
Self–organizing Migrating Algorithm for the Single

Row Facility Layout Problem

Pavel Krömer

Department of Computer Science

VSB - Technical University of Ostrava

Ostrava, Czech Republic

pavel.kromer@vsb.cz

Jan Platoš

Department of Computer Science

VSB - Technical University of Ostrava

Ostrava, Czech Republic

jan.platos@vsb.cz

Václav Snášel

Department of Computer Science

VSB - Technical University of Ostrava

Ostrava, Czech Republic

vaclav.snasel@vsb.cz

Abstract—Single row facility layout problem is an important
problem encountered in facility design, factory construction,
production optimization, and other areas. At the same time, it is
a challenging NP–hard combinatorial optimization problem that
has been addressed by many advanced algorithms. In practical
scenarios, real–world problems can be cast as single row facility
location problem instances with different high–level properties
and efficient algorithms that can solve them are sought. This
work uses a variant of the self–organizing migration algorithm
developed recently for permutation problems to tackle the single
row facility layout problem and evaluates its accuracy and
performance.

Index Terms—single row facility layout problem, combinatorial
optimization, self–organizing migrating algorithm, evolutionary
computation

I. INTRODUCTION

Facility layout problems form a family of challenging tasks

related to the design and planning of complex manufacturing

facilities [1]. In general, they look for an optimal arrangement

of elements (work and/or repair stations, production support

facilities, equipment, machines, robots, etc.) to reduce total

production costs.

Single row facility layout problem (SRFLP) is a linear

placement problem that seeks optimal linear ordering of fa-

cility elements to minimize the sum of distances between

each pair of them [1]. The SRFLP is an appealing prob-

lem with a number of practical applications in facility and

building design, operations research, circuit design, physical

data storage, and many other areas [2]. It is an NP–hard

problem [2], [3] and, as a result, exact algorithms are able to

solve small SRFLP instances only [4]. Various heuristic and

metaheuristic methods have been employed to address larger

SRFLP instances [2]. The evolutionary and swarm algorithms

that have been used to solve SRFLP in the past include

ant colony optimization, particle swarm optimization [5], [6],

genetic algorithms [2], [7], [8], clonal selection algorithm, and

bacterial foraging algorithm [9].

This work was supported by the Ministry of Education, Youth and Sports
of the Czech Republic in project “Metaheuristics Framework for Multi-
objective Combinatorial Optimization Problems (META MO-COP)”, reg. no.
LTAIN19176, and in part by the grants of the Student Grant System no.
SP2020/108 and SP2020/161, VSB - Technical University of Ostrava, Czech
Republic.

Self–organizing migrating algorithm (SOMA) [10] is a

population–based stochastic evolutionary optimization algo-

rithm that simulates the behaviour of a group of independent

agents that explore a search space using a competitive–

cooperative movement strategy. The agents (individuals) are

represented by real–valued vectors that correspond to a par-

ticular location in the search space. Each position is evaluated

by a multidimensional fitness function that assesses the quality

of the individual within the context of the solved problem. The

positions of the individuals are iteratively updated by the ap-

plication of stochastic operators that simulate the competitive–

cooperative behaviour. The real–valued nature of SOMA

makes it a natural choice for high–dimensional continuous

optimization problems. However, it has been recently used

to address discrete [10], [11] and combinatorial optimization

problems [12], too. In this work, random key SOMA, used pre-

viously to tackle two other prominent permutation problems,

is used to address the SRFLP.

The rest of this paper is organized in the following way:

the SRFLP is described in section II and the SOMA algorithm

is outlined in section III. The random key SOMA algorithm

for the SRFLP is introduced in section IV. Experimental

evaluation of the random key SOMA on test SRFLP instances

is detailed in section V. Finally, major conclusions are drawn

and future work is outlined in section VI.

II. SINGLE ROW FACILITY LAYOUT PROBLEM

The SRFLP is a linear placement problem that looks for an

arrangement of a set of facilities with the same height (depth)

on a straight line that would minimize the sum of weighted

distances (transportation costs) between every two of them [2],

[13]. Formally, the SRFLP is defined by a set of facility

elements, F = {1, 2, . . . , n}, n > 2, a vector of element

lengths, ~L = (l1, l2, . . . ln), and a symmetric transportation

cost matrix, C = {cij} ∈ R
n×n. The goal of the SRFLP

is to find an n–permutation, π = (π1, π2, . . . πn), from the

universe of all permutations of n objects, Sn, to minimize the

total transportation costs associated with the arrangement it

defines:

min
π∈Sn

fSRFLP(π), (1)

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

fSRFLP(π) =
∑

l≤i<j≤n

[

cπiπj
· d(πi, πj)

]

, (2)

d(πi, πj) =
lπi

+ lπj

2
+

∑

i<k<j

lπk
. (3)

The SRFLP has been tackled by a variety of exact, heuristic,

and metaheuristic algorithms. The exact methods look for

an optimal solution to the problem. They include branch–

and–bound methods [1], [7], graph–theoretic approaches [1],

dynamic, semidefinite, and (mixed) integer linear program-

ming [7], cutting, decomposition, and several improvement

algorithms [1]. However, due to the hardness of the problem,

exact methods are restricted to small SRFLP instances only.

Problem instances up to the size of 42 facilities can be at

present effectively solved by exact methods [4].

The heuristic methods for the SRFLP include construc-

tive and improvement algorithms such as the modified s-

panning tree algorithm, the 2–opt and 3–opt algorithms [1],

the greedy constructive method [7], the modified penalty

algorithm [1], the population–based improvement heuristic

with local search [14], and the greedy randomized adaptive

search algorithm [15]. The metaheuristic methods for the

SRFLP include tabu search [1], scatter search [2], simulated

annealing, ant colony optimization, genetic algorithms [1], [7],

[8], [16], multi–start simulated annealing [17], particle swarm

optimization [6] and its variants [5], and the clonal selection

and bacterial foraging algorithms [9].

The state–of–the–art SRFLP methods use local improve-

ment methods and advanced concepts including greedy adap-

tive search [15], exhaustive 2–opt local search [13], [16], tabu–

based local search [18], domain–specific evolutionary opera-

tors [7] and encoding [8], variable neighborhood search [19],

location exchange heuristics [5], [6], multiobjective optimiza-

tion [8], restarting [17], and various hybridization strate-

gies [13], [18], [19].

Particle swarm optimization (PSO) is the sole nature–

inspired optimization algorithm for continuous search spaces

that was seemingly applied to the SRFLP in the past [5],

[6]. The PSO by Samarghandi et al. [6] uses a factoradic

permutation representation and modified particle velocity and

location updating strategies. As a result, it represents particles

by integers (uniquely mapped to n–permutations) and uses

modified particle velocity and position update rules to simulate

the behaviour of the swarm. Another PSO–like algorithm for

the SRFLP, a method with simplistic particle updates by Yeh

et al. [5], was in [5] not sufficiently detailed to analyze the

solution encoding and the mapping between the continuous

search space and the discrete feasible solution space. Besides,

both algorithms use a form of local search based on facility

location exchanges. In summary, it can be stated that no

genuine continuous optimization method has been applied

to the SRFLP and the ability of such methods to solve the

instances of this problem is largely unknown.

This work contributes to this area and uses a traditional

permutation representation for continuous spaces, the random

key encoding, together with an efficient nature–inspired meta-

heuristic algorithm, SOMA, to search for SRFLP solutions. It

adopts a pure–metaheuristic approach that does not use any

form of local search to eliminate its effects and compares the

SOMA algorithm with two other well–known nature–inspired

optimization methods for continuous spaces, the particle swar-

m optimization and the differential evolution.

III. SELF–ORGANIZING MIGRATING ALGORITHM

Self–organizing migrating algorithm [10] is a stochastic op-

timization algorithm inspired by the competitive–cooperative

behaviour of groups of individuals migrating through an

environment in search for food. In a group of foragers, the

individual with the best food source advertises its location and

other group members move towards its location. On their way,

they explore the environment and look for more attractive (i.e.,

better) food sources themselves. This simple nature–inspired

principle is in SOMA implemented as an iterative population–

based stochastic search process.

SOMA maintains a population of real–valued vectors (can-

didate solutions) that iteratively explore a multidimensional

search space, S
n ⊆ R

n. Each individual is evaluated using

a fitness function, F : Sn → R, that shows its goodness as

a solution to the solved problem. In each iteration (migra-

tion loop), the best individual (leader) is selected and other

population members move (migrate) towards its location. The

migration consists of the exploration of the search space on a

straight line between the moving individual and the leader. The

moving individual performs a pre–defined number of fixed–

length jumps on this line and the fitness of each position it

visits is evaluated. At the end of the migration, it relocates to

the best position it has visited.

To randomize the migration process and to increase the

robustness of the algorithm, randomly selected coordinates of

each moving individual are fixed during the migration. This

is achieved by so–called perturbation vector, ~prt, generated

for every migration with respect to a fixed SOMA parameter,

PRT ∈ [0, 1], according to

~prt[j] =

{

1 if rand() < PRT

0 if rand() ≥ PRT
, ∀j ∈ {1, . . . , D} (4)

where D is the dimension (number of coordinates) and rand()
is a pseudorandom number drawn from the range [0, 1] for

every coordinate of the ~prt. The move, associated with the

k–th migration jump of an individual, ~xi, is formally defined

as

~xi(k) = ~xi +
[

(~xL − ~xi)⊙ ~prti
]

· (k · step size), (5)

where ~xL is the position of the leader, ~prti is the perturbation

vector, step size is the fixed size of the jump, and ⊙ is the

elementwise multiplication operation.

SOMA is a successful optimization algorithm that has been

applied to a number of theoretical as well as real–world

optimization problems. It has been used to find optimum con-

trol parameters for laboratory chemical and plasma reactors,

aircraft wing geometry optimization, synthesis of nonlinear

systems (deterministic chaos, periodic generators) and other

applications [10]. A discrete version of SOMA was used to

solve a variant of the flow–shop scheduling problem [11].

Nevertheless, SOMA is an optimization algorithm devel-

oped for continuous search spaces [10]. In order to use it

in discrete search spaces (e.g., to solve combinatorial opti-

mization problems), the real–valued individuals need to be

translated to discrete problem solutions. This can be for some

problems achieved easily by truncation, rounding, or similar

elementary mathematical operations [10]. However, certain

combinatorial optimization problems require solutions with a

more sophisticated structure (combinations, permutations) that

cannot be always guaranteed by naı̈ve discretization methods.

When infeasible solutions are generated in this way, they have

to be detected and subsequently discarded or repaired [11]. It

is apparent that such operations reduce the efficiency of the

optimization process and represent an additional overhead.

IV. RANDOM KEY SOMA FOR THE SINGLE ROW FACILITY

LOCATION PROBLEM

SOMA is a population–based metaheuristic for optimization

in continuous search spaces. The SRFLP is a discrete com-

binatorial optimization problem that requires well–structured

solutions with stringent dependencies between elements (i.e.,

permutation elements). The application of continuous opti-

mization methods to this problem requires sophisticated so-

lution transformation or encoding to translate the real–valued

candidate solutions to discrete spaces and to ensure that only

feasible problem solutions are considered. The assessment of

solution feasibility and their potential corrections introduce

additional overhead to the optimization process. To avoid it,

alternative representations and methods that transform arbi-

trary real–valued solution vectors to valid permutations have

been proposed in the past. They include probability–based

permutation recombination [20], position, precedence, and

adjacency–based permutation representations [21], random key

encoding [22], [23], and its variants [24]–[26].

The random key encoding belongs to permutation represen-

tations used by continuous optimization methods most often.

The elements of real–valued candidate solutions are under the

random key encoding ordered from smallest to largest and the

resulting changes in positions are associated with permutation

indices. The principle of the random key encoding is illustrated

in eq. (6).

~x =
(

0.2 0.3 0.1 0.5 0.4
)

→
(

0.2 0.3 0.1 0.5 0.4
1 2 3 4 5

)

sort by
−−−→

value
(6)

(

0.1 0.2 0.3 0.4 0.5
3 1 2 5 4

)

→

(

3 1 2 5 4
)

= π

The random key SOMA (rkSOMA) was developed to

enable the application of SOMA to permutation problem-

s [12]. In essence, it uses an arbitrary SOMA variant to

evolve a population of real–valued candidate solutions inside

an n–dimensional continuous search space, S
n, and applies

the random key encoding to transform them into valid n–

permutations inside the feasible solution space, Sn. The trans-

formation can be formally expressed by the function,

rk : Rn → Sn. (7)

The transformation, rk, is evaluated according to the principles

outlined in eq. (6) and implemented by an appropriate sorting

algorithm such as quicksort or bubblesort. The SRFLP cost

function, fSRFLP : Sn → R, is then applied to the permuta-

tion, πi, created from the individual, xi,

F(xi) = fSRFLP(rk(xi)) (8)

to evaluate its fitness.

V. EXPERIMENTS AND RESULTS

In this work, rkSOMA is used to solve the single row

facility location problem. Its ability to evolve SRFLP solutions

is compared to two well–known evolutionary optimization

algorithms for continuous search spaces: the PSO and the

differential evolution (DE). The PSO and the DE were selected

to conduct a wider comparison of the ability of three different

types of metaheuristics for continuous optimization to solve

the SRFLP. The three methods use different operations to

evolve the population and to drive the evolutionary search

process. That results in different high–level search strategies

and different directions found by each one of them during the

exploration of the search space associated with the SRFLP.

The methods were used in their basic variants with control

parameters set to values recommended in the literature [27]

(see table I for details). They also used the same random key

encoding, the same fitness function defined by eq. (2), fSRFLP,

and the maximum number of fitness function evaluations set

to 1,000,000. All three algorithms were implemented in C++

and used to solve the same SRFLP instances.

The computational experiments were conducted on three

groups of medium–sized SRFLP instances [28]–[30] that are

extensively studied in the literature [14], [17]. The ’dept’ in-

stances with the number of facilities (i.e., problem dimension)

ranging from 60 to 80 were introduced by Anjos et al. [29].

The ’sko’ instances are based on the quadratic assignment

problem and have dimensions between 64 and 100 [28].

Finally, the three ’SRFLP’ instances all have the dimension

110 [30]. All test SRFLP instances were downloaded from

the OPTSICOM project web page1 and solved by DE, PSO,

and rkSOMA, respectively. Because of the stochastic nature

of the algorithms, all experiments were conducted 31 times

independently.

The results of the experiments are summarized in table II.

It shows the best (minimum) and the average (mean) fitness of

the SRFLP solutions found by each algorithm for all problem

instances during the 31 independent optimization runs. The

table illustrates that rkSOMA delivered after 1,000,000 fit-

ness function evaluations for all test instances better average

1http://grafo.etsii.urjc.es/optsicom/srflp/

TABLE I: Algorithms and settings.

DE PSO rkSOMA

/DE/rand/1 DE [27] with population size 100,
scaling factor F = 0.9 and crossover proba-
bility C = 0.9.

AllToOne SOMA [10] with population size
100, perturbation probability PRT = 0.02,
migration path length 3, and step size 0.21.

Global best PSO [27] with 100 particles, iner-
tia weight, w = 0.729, cognitive component
weight, c1 = 1.49445, and social component
weight, c2 = 1.49445.

TABLE II: Fitness of solutions found by rkSOMA, DE, and PSO for each test SRFLP instance after 1,000,000 fitness function

evaluations.

SRFLP DE PSO rkSOMA

instance n min mean min mean min mean

60dept 01 60 1510576.0 1.567585e+06 1525112.0 1.554327e+06 1480068.0 1.504335e+06

60dept 02 60 853103.0 8.733891e+05 866048.0 8.858948e+05 842456.0 8.548742e+05

60dept 03 60 667281.5 6.800845e+05 670083.5 6.785872e+05 650065.5 6.578629e+05

60dept 04 60 404818.0 4.213691e+05 410793.0 4.241498e+05 399682.0 4.079065e+05

60dept 05 60 332897.0 3.522256e+05 334267.0 3.430993e+05 318922.0 3.291339e+05

70dept 01 70 1563909.0 1.598286e+06 1598640.0 1.633499e+06 1532073.0 1.562690e+06

70dept 02 70 1462873.0 1.501851e+06 1481073.0 1.525221e+06 1446300.0 1.467319e+06

70dept 03 70 1552350.5 1.590704e+06 1566302.5 1.607744e+06 1519029.5 1.545280e+06

70dept 04 70 992398.0 1.025611e+06 995740.0 1.032090e+06 970546.0 9.911380e+05

70dept 05 70 4344409.5 4.436033e+06 4304956.5 4.374208e+06 4246653.5 4.280043e+06

75dept 01 75 2452679.5 2.519129e+06 2463681.5 2.493391e+06 2419973.5 2.433152e+06

75dept 02 75 4494127.0 4.576587e+06 4411692.0 4.505680e+06 4334139.0 4.377426e+06

75dept 03 75 1282065.0 1.326362e+06 1289657.0 1.319964e+06 1254154.0 1.271260e+06

75dept 04 75 4045905.5 4.110310e+06 4052388.5 4.120730e+06 3962568.5 3.999076e+06

75dept 05 75 1827750.0 1.869228e+06 1834515.0 1.877394e+06 1794612.0 1.820219e+06

80dept 01 80 2117873.5 2.168170e+06 2146555.5 2.199808e+06 2078953.5 2.110553e+06

80dept 02 80 1975091.0 2.022697e+06 1986607.0 2.041766e+06 1921590.0 1.965766e+06

80dept 03 80 3385942.0 3.517317e+06 3357548.0 3.433013e+06 3275321.0 3.310982e+06

80dept 04 80 3901756.0 4.001769e+06 3851647.0 3.950943e+06 3791544.0 3.818050e+06

80dept 05 80 1614975.0 1.653284e+06 1631979.0 1.686725e+06 1593158.0 1.623936e+06

sko64 01 64 97511.0 9.876106e+04 97293.0 9.976935e+04 96965.0 9.820226e+04

sko64 02 64 638139.5 6.551250e+05 652971.5 6.630882e+05 634708.5 6.467020e+05
†sko64 03 64 415562.5 4.227887e+05 419775.5 4.293972e+05 415814.5 4.198194e+05

sko64 04 64 298973.0 3.030649e+05 300690.0 3.060607e+05 297735.0 3.005963e+05

sko64 05 64 507794.5 5.184117e+05 512241.5 5.222276e+05 504378.5 5.108472e+05

sko72 01 72 141322.0 1.431058e+05 140882.0 1.442254e+05 139211.0 1.412191e+05

sko72 02 72 715647.0 7.279857e+05 720117.0 7.383161e+05 712739.0 7.213017e+05

sko72 03 72 1071834.5 1.087603e+06 1084122.5 1.102282e+06 1057619.5 1.069878e+06

sko72 04 72 939162.5 9.532920e+05 945274.5 9.641629e+05 928741.5 9.350713e+05

sko72 05 72 433776.5 4.401781e+05 433532.5 4.440246e+05 429052.5 4.338203e+05

sko81 01 81 208108.0 2.107385e+05 206948.0 2.107928e+05 205560.0 2.075386e+05

sko81 02 81 529529.5 5.365674e+05 535190.5 5.435435e+05 523220.5 5.296382e+05

sko81 03 81 982011.0 1.006650e+06 990541.0 1.010486e+06 972096.0 9.845067e+05

sko81 04 81 2055801.0 2.091972e+06 2073011.0 2.117406e+06 2041526.0 2.065163e+06

sko81 05 81 1327640.0 1.344975e+06 1328570.0 1.354944e+06 1307172.0 1.323458e+06

sko100 01 100 382613.0 3.876576e+05 381975.0 3.897804e+05 380109.0 3.844677e+05

sko100 02 100 2129085.5 2.163478e+06 2123073.5 2.167038e+06 2084031.5 2.108740e+06

sko100 03 100 16466134.5 1.684543e+07 16715222.5 1.699491e+07 16185228.5 1.640159e+07

sko100 04 100 3306661.0 3.371147e+06 3324778.0 3.393381e+06 3256219.0 3.281190e+06

sko100 05 100 1051849.5 1.064591e+06 1051711.5 1.077137e+06 1037890.5 1.048614e+06

SRFLP1 110 146135914.5 1.473977e+08 146598728.5 1.477776e+08 144663856.5 1.455824e+08

SRFLP2 110 87004206.0 8.824770e+07 87772217.0 8.841421e+07 86400517.0 8.681574e+07

SRFLP3 110 2267202.5 2.283647e+06 2279940.5 2.300523e+06 2247873.5 2.263356e+06

solutions than the DE and the PSO. It has also found better

minimum solutions than both reference algorithms for all test

instances except ’sko64 03’, for which was the overall best

solution delivered by the DE. However, the fitness of the

average solution for ’sko64 03’ evolved by the DE was still

worse than the fitness of the average solution discovered for

this SRFLP instance by rkSOMA. All the differences between

the fitness of the SRFLP solutions found by rkSOMA and both

the DE and the PSO were for all problem instances statistically

significant at significance level α = 0.01. The minimum

solutions found by rkSOMA had fitness by between 0.41

(’sko 72 02’) to 4.81% (’60dept 05’) lower than the fitness

of the minimum solutions found by the reference algorithms.

The average solutions found by rkSOMA had fitness lower

by between 0.57 (’sko 64 01’) and 7.02% (’60dept 05’) in

comparison with the solutions found by the DE and the

PSO. The differences between the final solutions evolved by

rkSOMA, the DE, and the PSO are for selected test SRFLP

instances illustrated by boxplots shown in fig. 1.

The progress of SRFLP solution evolution by rkSOMA,

DE, and PSO was further analyzed in order to compare the

ability of the algorithms to discover good problem solutions

and to converge towards optimal (suboptimal) ones in time.

The evolution of solutions to selected SRFLP instances with

DE PSO SOMA
Algorithm

1.48

1.50

1.52

1.54

1.56

1.58

1.60

1.62
Fi
tn
es
s

1e6

(a) 60dept 01

DE PSO SOMA
Algorithm

1.54

1.56

1.58

1.60

1.62

1.64

1.66

Fi
tn
es
s

1e6

(b) 70dept 01

DE PSO SOMA
Algorithm

0.97

0.98

0.99

1.00

1.01

1.02

Fi
tn
es
s

1e5

(c) sko64 01

DE PSO SOMA
Algorithm

1.39

1.40

1.41

1.42

1.43

1.44

1.45

1.46

1.47

Fi
tn
es
s

1e5

(d) sko72 01

DE PSO SOMA
Algorithm

1.45

1.46

1.47

1.48

1.49

Fi
tn
es
s

1e8

(e) SRFLP1

DE PSO SOMA
Algorithm

8.65

8.70

8.75

8.80

8.85

8.90

Fi
tn
es
s

1e7

(f) SRFLP2

Fig. 1: Fitness of the final solutions found by rkSOMA, DE, and PSO to selected SRFLP instances during the independent

optimization runs.

102 103 104 105 106

Fitness function evaluation

1.6

1.8

2.0

Fi
tn

es
s

1e6

/DE/Rand/1
GBest PSO
rkSOMA

(a) 60dept 01

102 103 104 105 106

Fitness function evaluation

1.6

1.8

2.0

2.2

Fi
tn

es
s

1e6

/DE/Rand/1
GBest PSO
rkSOMA

(b) 70dept 01

102 103 104 105 106

Fitness function evaluation

2.4

2.6

2.8

3.0

3.2

3.4

Fi
tn

es
s

1e6

/DE/Rand/1
GBest PSO
rkSOMA

(c) 75dept 01

102 103 104 105 106

Fitness function evaluation

2.2

2.4

2.6

2.8

3.0

Fi
tn

es
s

1e6

/DE/Rand/1
GBest PSO
rkSOMA

(d) 80dept 01

102 103 104 105 106

Fitness function evaluation

1.00

1.05

1.10

1.15

Fi
tn

es
s

1e5

/DE/Rand/1
GBest PSO
rkSOMA

(e) sko64 01

102 103 104 105 106

Fitness function evaluation

1.40

1.45

1.50

1.55

1.60

1.65

Fi
tn

es
s

1e5

/DE/Rand/1
GBest PSO
rkSOMA

(f) sko72 01

102 103 104 105 106

Fitness function evaluation

2.1

2.2

2.3

2.4

Fi
tn

es
s

1e5

/DE/Rand/1
GBest PSO
rkSOMA

(g) sko81 01

102 103 104 105 106

Fitness function evaluation

3.9

4.0

4.1

4.2

4.3

4.4

Fi
tn

es
s

1e5

/DE/Rand/1
GBest PSO
rkSOMA

(h) sko100 01

102 103 104 105 106

Fitness function evaluation

1.45

1.50

1.55

1.60

1.65

Fi
tn

es
s

1e8

/DE/Rand/1
GBest PSO
rkSOMA

(i) SRFLP1

102 103 104 105 106

Fitness function evaluation

0.875

0.900

0.925

0.950

0.975

1.000

Fi
tn

es
s

1e8

/DE/Rand/1
GBest PSO
rkSOMA

(j) SRFLP2

102 103 104 105 106

Fitness function evaluation

2.3

2.4

2.5

2.6

Fi
tn

es
s

1e6

/DE/Rand/1
GBest PSO
rkSOMA

(k) SRFLP3

Fig. 2: Evolution of solutions to selected SRFLP instances by rkSOMA, DE, and PSO. Solid lines represent the fitness of the

mean solutions found at given fitness function evaluation, coloured bands represent 95% confidence intervals around means.

different dimensions is illustrated in fig. 2. It can be im-

mediately seen that the three compared algorithms lead to

optimization processes with different high–level properties.

Although rkSOMA delivered the best final solutions, it was

outperformed by both the DE and the PSO at the initial

phase of the evolutionary search process. The PSO provided

better SRFLP solutions in the course of the first approximately

10,000 fitness function evaluations and the DE during the

first 30,000 – 50,000 fitness function evaluations, as clearly

demonstrated by the plots in fig. 2. The solutions found by

the basic version of the PSO algorithm were during most

fitness function evaluations better than the solutions found by

the basic DE. However, the DE discovered for 32 out of 43

test SRFLP instances solutions with better minimum fitness

and for 34 test SRFLP instances solutions with better average

fitness by the end of the evolution. This is an interesting

observation that indicates that despite being outperformed by

rkSOMA in the long run, the DE and the PSO can be useful

for the evolution of SRFLP solutions when the number of

fitness function evaluations is limited.

Finally, the SRFLP solutions obtained by the best per-

forming algorithm, rkSOMA, were compared to the SRFLP

solutions obtained by a state–of–the–art evolutionary method

for the SRFLP, the genetic algorithm by Kothari and Gosh

named GENALGO [16]. However, it should be noted that

GENALGO uses a local search to improve the solutions

during the evolution while no such mechanism is adopted

by rkSOMA. The results of the comparison are summarized

in table III and for selected problem instances illustrated

in fig. 3.

The table shows that the SRFLP solutions evolved by

rkSOMA do not match the best solutions found by GENALGO

with local search. The pure metaheuristic method was able

to discover SRFLP solutions with the best fitness higher by

between 0.29 to 4.23% than those evolved by the genetic al-

gorithm with local search. The comparison of the best SRFLP

solutions found by rkSOMA and GENALGO is for selected

problem instances also shown in fig. 3. The figure confirms

that the fitness of the typical solutions evolved by rkSOMA is

higher (i.e., worse) than the fitness of the best solutions

found by GENALGO with local search. Nevertheless, the

pure metaheuristic approach demonstrates the ability to evolve

SRFLP solutions with error lower than 5% when compared to

the genetic algorithm with local search.

60dept_4

sko64_03

sko72_05

sko100_01

Problem instance

3.8

3.9

4.0

4.1

4.2

4.3

4.4

Fi
tn

es
s

1e5

(a) Problem instances with
dimensions 60, 64, 72, and
100.

60dept_01

70dept_01

70dept_02

70dept_03

80dept_05

Problem instance

1.45

1.50

1.55

1.60

1.65

Fi
tn

es
s

1e6

(b) Problem instances with dimensions 60,
70, and 80.

Fig. 3: Fitness of the final solutions evolved by rkSOMA (box-

plots) and the best solutions obtained by GENALGO [16]

(triangles) for selected SRFLP instances.

VI. CONCLUSIONS

This work proposed and studied a novel nature–inspired

metaheuristic optimization algorithm for the single row facility

location problem. The solutions to this hard combinatorial

optimization problem were modeled with the help of the

widely used random key encoding and evolved by a power-

ful nature–inspired method for continuous optimization, the

SOMA algorithm. The properties of SOMA as an SRFLP

solver were studied on 43 well–known SRFLP instances

and compared to two other popular evolutionary and swarm

methods for multidimensional continuous optimization, the DE

and the PSO, in a series of computational experiments.

The experimental evaluation showed that the proposed

rkSOMA algorithm outperforms the basic variants of both, the

DE and the PSO. In the course of 1,000,000 fitness function

evaluations, rkSOMA was able to find better average SRFLP

solutions than the DE and the PSO. Also, the best SRFLP

solutions discovered by rkSOMA were better than the best

solutions found by the DE and the PSO for all but one problem

instance. Nevertheless, a detailed analysis of the progress of

the evolutionary optimization revealed that the PSO and the

DE delivered better solutions than rkSOMAduring the first

around 10,000 to 50,000 fitness function evaluations. Only

after that, rkSOMA took the lead and evolved better problem

solutions. When it comes to the reference algorithms, the

solutions evolved by the basic PSO were better than those

discovered by the basic DE during the majority of fitness

function evaluations.

The fitness of the best SRFLP solutions found by

rkSOMA in a pure metaheuristic manner without any form of

local search was only by less than 5% worse than the fitness of

the solutions found by a genetic algorithm with local solution

improvement. This is an encouraging result indicating a good

ability of the nature–inspired continuous optimization strategy

represented by rkSOMA to find good SRFLP solutions.

Future research in this field will pursue several directions.

Other types of SRFLP instances with different properties and

dimensions will be addressed by rkSOMA and other relevant

optimization algorithms. Different high–level variants of the

facility location problem will be considered, too. Next, various

other metaheuristic algorithms for continuous multidimension-

al optimization, including advanced variants of SOMA, the

DE, and the PSO will be used. Last but not least, the ability

of metaheuristics for continuous optimization together with

different variants of local search to solve the SRFLP will be

studied.

REFERENCES

[1] S. Heragu, Facilities Design. CRC Press, 2018.

[2] R. Kothari and D. Ghosh, “The single row facility layout problem: state
of the art,” OPSEARCH, vol. 49, no. 4, pp. 442–462, Dec 2012.

[3] M. Garey, D. Johnson, and L. Stockmeyer, “Some simplified np-
complete graph problems,” Theoretical Computer Science, vol. 1, no. 3,
pp. 237 – 267, 1976.

[4] M. F. Anjos, A. Fischer, and P. Hungerländer, “Improved exact approach-
es for row layout problems with departments of equal length,” European

Journal of Operational Research, vol. 270, no. 2, pp. 514 – 529, 2018.

[5] W.-C. Yeh, C.-M. Lai, H.-Y. Ting, Y. Jiang, and H.-P. Huang, “Solving
single row facility layout problem with simplified swarm optimization,”
in 2017 13th International Conference on Natural Computation, Fuzzy

Systems and Knowledge Discovery (ICNC-FSKD), July 2017, pp. 267–
270.

TABLE III: Fitness of SRFLP solutions evolved by rkSOMA compared to the fitness of solutions found by GENALGO [16].

SRFLP rkSOMA

instance n GENALGO min mean σ max

60dept 01 60 1477834.0 1480068.0 1.504335e+06 1.38e+04 1529444.0

60dept 02 60 841776.0 842456.0 8.548742e+05 8.25e+03 871516.0

60dept 03 60 648337.5 650065.5 6.578629e+05 4.22e+03 667754.5

60dept 04 60 398406.0 399682.0 4.079065e+05 5.13e+03 419222.0

60dept 05 60 318805.0 318922.0 3.291339e+05 4.00e+03 337310.0

70dept 01 70 1528537.0 1532073.0 1.562690e+06 1.78e+04 1603783.0

70dept 02 70 1441028.0 1446300.0 1.467319e+06 1.44e+04 1500390.0

70dept 03 70 1518993.5 1519029.5 1.545280e+06 1.32e+04 1566652.5

70dept 04 70 968796.0 970546.0 9.911380e+05 1.19e+04 1018117.0

70dept 05 70 4218002.5 4246653.5 4.280043e+06 1.88e+04 4318357.5

75dept 01 75 2393456.5 2419973.5 2.433152e+06 8.30e+03 2448767.5

75dept 02 75 4321190.0 4334139.0 4.377426e+06 1.86e+04 4409768.0

75dept 03 75 1248423.0 1254154.0 1.271260e+06 8.96e+03 1295144.0

75dept 04 75 3941816.5 3962568.5 3.999076e+06 2.53e+04 4067007.5

75dept 05 75 1791408.0 1794612.0 1.820219e+06 1.23e+04 1852273.0

80dept 01 80 2069097.5 2078953.5 2.110553e+06 2.51e+04 2173877.5

80dept 02 80 1921136.0 1921590.0 1.965766e+06 2.06e+04 2007924.0

80dept 03 80 3251368.0 3275321.0 3.310982e+06 1.59e+04 3347221.0

80dept 04 80 3746515.0 3791544.0 3.818050e+06 1.27e+04 3842485.0

80dept 05 80 1588885.0 1593158.0 1.623936e+06 1.62e+04 1655295.0

sko64 01 64 96881.0 96965.0 9.820226e+04 8.31e+02 99794.0

sko64 02 64 634332.5 634708.5 6.467020e+05 5.58e+03 658519.5

sko64 03 64 414323.5 415814.5 4.198194e+05 2.30e+03 427069.5

sko64 04 64 297129.0 297735.0 3.005963e+05 1.82e+03 303910.0

sko64 05 64 501922.5 504378.5 5.108472e+05 3.53e+03 517527.5

sko72 01 72 139150.0 139211.0 1.412191e+05 1.29e+03 143862.0

sko72 02 72 711998.0 712739.0 7.213017e+05 4.79e+03 731131.0

sko72 03 72 1054110.5 1057619.5 1.069878e+06 5.69e+03 1085758.5

sko72 04 72 919586.5 928741.5 9.350713e+05 5.13e+03 949646.5

sko72 05 72 428226.5 429052.5 4.338203e+05 2.53e+03 439463.5

sko81 01 81 205106.0 205560.0 2.075386e+05 1.09e+03 209306.0

sko81 02 81 521391.5 523220.5 5.296382e+05 2.36e+03 532914.5

sko81 03 81 970796.0 972096.0 9.845067e+05 4.99e+03 994937.0

sko81 04 81 2031803.0 2041526.0 2.065163e+06 1.33e+04 2093460.0

sko81 05 81 1302711.0 1307172.0 1.323458e+06 6.65e+03 1334665.0

sko100 01 100 378234.0 380109.0 3.844677e+05 2.89e+03 392009.0

sko100 02 100 2076008.5 2084031.5 2.108740e+06 1.20e+04 2129400.5

sko100 03 100 16145614.5 16185228.5 1.640159e+07 9.72e+04 16655235.5

sko100 04 100 3232522.0 3256219.0 3.281190e+06 1.27e+04 3301779.0

sko100 05 100 1033080.5 1037890.5 1.048614e+06 5.60e+03 1058880.5

SRFLP1 110 144296664.5 144663856.5 1.455824e+08 4.26e+05 146484273.5

SRFLP2 110 86050037.0 86400517.0 8.681574e+07 2.25e+05 87245295.0

SRFLP3 110 2234743.5 2247873.5 2.263356e+06 8.44e+03 2283441.5

[6] H. Samarghandi, P. Taabayan, and F. F. Jahantigh, “A particle swarm
optimization for the single row facility layout problem,” Computers

Industrial Engineering, vol. 58, no. 4, pp. 529 – 534, 2010.
[7] D. Datta, A. R. Amaral, and J. R. Figueira, “Single row facility

layout problem using a permutation-based genetic algorithm,” European

Journal of Operational Research, vol. 213, no. 2, pp. 388 – 394, 2011.
[8] G. Aiello, G. L. Scalia, and M. Enea, “A multi objective genetic

algorithm for the facility layout problem based upon slicing structure
encoding,” Expert Systems with Applications, vol. 39, no. 12, pp. 10 352
– 10 358, 2012.

[9] B. H. Ulutas, “Assessing the Performance of Two Bioinspired Algo-
rithms to Solve Single-Row Layout Problem,” International Journal of

Manufacturing Engineering, vol. 2013, p. 11, 2013.
[10] I. Zelinka, “Soma—self-organizing migrating algorithm,” in Self-

Organizing Migrating Algorithm: Methodology and Implementation,
D. Davendra and I. Zelinka, Eds. Cham: Springer International
Publishing, 2016, pp. 3–49.

[11] D. Davendra, I. Zelinka, M. Pluhacek, and R. Senkerik, “Dsoma—
discrete self organising migrating algorithm,” in Self-Organizing Mi-

grating Algorithm: Methodology and Implementation, D. Davendra and
I. Zelinka, Eds. Cham: Springer International Publishing, 2016, pp.
51–63.

[12] P. Kromer, J. Janoušek, and J. Platoš, “Random key self–organizing
migrating algorithm for permutation problems,” in 2019 IEEE Congress

on Evolutionary Computation (CEC), June 2019, pp. 2878–2885.
[13] R. Kothari and D. Ghosh, “Tabu search for the single row facility layout

problem using exhaustive 2-opt and insertion neighborhoods,” European

Journal of Operational Research, vol. 224, no. 1, pp. 93 – 100, 2013.
[14] S. Atta and P. R. Sinha Mahapatra, “Population-based improvement

heuristic with local search for single-row facility layout problem,”
Sādhanā, vol. 44, no. 11, p. 222, Oct 2019.

[15] G. Cravo and A. Amaral, “A grasp algorithm for solving large-scale
single row facility layout problems,” Computers Operations Research,
vol. 106, pp. 49 – 61, 2019.

[16] R. Kothari and D. Ghosh, “An efficient genetic algorithm for single row
facility layout,” Optimization Letters, vol. 8, no. 2, pp. 679–690, Feb
2014.

[17] G. Palubeckis, “Single row facility layout using multi-start simulated
annealing,” Computers Industrial Engineering, vol. 103, pp. 1 – 16,
2017.

[18] C. Ou-Yang and A. Utamima, “Hybrid estimation of distribution al-
gorithm for solving single row facility layout problem,” Computers &

Industrial Engineering, vol. 66, no. 1, pp. 95 – 103, 2013.
[19] J. Guan and G. Lin, “Hybridizing variable neighborhood search with ant

colony optimization for solving the single row facility layout problem,”
European Journal of Operational Research, vol. 248, no. 3, pp. 899 –
909, 2016.

[20] X. Hu, R. C. Eberhart, and Y. Shi, “Swarm intelligence for permutation
optimization: a case study of n-queens problem,” in Proceedings of the

2003 IEEE Swarm Intelligence Symposium., April 2003, pp. 243–246.
[21] T. Gong and A. L. Tuson, “Forma analysis of particle swarm optimi-

sation for permutation problems,” J. Artif. Evol. App., vol. 2008, pp.
4:1–4:16, Jan. 2008.

[22] J. C. Bean, “Genetic algorithms and random keys for sequencing and

optimization,” ORSA Journal on Computing, vol. 6, no. 2, pp. 154–160,
1994.

[23] L. V. Snyder and M. S. Daskin, “A random-key genetic algorithm
for the generalized traveling salesman problem,” European Journal of

Operational Research, vol. 174, no. 1, pp. 38–53, 2006.
[24] M. F. Tasgetiren, Y.-C. Liang, M. Sevkli, and G. Gencyilmaz, “A particle

swarm optimization algorithm for makespan and total flowtime mini-
mization in the permutation flowshop sequencing problem,” European

Journal of Operational Research, vol. 177, no. 3, pp. 1930 – 1947, 2007.
[25] B. Qian, L. Wang, R. Hu, W.-L. Wang, D.-X. Huang, and X. Wang, “A

hybrid differential evolution method for permutation flow-shop schedul-
ing,” The International Journal of Advanced Manufacturing Technology,
vol. 38, no. 7, pp. 757–777, Sep 2008.

[26] X. Li and M. Yin, “An opposition-based differential evolution algorithm

for permutation flow shop scheduling based on diversity measure,”
Advances in Engineering Software, vol. 55, pp. 10 – 31, 2013.

[27] A. Engelbrecht, Computational Intelligence: An Introduction, 2nd Edi-

tion. New York, NY, USA: Wiley, 2007.
[28] M. F. Anjos and G. Yen, “Provably near-optimal solutions for very

large single-row facility layout problems,” Optimization Methods and

Software, vol. 24, no. 4-5, pp. 805–817, 2009.
[29] M. F. Anjos, A. Kennings, and A. Vannelli, “A semidefinite optimization

approach for the single-row layout problem with unequal dimensions,”
Discrete Optimization, vol. 2, no. 2, pp. 113 – 122, 2005.

[30] A. R. S. Amaral and A. N. Letchford, “A polyhedral approach to the
single row facility layout problem,” Mathematical Programming, vol.
141, no. 1, pp. 453–477, Oct 2013.

