For ranking, the solutions of
the approximation set Pi = {p1, . . . , pµ} obtained in era i
are sorted in ascending order of tour length and therefore
in descending order of the number of unvisited customers.
Let p(1) < p(2) < . . . < p(µ) denote this order. The d-
rank decision maker (d ∈ [0, 1]) then decides for the solution
p(k) with k = dd · µe. Note that small values of d favor
solutions with short tours whereas values closer to 1 put a
higher emphasis on keeping the number of unvisited dynamic
customers low. Our setup considers d ∈ D = {0.25, 0.5, 0.75}
in each era4; we use a tuple notation for sequences of decision
maker decisions, termed decision paths in the following, e. g.,
(0.25, 0.25, 0.25, 0.25, 0.75, 0.75, 0.75) describes the decision
path where the DM puts more emphasis on short tours in the
first four eras but decides to cover more dynamic requests in
the last three eras.

We run experiments for all |D|nt = 2187 decision paths,
i. e., we cover all kinds of decision scenarios. At each stage,
five independent runs were performed for each of the three
instances resulting in a set of 32 805 experiments in total.

The results of this “exhaustive” experimentation served as
starting point for subsequent experiments on a broader set of
benchmark instances; all 75 instances with N = 100 intro-
duced in [25]. However, due to combinatorial explosion only
a small subset of four decision paths (with different outcomes

4We do not consider the extremal values 0 and 1 for two reasons: (1)
to avoid a combinatorial explosion of possible configurations for exhaustive
evaluation; (2) extremal decisions are usually unrealistic as they either imply
to ignore all optional customers (0) or to accept every optional customer (1).



TABLE I
DYNAMIC EMOA PARAMETERIZATION.

Parameter Setting

Generations per era 65 000
µ, λ 100
pswap 0.6
σswap N/10 = 10

Local search at generations initial, half-time, last
Time limit for local search 1s

in the last era) were considered here for an extensive analysis
(for details on the selection process, see Section IV-B). For
each combination of problem instance and decision path we
run the DEMOA 25 times independently in this series of
experiments. The parameter configuration of the DEMOA
follows the suggestions in [8] and is listed in Table I.

Fig. 2. Union of all final decisions made across the complete set of all
considered decision maker strategies. Solid and dashed lines indicate the mean
upper bound ± three times the standard deviation of the number of unvisited
customers in the last era (based on all decision maker strategies). Small black
dots represent the Pareto-front approximation of the clairvoyant EMOA.

B. Results

Next, we investigate the influence of considered graph
topologies as well as the implications of final and intermediary
decision making onto the solution development over time.
Therefore, we perform a step-wise narrowing of perspective
to focus on interesting insights for our considered instances,
topologies, and decision strategies in the context of our ex-
haustive experimental results.

1) General observations: In Figure 2 we provide a first
overview of the results for all decisions in each era and for all
|D|ntdecision paths for the uniform instance and the instance
with two clusters5. Note that in order to compare our results
to the clairvoyant EMOA approach – either visually or by
performance metrics – we transformed the results of all eras

5Results for the third instance with three clusters are omitted here since
these are very similar to those of the 2-cluster instance.

TABLE II
MEAN VALUES AND STANDARD DEVIATIONS OF TOUR LENGTHS AND THE
NUMBER OF UNVISITED CUSTOMERS OF THE SOLUTIONS IN THE LAST ERA

SPLIT BY THE INSTANCE TYPE AND FINAL DECISION IN THE LAST ERA.

Tour length #Dyn. customers

Type Last decision Mean Std Mean Std

0.25 997.7 59.94 22.495 5.7486
0.50 1070.3 57.16 15.645 4.31482 clusters
0.75 1174.9 65.14 8.105 2.4266

0.25 1227.6 28.61 37.654 0.7662
0.50 1416.4 38.62 24.854 0.9167uniform
0.75 1657.1 42.32 12.069 0.8743

to the a-posteriori solution space, which covers the whole
potential of arbitrary decision paths.6

From this high-level perspective, we can identify an interest-
ing property of solution distribution, which not only depends
on the applied decision strategies but is strongly related to the
considered topology of the instances: For clustered topologies,
tour length tends to expose larger variability in later eras, and –
on a first glance – no matter which combination of decisions is
used, while in uniform topologies distinct clusters of solutions
represent the different weighting of decision strategies.

2) Topology and final decision making influence: The ob-
served results can be explained by a deeper analysis of the
experiments. Here, we focus on two representative topologies
consisting of two clusters and a uniformly distributed set of
customers, respectively. For both topologies, each instance,
and all decision maker strategies, we determine the upper
bound of unvisited customers for the last era and compute the
mean upper bound as well as standard deviation. More detailed
values for mean and standard deviation of the upper bound of
both objectives – and split according to the final preference
– are available in Table II. Each upper bound of unvisited
customers is determined by the already visited customers on
the traveled partial tour, which is the result of decisions made
during previous eras.

For clustered topologies (ref. to Figure 2, left) we find a
low mean upper bound and large standard deviation, while
for the uniform topology the mean upper bound of unvisited
customers is rather high with little variance. Consequently on
average, for clustered topologies, the decision maker prefer-
ence at the onset of the last era allows only little flexibility
for final solutions. This leads to the stronger focus on the
lower right area of objective space. For uniform instances,
the on average larger upper bound of unvisited customers
leads to a larger and less flexible range for diverse forming
of (intermediary) solutions over all eras and finally to more
distinct clustering solutions in objective space.

6We explain this transformation in more in detail here: in the first era, we
have zero dynamic requests and consequently zero unvisited dynamic cus-
tomers. However, in the a-posteriori solution space this solution corresponds
to |Co| unvisited dynamic customers. Therefore, in order to make solutions
comparable, a linear transformation of the second objective to the clairvoyant
EMOA solution space is required.



Fig. 3. Union of all decisions made in last era colored and shaped by
the decision maker preference in the last era. Small black dots represent the
Pareto-front approximation of the clairvoyant EMOA.

The coloring of final solutions with respect to the final
decision maker preference in Figure 3 provides additional
insights into the partitioning of the exhaustively generated
solutions. In fact, we find that in both cases the last decision
preference has significant influence on the solution position.
For the uniform instances, however, the preferences are more
distinct due to more certain planning flexibility in the final
era.

From Figure 3 and Table II we also conclude that solutions
for uniform topologies expose less variance in quality and
converge closer to the a-posteriori solution fronts determined
by application of the clairvoyant EMOA. As a consequence,
more solutions of the dynamic approach individually outper-
form solutions on the a-posteriori front.7 This effect is rooted
in decreasing complexity of the tour planning component
of the bi-objective problem under the successive dynamic
decision making [8]. Due to decision making over time eras,
partial tours are already completed such that the combinatorial
decision space shrinks to the still available customers leaving
the tour planning problem with less degrees of freedom.
Clearly, this observation holds for clustered instances, too.
Here, the mean upper bound is even lower. However, in the
clustered setting the service vehicle might need to travel back
and forth between clusters in order to fulfill the decision
maker preferences which oftentimes might lead to enlarged
tour length in particular in late eras and a high preference on
the second objective. We will catch up on this important aspect
later on.

3) Intermediate decision making: While so far we analyzed
the final decision maker preference for some instances, the
following stage of investigation is focused on the influence
of intermediary decisions. A subset of decision paths, which
led to the non-dominated as well as completely dominated
solutions in the last era over all considered topologies is
selected. For this selection, we detail the effects of decision

7The a-posteriori front used here was achieved as non-dominated set of the
union of ten clairvoyant EMOA runs.

steps that yielded very good and very bad results, compared
on final solutions. For the following discussion, we investigate
the results up to specific solution phenotypes, i. e., the devel-
opment of specific tours over time. We present detailed results
for two exemplary but representative out of 75 instances.

Figure 4 provides detailed insight into the development of
solutions under different DM strategies. In order to visualize
the effect of the permutation of decisions inside a strategy (and
also due to space limitations), we restrict ourselves to one
uniform topology and one topology with two-clusters again
and show results of single representative runs. At the top of
the figure we show the non-dominated solutions of all eras
of these topologies regarding four strategies that follow (a)
only 0.25 preferences, (b) first four times 0.25 and then three
times 0.75 preferences, (c) the inverse strategy to (b), and (d)
only 0.75 decisions. Below the non-dominated solutions, we
visualize the development of exemplary tours of the solutions.
We omit era 1, where the vehicle has not traveled yet and also
omit some intermediate tours to show a second example tour.
For each tour, the decision path via intermediate solutions is
included into the respective top figure and annotated with the
era number.

For the clustered topology, we find a strategy-sensitive
behavior that is related to when (in which era) preferences are
used. The overall observation is that preferences, which do
not put a strong focus on minimizing the number of unvisited
customers (represented by a sequence of only 0.25 preference)
lead to rather short tours (according to the second objective).
In these tours, the vehicle transfers to the other cluster only
once. Introducing a strong preference for visiting all customers
(represented by a sequence of only 0.75 preferences) forces
the vehicle to transfer multiple times between clusters, see
Figure 4 bottom right plot. This behavioral changes are also
observable for planned tours, when preferences mix, e.g., when
a strong preference for visiting many customers is only present
at the beginning or the end of the strategy sequence. In many
sequences with changing decision preferences (not shown
here as figure), we observe that planned transfers in early
eras vanish in following eras (due to 0.25 preferences later).
From this behavior we conclude, that intermediary preference
ordering can have decisive influence on the solution generation
process for clustered instances. With respect to minimization
of unvisited customers and dynamic appearance of customers,
decision maker preferences have different degrees of greedi-
ness: a 0.25 preference is far less greedy than a 0.75 strategy
and often allows the vehicle during tour planning to remain in
the current cluster, as far fewer customers need to be served.

Introducing a more greedy strategy often forces a vehicle
transfer to serve the preferred amount of customers. The
observations however show, that flexible re-planning is still
possible as long as the partial tour has not been realized.

Considering the exemplary but representative results from
Figure 4, we can conclude, that strategy preferences are less
important compared to the clustered case. As mandatory and
dynamic customers are uniformly distributed, planned tours do
not need to be changed extensively in order to visit or ignore



Fig. 4. Pareto-front approximations for eras 2, 5, 7 and two selected decision maker strategies (top row plots) for an exemplary uniform instance (left side) and
an instance with two clusters (right side) with 50 dynamic customers. Colored horizontal lines in the top plots show the upper bound for unvisited customers
in the respective era. Numeric labels i ∈ {1, . . . , 7 = nt} indicate the decision made by the DM in the corresponding era. In the rows below phenotypes of
the decisions are plotted for the respective era aus DM stratigies.

a customer. When we switch preferences from less greedy to
more greedy, customers “on the way” can be included. The
same way, dynamic customers can be excluded again from a
planned tour, often without significant changes in the overall
tour length.

The described effects for clustered and uniform topologies
can also be observed in the resulting non-dominated fronts for
the eras. For clustered topologies, the front usually exposes
a gap, which corresponds to the additional traveled distance
in size. It appears, that solutions cannot be realized without
transferring the vehicle multiple times. Such case usually does
not happen for uniform topologies such that the approximated
efficient front does not expose a gap.

4) Performance measurement: In order to support our ob-
servations from the previous paragraphs we continue with
indicator-based performance assessment of the DEMOA in
comparison to the approximation sets calculated by the clair-

voyant EMOA. We aim to quantify the quality of the overall
final approximation set in the last era. We use the hypervolume
indicator IHV(P,R) [34] to measure the space enclosed by a
reference set R (non-dominated set of the union of clairvoyant
EMOA approximation and all front approximations for the
problem instance obtained by the DEMOA) and the DEMOA
approximation P . We restrict our analysis to the DEMOA
approximation sets of the final era only. We take account
for the upper bound that restricts the possible number of
unvisited dynamic customers in the last era as follows: only
solutions of the clairvoyant EMOA whose second objective
is lower or equal to the maximum upper bound in the last
era for each instance over all 25 performed runs are taken
into consideration. We want to stress that this comparison
– and the one in the next paragraph – is obviously highly
unfair, i. e., (1) the clairvoyant EMOA has a clear advantage
over the dynamic approach due to its a-priori knowledge of



Fig. 5. Distribution of hypervolume-indicator IHV (lower is better) for 20 out of 75 randomly sampled instances. The white diamonds indicate the HV-indicator
for the union of 10 runs of the clairvoyant EMOA, i. e., the baseline.

request times and (2) the solutions of the clairvoyant might
not even be feasible anymore in the last era. Hence, we do
not expect the DEMOA to beat the clairvoyant EMOA by
any means. Instead, our goal is to learn how close we can
approach the clairvoyant solutions with the dynamic approach.
Figure 5 shows the distributions of the HV-indicator split by
instance and the four DM-strategies discussed before. We show
results for a random sample of 10 uniform and 10 clustered
instances. The plots confirm our previous observations: in
the case of customers distributed uniformly at random in the
Euclidean plane the final approximation sets are close to the
reference set. In contrast, for clustered topologies the situation
is different. Here, as the vehicle possibly needs to transfer
between clusters multiple times, the oracle-perspective of the
clairvoyant EMOA is much more advantageous and has a
much larger impact. In other words, the HV-indicator is less
close to the one of the clairvoyant EMOA.

V. CONCLUSIONS

For bi-objective vehicle routing, problem dynamics have
to be efficiently addressed while suitable decision maker
strategies accounting for the trade-off of minimizing overall
tour length and maximizing the number of served customers
are required simultaneously. We build upon previous work
which provides a sophisticated dynamic EMOA hybridized
with local search and specifically investigate the influence of
respective decision maker preferences and strategies.

As vehicle tours for a given problem instance evolve over
the focused time horizon, decision maker preferences regard-
ing both objective functions may change in the course of

the day. We assume that the decisions for possibly altering
a predefined tour based on new customer requests have to
be made at predefined time intervals which of course subse-
quently impacts optimization algorithm behavior and thus also
influences solution selection decisions which have to be made
at later stages.

In systematic experiments, we investigated the influence
of decision paths, i.e. sequences of (possibly different) deci-
sion maker preferences and solution selections. We present
a decision support system enhanced by informative figures
visualizing the vehicle tour over time and the characteristics
of the candidate trade-off solutions at the points of required
decisions.

We confirm the reasonable suspicion that decision making
is sensitive to the underlying problem topology. For clustered
topologies, intermediate decisions should be considered care-
fully, as too greedy approaches can lead to multiple vehicle
transfers between clusters and massively deteriorate solution
quality. For uniform instances, sensitivity is low and the
last decision for the optimal trade-off solution is of major
importance for final tour quality. Consequently, it is important
for the decision maker to estimate the customer location
topology for adjusting the greediness of decision making.

Future work directions are manifold with the most promis-
ing being listed below:

• The problem can be extended to a more realistic scenario
which includes multiple vehicles or vehicle loading and
unloading during service. Thereby, properties and chal-
lenges of the traveling thief problem [5], [6] are included



into consideration.
• We see much room for algorithmic improvements. The

insights gained in this paper suggest that biased mutation
(e. g., activating customers in the current cluster with
higher probability) may have beneficial effects on the
solution quality of the DEMOA. Furthermore, utiliz-
ing probabilistic models to predict upcoming customer
requests can be leveraged to achieve more thoughtful
algorithmic tour planing.

• Last but not least the major goal is to refine the presented
approach in terms of providing tool-support for informa-
tive interactive decision making in this highly dynamic
environment. Moreover, we will include predefined agent-
based decision maker paths into the algorithm which
adapt to problem topology characteristics via automat-
ically extracting problem features and which can be
adjusted if needed.
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