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Abstract—In this paper, we present a new form of particle
swarm optimisation (PSO) in which each particle uses an artificial
neural network (ANN) to guide its movements. Information
about each of the particle’s informants is passed as input to
the ANN and the ANN’s outputs are then used to select which
informant to follow at the next iteration. Using a distributed
evolutionary process, each particle’s ANN is able to learn about
the solution landscape over the course of an optimisation run,
potentially allowing the particle to avoid unfavourable regions.
An initial evaluation of this approach using a suite of 5 continuous
optimisation functions suggests that it improves performance,
managing to get consistently closer to the global optima than
conventional PSO on all of these problems. An analysis of the
trajectories indicates that the behaviour of the algorithm is quite
different to conventional PSO, with a much higher degree of
exploration than the baseline PSO algorithm.

Index Terms—Artificial Neural Networks, Particle Swarm
Optimization

I. INTRODUCTION

Particle swarm optimisation (PSO) [1] is a well-known
and successful optimiser that has received a lot of attention
since its initial development in the mid-1990s [2]. The PSO
algorithm is broadly modelled on the idea of swarm intelli-
gence, particularly the concept that complex behaviour can
emerge from simple interactions between relatively simple
agents. In the case of PSO, the simple agents are local search
processes known as particles, and the emergent behaviour is
global optimisation, which the particles achieve by following
one another according to certain rules. Recently, there has
been considerable interest in developing new swarm optimisers
based around models of animal foraging behaviours; however,
this approach has been broadly criticised for producing algo-
rithms that often differ in trivial ways from PSO and other
optimisers [3], [4]. A more promising recent development
is the use of neural and evolutionary algorithms to develop
new optimisers from scratch [5], [6], though the resulting
algorithms are often quite different to those the community
are used to working with, and do not leverage our current
understanding of how to optimise.

In this work, we take a different approach: rather than
using human intuition to improve existing algorithms, or
building a new algorithm from scratch, we attempt to use
artificial neural networks (ANN) to learn how to improve a
standard PSO algorithm. In this paper, we explore an initial
approach based around the idea of embodied evolution [7]:
each particle is assigned its own ANN, which it uses to guide
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its decision about which informant to follow at each iteration,
and a distributed evolutionary process is used to optimise the
weights of the ANN. The idea is that this will allow the
ANNSs to collectively learn about the search space over the
course of an optimisation run, potentially identifying the areas
which are best to explore or avoid. The baseline behaviour
of PSO remains the same, i.e. the velocities of particles are
updated at each iteration according to the standard equation;
the key difference is that the choice of informant to follow is
determined by the ANN rather than always following the one
with the fittest personal best.

This paper reports on an initial evaluation of this approach
using a suite of continuous function benchmarks, looks at how
the size of the ANN affects performance, and aims to give an
idea of how its behaviour differs from standard PSO. The paper
is organised as follows: Section II discusses related work,
Section III describes the methodology, Section IV presents
results and analysis, Section V concludes.

II. RELATED WORK

In essence, this work adds an ANN to each particle within
a PSO swarm, and the particle then uses the ANN to select
between its informants. In this respect, the approach has
commonalities with previous attempts to increase the cognitive
abilities of PSO particles. For instance, Broderick and Howley
[8] reported that they were able to improve the performance of
standard PSO by using an internal memory to store additional
best positions for each particle, providing more information
on which to base their velocity updates. Ciuprina et al. [9]
went further in their Intelligent-Particle Swarm Optimization
(IPSO), by allowing particles to record group experiences,
unpleasant memories (which are comparable to tabu search),
local landscape models based on virtual neighbours, and
also carry out memetic replication of successful behaviour
parameters. They report better convergence speed and better
avoidance of local optima. Another related area of PSO
research is the use of dynamic topologies, which attempt to
change a particle’s informants over the course of a run [10].

However, this work arguably has more in common with
swarm robotics than previous attempts to improve PSO within
an optimisation context. Particularly notable is the similarity
with embodied evolution [7], where each robot within a swarm
moves around the landscape under the direction of a controller,
which is often an ANN. Over time, the robot mutates its
controller, and when in the proximity of another robot, it can



Algorithm 1 Pseudocode for PSO algorithm

Algorithm 2 Pseudocode for ANN-PSO algorithm

1: best +— <> > Best location
2: for each particle i do > Initialise particles
3: for each dimension d do

4: Initialize position x;4 randomly within range

5: Initialize velocity v;q randomly within range

6: end for

7: end for

8: for each particle 7 do > Allocate informants
9: Randomly select nf particles as informants

10: end for

11: do

12: for each particle i do > Update bests
13: pbest; < best previous location of ¢

14: if fitness(z;) < fitness(best) then

15: best + x;

16: end if

17: gbest,; < pbest of first informant

18: for each subsequent informant j do

19: if fitness(pbest ;) < fitness(gbest;) then
20: gbest; < pbest;

21: end if

22: end for

23: end for
24: for each particle ¢ do > Update vs and s
25: for each dimension d do

26: Vid < W;q + c171(pbest,; — Tiq)

27: + cora(gbest;q — Tiq)

28: Tid < Tid + Viq

29: end for

30: end for

31: while maximum iteration or minimum error not attained

swap its controller or carry out recombination with the other
robot’s controller, thus allowing information to spread within
the population. A similar mechanism for distributed evolution
of ANNSs is used in this work. A key difference, however,
is that our approach combines this distributed evolution of
ANNs with the standard rules of PSO, using the ANN to
guide the choice of informant to follow rather than controlling
movement directly. There has also been work on adding
other (i.e. not neural) learning mechanisms to swarm robotics;
for instance, in [11], PSO was hybridised with a modified
Q-learning approach, which the authors found to improve
learning time.

This work also relates to broader research on using evolu-
tionary and neural approaches to develop new optimisation
algorithms, both swarm-based and otherwise. For instance,
in [12], an evolutionary algorithm was used to learn new
low-level rules for swarm optimisers, and there is a growing
body of work on using deep ANNs to learn and generate
optimisation behaviours [5], [13]. Again, a key difference in
this work is that optimisation behaviours are not being learnt
or generated from scratch, but rather within the context of the
dynamics of the existing PSO algorithm. In this respect, it

1: best +— <> > Best location
2: for each particle ¢ do > Initialise particles
3: for each dimension d do

4: Initialize position x;4 randomly within range

5: Initialize velocity v;q randomly within range

6: end for

7: ann; < random neural network

8: fitness(ann;) < 0

9: end for

10: for each particle ¢ do > Allocate informants
11: Randomly select nf particles as informants

12: end for

13: do

14: for each particle ¢ do > Update bests
15: pbest; < best previous location of %

16: if fitness(z;) < fitness(best) then

17: best < x;

18: end if

19: gbest,; < pbest of first informant
20: for each subsequent informant j do
21 if ann;(pbest;) > ann;(gbest;) then

22: gbest,; < pbest;
23: end if
24: end for
25: end for
26: for each particle ¢ do > Update vs and s
27: for each dimension d do

28: Vid < Wq + c171(phest;y — xiq)

29: + cora(gbest;; — x4q)

30: Tid < Tid + Viq

31: end for

32: end for

33: for each particle 7 do > Evaluate ANNs
34: change < improvement in fitness(z;)

35: anmn;.success <— ann;.success + change

36: end for

37: for each particle ¢ do > Evolve ANNs
38: annpest <— most successful ann among informants
39: if annpes:.success > ann;.success then

40: ann; <—mutate(annpest)

41: end if

42: end for

43: while maximum iteration or minimum error not attained

represents a mid-point between efforts to develop new swarm
algorithms by hand [4], and using machine learning to develop
entirely new optimisers [6].

In our approach, the ANN is being used to decide which
particle from a group to follow, so in a sense it is evaluating the
particles in the group. In this regard, it also has some common-
ality with the use of surrogate fitness models in evolutionary
algorithms, where ANNs are often used to approximate the
fitness of search points [14]. However, the role of the ANN is
much less clear cut in our approach, and there is no selective



pressure towards it being used solely (or at all) as a fitness
approximator. It is also worth noting that there has been a lot
of previous work on using PSO to optimise ANNs (e.g. [15]);
this is unrelated to the work described in this paper, where we
are essentially going in the opposite direction, using ANNS to
optimise PSO.

III. METHODOLOGY
A. PSO

Algorithm 1 outlines the baseline implementation of PSO
used in this work. PSO is an iterative algorithm that uses a
population (swarm) of search processes (particles) to explore a
solution space. In addition to having a position (search point)
within the solution space, each particle also records a personal
best, which is the best search point it has seen during its search
trajectory. Each particle has a velocity within the search space,
and samples a new search point at each iteration by adding
its velocity to its current point. For each dimension d of each
particle 7, the velocity is updated at each iteration using the
equation:

vfjl = woly + ey (pbestty — aty) + cara(gbest! , — xty) (1)
where z is the particle’s current position, pbest is the particle’s
personal best, r; and ro are uniformly distributed random
variables, and w, ¢; and ¢y are acceleration coefficients that
weight the new velocity towards the previous velocity and
the search points pbest and gbest. In early forms of PSO,
the group best, gbest, was the best personal best amongst
all the particles. In more recent implementations, however,
it is common for each particle to be assigned a group of
other particles (known as informants), and gbest is the best
personal best amongst this group of particles. Informants can
be assigned in various ways; in this paper, we take the common
approach of doing this randomly at the start of a run, meaning
that particles tend to have overlapping groups of informants.
Typical values from the literature of 0.9, 2.0 and 2.0 are used
for the weights w, c¢; and co [16], [17].

B. ANN-PSO

Our implementation of neural-guided PSO (ANN-PSO)
builds upon the standard version of PSO outlined in Algo-
rithm 1. ANN-PSO is outlined in Algorithm 2, with high-
lighting showing the parts of the algorithm that differ from
Algorithm 1. A key difference is that each particle is assigned
an ANN, which, in this paper, is a simple multi-layer Per-
ceptron with one hidden layer. The number of input neurons
is the same as the dimensionality of the problem, and it has
one output neuron. At each iteration, each informant’s pbest is
used as an input to the ANN, generating a response value from
the output neuron (lines 19-23 in Algorithm 2). The pbest with
the highest response value is then selected as the gbest used
in Equation 1.

At the start of a run, the weights of each particle’s ANN
are randomly initialised in the range [—1,1]. They are then
trained using a distributed evolutionary process that is similar

to the embodied evolution approaches used in swarm robotics.
Within this evolutionary process, the fitness of an ANN is
measured by its cumulative success in guiding particles to
better locations, in a manner akin to reinforcement learning.
This is represented by an ANN'’s success variable in Algorithm
2. Initially, the success of each particle’s ANN is zero. Then,
at each iteration, the improvement in each particle’s fitness
is measured and this value is added to its ANN’s success.
Hence, if a particle moves to a better search point as a result
of following guidance from its ANN, the success value of
its ANN increases; conversely, if it moves to a worse search
point, the ANN’s success value decreases. At the end of
each iteration, each particle looks at the success values of
its informants’ ANNs. If one of these has a higher value
than its own ANN, then it replaces its own ANN with a
mutated copy of the informant’s ANN (if more than one have
higher values, then the best one is used). Mutation involves
randomly changing the value of one of the ANN’s weights,
whilst keeping its accumulated success value.

C. Benchmark Functions

At this stage, our aim is to obtain an impression of how
ANN-PSO compares behaviourally with standard PSO. To this
end, we chose 5 continuous-valued benchmark functions from
the optimisation literature, selected to capture a range of dif-
ferent landscapes and functional properties. These are listed in
Table I. The sphere function is the simplest: unimodal, convex
and separable. Dixon-Price and Zakharov are also unimodal,
but are non-separable and non-convex, which makes them
more challenging. Levy and Rastrigin are both multimodal,
the former with just a few local optima, the latter with many.

To give an idea of how the approach scales, quantitative
results are collected for 5, 10 and 30-dimensional versions
of the benchmark functions. 2-dimensional versions of the
functions are used to visualise particle trajectories. The search
space bounds are [—5, 5] for all dimensions. Particle velocities
are initialised in the range £[0.5,2.5] for each dimension.

IV. RESULTS

Tables II-VI show the results. For each problem and dimen-
sionality, the mean distance of the best solution from the global
optimum is calculated over the course of 50 independent runs.
Each run uses 40 iterations and a swarm size of 25 particles,
giving a function evaluation budget of 1x103. Additionally, for
ANN-PSO, three different neural network sizes are compared,
with 5, 10 or 20 neurons in the hidden layer. In all cases,
non-parametric Mann Whitney U tests show that the means of
the ANN-PSO and PSO fitness distributions are significantly
different at the 95% confidence level.

From these tables, it is evident that PSO-ANN performs
better than PSO. The best mean result (shown underlined) is
produced by ANN-PSO for every function in this test suite,
and this advantage is retained as the dimensionality of the
problem increases. This suggests (for these functions at least),
that using an ANN to guide PSO is beneficial. For most of the
problems, this benefit appears to be quite sizeable. However, it



TABLE I: Benchmark functions

Function Definition
Sphere flz) = Z;izl z?
Dixon-Price ~ f(z) = (z1 — 1) + Z?:Q i(22? — xz5-1)>
2 4
Zakharov  f(z) = S, @ + (L, 05iw:) + (T, 0.5ia;)
Levy f(@) = sin?(mw1) + 207 (wi — 1)2[1+ 10 sin? (mw; 4 1)] 4 (wg — 1)2[1 +sin? (2mwy)],
where w; =14+ Zi—= foralli—1,....d
Rastrigin f(z) =10d + Zle[x? — 10 cos(2mx;)]

TABLE II: Sphere

Dimension ~ Method Neurons Mean  Std. dev.
5 ANN-PSO 5 1.298 0.612
10 1.129 0.528
20 0.915 0.467
PSO 2.006 1.320
10 ANN-PSO 5 5.858 2.166
10 5.679 1.840
20 5.263 1.838
PSO 13.146 4.603
20 ANN-PSO 5 19.924 4.787
10 19.735 4.601
20 19.081 4.292
PSO 47.216 9.156
TABLE III: Dixon-Price
Dimension ~ Method Neurons Mean Std. dev.
5 ANN-PSO 5 6.706 4.739
10 4.879 3.492
20 4.517 3.183
PSO 12.828 13.012
10 ANN-PSO 5 127.568 108.117
10 124.941 78.703
20 108.886 68.954
PSO 622.307 483.036
20 ANN-PSO 5 1844.718 930.227
10 1815.730 905.882
20 1810.545 838.109
PSO 9888.205  3487.883

is perhaps significant that the smallest margin of improvement
is found for Rastrigin, the function with the most complex
landscape, and in future work it would be interesting to further
explore the relationship between landscape complexity and the
performance of PSO-ANN.

It can also be seen that, for each problem and dimension-
ality, increasing the size of the neural network improves the
performance of ANN-PSO, although the benefit of doing this
is small relative to the benefit of introducing the ANN in the
first place. This improvement could be explained by the greater
computational capacity of larger ANNs. However, increasing
the size of the ANN also increases the search space, so there
is likely to be a trade-off between these two factors at some
point (from the results, this is presumably beyond 20 neurons).

TABLE 1V: Zakharov

Dimension ~ Method Neurons Mean  Std. dev.
5 ANN-PSO 5 2.287 1.470
10 1.964 1.152

20 1.721 0.846

PSO 4.880 2.846

10 ANN-PSO 5 13.296 4.615
10 12.147 4.499

20 11.882 4.240

PSO 28.717 9.506

20 ANN-PSO 5 44.624 12.649
10 42.186 12.300

20 41.802 10.136

PSO 79.161 15.777

TABLE V: Levy

Dimension ~ Method Neurons Mean  Std. dev.
5 ANN-PSO 5 0.252 0.092
10 0.243 0.092

20 0.241 0.091

PSO 0.529 0.304

10 ANN-PSO 5 1.301 0.406
10 1.253 0.401

20 1.218 0.382

PSO 3.478 1.009

20 ANN-PSO 5 4.522 1.104
10 4.487 1.166

20 4.415 1.069

PSO 12.369 2.722

A. Search Trajectories

These quantitative results seem to show a benefit to using
ANNs to guide PSO particles. To get more insight into how
this is achieved, we carried out further experiments using 2-
dimensional versions of the problems, which can be readily
visualised. Figs. 1-5 show plots of search trajectories generated
by ANN-PSO and PSO, with one example for each of the
benchmark functions. Each of the particles in the swarms is
shown using a different colour. A red cross shows the location
of the global optimum, and a black cross shows the best
solution found in a run.

From these plots, it is obvious that the behaviours of the two
algorithms are quite different. In standard PSO, the particles
tend to explore different areas of the search space, and each



TABLE VI: Rastrigin

Dimension ~ Method Neurons Mean  Std. dev.
5 ANN-PSO 5 17.857 4.398
10 17.129 3.598

20 16.675 3418

PSO 20.129 5.015

10 ANN-PSO 5 59.512 9.089
10 58.547 7.845

20 58.076 7.290

PSO 70.662 10.596

20 ANN-PSO 5 159.128 13.300
10 158.150 12.734

20 156.094 11.010

PSO 192.600 14.322

of them tends to converge to a particular point. In ANN-PSO,
the trajectories are much more interspersed, and they seem to
maintain movement throughout the run. This suggests that the
improvement due to ANN-PSO may, at least in part, be due to
increased exploration of the search space. The benefit of this
can be seen, for instance, in Fig. 5, where ANN-PSO is able to
explore more of the local optima within the highly multimodal
landscape of the Rastrigin function, and consequently finds the
basin containing the global optimum.

Our initial hypothesis when developing this method was that
the ANN would learn to explore or avoid certain areas of the
search space as a result of learning from past experiences.
However, this behaviour is not apparent from the trajectory
plots, which might suggest that the ANN is carrying out a
different role to the expected one. Having said that, it is
difficult to infer the ANN’s role from these trajectory plots
alone. Further analysis of the evolved ANNs may help to un-
derstand their role. However, it may also be the case that their
role depends on the dimensionality of the problem. For low-
dimensional spaces, there may be little pressure to do anything
beyond increasing exploration. For higher dimensional spaces,
where the search volume is much greater, this is unlikely to
be the case, so there may be value to looking more closely
at the trajectories generated when solving higher-dimensional
problems.

V. CONCLUSIONS

This paper explores the idea of using ANNs to increase
the cognitive capacity of particles within PSO. The approach
assigns a separate ANN to each particle, and this is used
to choose which informant to follow at each iteration. The
population of ANNs are then evolved in a distributed manner
based on their ability to successfully guide particles towards
higher fitness regions. Results on five benchmark problems
suggest that this approach significantly improves the ability of
PSO to find the global optimum in a range of different solution
landscapes.

In future work, we aim to gain more insight into how
the ANNs improve search. In this paper, an initial analysis
of trajectories on 2-dimensional versions of the problems

suggests that this may be due to a higher degree of exploration,
but it remains unclear whether this is also true in the higher-
dimensional cases. An investigation of higher-dimensional
trajectories, although more challenging, may give some insight
into this. Analysis of the behaviour of the evolved ANNs may
also be informative.

More work is also required to understand when this ap-
proach works, since it is unlikely that it will lead to an
improvement in all continuous optimisation landscapes. Un-
derstanding of this may emerge from a better understanding
of what roles the ANNs are playing, e.g. are they explicitly
remembering features of the landscape (in which case more
complex landscapes could be problematic) or are they doing
something more diverse. The use of standard benchmark sets
(e.g. CEC 2015 [18]) may also contribute towards this.

The approach described in this paper is just one way of us-
ing ANNS to guide PSO, and there are many other possibilities
to investigate. More complexity could be added by passing
additional information to the ANN, for instance the velocity
or current position of an informant in addition to its personal
best. Simpler variants could use a single ANN for the entire
population, and train this using back-propagation (though it
may be difficult to find a suitable error function for this).
However, one of the motivations for using distributed evolution
to train the ANNS is that the algorithm (like PSO itself) can be
implemented within a distributed system; an example of where
this might be beneficial is within a swarm robotics context.
It could also be possible for learning to be carried out over
multiple runs, rather than reinitialising the ANNs each time;
this might be useful as a form of transfer learning, or for
specialising PSO to particular classes of landscape.
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