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Abstract—Dominance move (DoM) is a binary quality indicator
to compare solution sets in multiobjective optimization. The
indicator allows a more natural and intuitive relation when
comparing solution sets. Like the ε-indicators, it is Pareto
compliant and does not demand any parameters or reference
sets. In spite of its advantages, the combinatorial calculation
nature is a limitation. The original formulation presents an
efficient method to calculate it in a bi-objective case only. This
work presents an assignment formulation to calculate DoM in
problems with three objectives or more. Some initial experiments,
in the bi-objective space, were done to show that DoM has
a similar interpretation as ε-indicators, and to show that our
model formulation is correct. Next, other experiments, using three
dimensions, were also done to show how DoM could be compared
with other indicators: inverted generational distance (IGD) and
hypervolume (HV). The assignment formulation for DoM is valid
not only for three objectives but for more. Finally, there are some
strengths and weaknesses, which are discussed and detailed.

Index Terms—multiobjective optimization, quality indicator,
performance assessment, exact method, evolutionary algorithms

I. INTRODUCTION

Many real-world optimization problems are composed of
multiple and conflicting objectives. Although traditional ap-
proaches can be used to combine the objectives into a single
one and solve the resulting problem, several multi and many-
objective optimization techniques have proven to be efficient
techniques dealing with the true multiobjective nature of such
problems. [1].

The solution sets are formed in such a way that each
solution represents a trade-off among objectives. If a compar-
ison of different solution sets is needed, many performance
measures can be applied [2]. Graphical techniques represent
an alternative way to help examine the solution sets visually.
Those techniques are quite useful when the problems have
two or three objectives only. However, when the number
of objectives is higher than three, this task is challenging
(if not impractical), needing proper visualization techniques
that can exhibit solution set features like location, shape, and
distribution [3].

1 PPMMC - Programa de pós-graduação em modelagem matemática e
computacional

When it is necessary to summarize the solution sets, taking
into account their characteristics and features, quality indi-
cators are widely applied [4]. These indicators have been
used to compare the outcomes of multiobjective optimizers
quantitatively. Ideally, a quality indicator should be able not
only to state whether an outcome is better than others but also
in what aspects. In a recent paper [2], 100 quality indicators
were discussed including some that are considered state-of-
the-art. The quality aspects of these indicators, as well as their
strengths and weaknesses, are examined and compared.

A unary quality indicator is a mapping that assigns an
approximation set to a real number [5], and it is used to
compare approximation sets generated by an optimizer. In-
verted generational distance (IGD) [6], hypervolume (HV)
[7], [8], [9], and ε-additive/multiplicative indicator [4] are
some examples, to name a few. Despite their applicability,
some indicators require a pre-defined reference point or the
knowledge of the true Pareto front.

While unary indicators are able to summarize only one solu-
tion set, binary indicators take into account two approximation
sets and return a real value, which can be used to say whether
an approximation is better than others. For two sets P and Q,
for example, if P weakly dominates Q, then I(P,Q) = 0. If
P dominates some points of Q, and Q does not dominate any
point of P, it is fair to expect that the indicator supports P to
Q.

In [10], a new quality measure, called dominance move
(DoM) is proposed. DoM measures the minimum ‘effort’ that
one solution set has to make in trying to dominate another set,
more specifically the sum of the movement needed to make
a set dominant. It has the same ε-indicators’ interpretation
and it can capture all quality aspects of solution sets, such
as Pareto convergence and spread. The authors propose an
exact algorithm to calculate DoM for the bi-objective case
that can be computed in low computational cost. However, as
stated in [10], it can not be used or extended to three or more
dimensions due to the indicator combinatorial nature.

In an attempt to overcome this difficulty, this work focuses
on a DoM formulation as an assignment problem, and its
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solution using a mixed-integer programming method [11] is
proposed. Assignment problems have some variants; however,
it is common for the problems to involve a form to optimally
match the elements of two or more sets, in which the assign-
ment’s complexity refers to the number of items to be matched
[12].

The paper is organized as follows. In Section II, some defini-
tions and related work are presented. Section III introduces the
DoM indicator and our formulation to treat it as an assignment
problem. Next, a mixed-integer programming formulation is
also presented as an assignment implementation. Its strengths
and weaknesses to solve the assignment problem are also
discussed. Some experiments are presented in Section IV,
firstly in the bi-objective case, showing that DoM overcomes
some ε-indicators weaknesses, and it is still in agreement with
the DoM calculation algorithm developed in [2]. Moreover, in
the experiments section, some solution sets were generated by
IBEA, NSGAII, and SPEA2 and used to assess and compare
the DoM indicator with other common indicators (HV and
IGD). In Section V, some observations and future research
considerations are finally described.

II. DEFINITIONS AND RELATED WORK

In general, a multiobjective optimization problem (MOP)
includes x decision variable vector from a decision space
Ω ⊆ RN , and a set of M objective functions. Without loss
of generality, a minimization MOP can be simply defined as
[13]:

Min F (x) = [f1(x), ..., f|M |(x)]
T
, x ∈ Ω (1)

The F : Ω → Θ ⊆ RM is formed by a set of M objective
functions, which is a mapping from decision space Ω to vectors
in M-dimensional objective space Θ. We are interested in the
evaluation of these objective vector (solution) sets, and the
comparison relation among these vectors.

Considering two solutions p, q ∈ Θ, it is possible to
establish a relation in which p is said to weakly dominate
q if pi ≤ qi for 1 ≤ i ≤ M, and is denoted as p � q. In
addition, if there is at least one objective i in which pi < qi
then it is said that p dominates q, and is denoted as p ≺ q. A
solution p ∈ Θ is called Pareto optimal if there is no q ∈ Θ
that dominates p. The set of all Pareto optimal solutions of an
MOP is called Pareto optimal frontier. In the same way, the
weak dominance relation can be defined to solution sets:

Weak Dominance: The set P weakly dominates Q, denoted
as P � Q, if every solution q ∈ Q is weakly dominated by
at least one solution p ∈ P .

The goal of a multiobjective algorithm is to generate ap-
proximation sets representing the Pareto front of a MOP. In
the last years, the growth of multiobjective algorithms lead to
a key issue: the evaluation and comparison of approximation
sets generated by these algorithms. To assess the quality of sets
in MOP, one must take into account several aspects, such as
convergence to the true Pareto front, spread of the solution, etc.
Quality indicators represent a way to quantitatively evaluate
the approximation sets generated by different algorithms.

Ideally, a quality indicator should not only be able to say which
algorithm is better than the other but also to identify in what
aspects. The following definition formalizes a quality indicator
[4]:

Quality indicator: An k-ary quality indicator I is a function
I:Θk → IR , which assigns each vector of k solutions sets
(P1, P2, ..., Pk) a real value I(P1, P2, ..., Pk).

Quality indicators can be unary, binary, or k-ary, defining
a real value to one solution set, two solution sets, or k
solution sets, respectively. For a comprehensive review of
quality indicators, in [2], some indicators are defined and
discussed using their quality facets as: convergence, spread,
uniformity, and cardinality. Issues such strengths, weaknesses,
and evaluation are also analyzed.

Many indicators have been used in multiple situations in the
literature [2]. Hypervolume (HV), used in [8], [9], inverted
generational distance (IGD) used in [6], and ε-indicator are
some examples. DoM and these indicators will be used in this
paper and are defined below:
• Hypervolume (HV): Let r

′
= (r1, ..., rm) be reference

points in the objective space that is dominated by all
approximation sets. Let P be one approximation set. The
HV value of P with regard to r

′
represents the volume

of the region which is dominated by P and dominates r
′
.

Generally, the computational cost is exponential regard-
ing to the number of objectives.

• Inverted generational distance (IGD): Let R∗ =
(r∗1, ..., r

∗
m) be a reference set of uniformly distributed

points on the Pareto front. Considering P as an approx-
imation set to the Pareto front, the inverted generational
distance between R∗ and P is defined as:

IGD(R∗, P ) =

∑
r∈R∗

d(r, P )

|R∗|
(2)

d(r, P ) is the minimum Euclidean distance from point
r to approximation set P . The IGD metric is able to
measure both diversity and convergence of P if |R∗| is
large enough [14]. The computational cost is O(|M | ×
|R∗| × |P |), where |M | is the number of objectives.

• ε-additive/multiplicative indicator: it is a extension to
the evaluation of approximation schemes in operational
research and theory [4]. For two solution sets P and Q,
the additive ε-indicator, Iε(P,Q) is the minimum value
that can be added to each solution in Q, such that they
become weakly dominated by at least one solution in P.
Formally, the additive ε-indicator is calculated as:

Iε+(P,Q) = max
q∈Q

min
p∈P

max
i∈{1..|M |}

pi − qi (3)

in which pi denotes the objective value of solution p in
the ith objective, and |M | is the number of objectives. For
the multiplicative ε-indicator, the pi − qi is replaced by
pi

qi . A value of Iε+(P,Q) ≤ 0 or Iε×(P,Q) ≤ 1 implies
that P weakly dominates Q. The computational cost is
O(|M | × |P | × |Q|).



• Dominance move (DoM): it is a measure for comparing
two sets of multidimensional points being classified as
a binary indicator. It considers the movement of points
in one set to make this set weakly dominated by the
other set. DoM can be defined as follows, [10]: Let P
be a set of points in {p1, p2, .., pNP } and Q be a set
of points in {q1, q2, .., qNQ}. The dominance move of P
to Q, D(P,Q), is the minimum total distance of moving
points of P, such that any point in Q is weakly dominated
by at least one point in P . In fact, the problem is to
find {p′1, p

′

2, .., p
′

NP } from {p1, p2, .., pNP } positions,
such that P

′
weakly dominates Q, and the total move

from {p1, p2, .., pNP } to {p′1, p
′

2, .., p
′

NP }, denoted as
d(pi, p

′

i), must be minimum. The formal definition of
DoM can be expressed as:

D(P,Q) = minimize
P ′�Q

NP∑
i=1

d(pi, p
′

i) (4)

The number of possibilities to find P
′

is numerous. Any
combination of some P

′
can dominate Q, considering (4).

The authors of [10], proposed an exact solution for calculating
DoM in a bi-objective case [2]. The algorithm can be outlined
as:

Step 1: Remove the dominated points in both P and Q,
separately. Remove the points of Q that are dominated
by at least one point in P .
Step 2: Denote R = P ∪ Q and start the process. Each
point of Q in R is considered as a group. For each group
of Q, find its inward neighbor r = nR(q) in R. If the
point r ∈ P , then merge r into the group of q, otherwise
r ∈ Q. If r is not assigned to one group, merge the two
groups of q and r into one group.
Step 3: If there exists no point q ∈ Q such that q =
nR(nR(q)) (i.e., there is a loop between the points) in any
group, then the procedure ends and there is an optimal
solution to the case.
Step 4: There is a loop in one or some groups. The
procedure replaces these loops with the ideal point. The
ideal point is formed by the best of each objective in
each point inside the loop or group. Return to step 3
until convergence.

The definitions, theorems, and corollaries to prove that this
algorithm is correct in the bi-objective case are presented in
[2]. Furthermore, DoM is Pareto dominant compliant and any
prior problem knowledge and pre-defined parameter are not
necessary. However, due to the combinatorial nature of the
problem, the authors stated that there is no solution for three
or more objectives.

III. THE DOMINANCE MOVE CALCULATION AS AN
ASSIGNMENT PROBLEM

Our proposal concept of DoM calculation is based on the
observation that the problem is, in fact, a particular case of
an assignment problem with two levels and some constraints.
To deal with the problem, we have to find an assignment of

P to Q with the restrictions that each q must be assigned
to one p with the minimum distance. Nevertheless, in classic
assignment problems, P does not change its features, and this
aspect must be considered for the DoM calculation.

A simple and hypothetical example to clarify the situation
can be given as follows: consider P as {(1.5, 1.3, 1.1), (1.4,
2.1, 1.8)} and Q as {(1.4, 1.2, 1.0), (1.3, 2.0, 2.0)}. The
possible inward neighbor r = nR(q) of points q1, and q2
can be, respectively, p1 and p2. This creates an assignment
of P to Q with the minimum D(P,Q), considering that P
is fixed: D(P,Q) = d(p1, q1) + d(p2, q2)) = 0.5. How-
ever, if we considered a movement from P to P

′
, then p1

would be transformed into p
′

1 = {(1.4, 1.3, 1.1)}. In this
sense, we can find a better assignment and lower value of
D(P,Q) = d(p1, p

′

1) + d(p
′

1, q1) + d(p
′

1, q2) = 0.4. Clearly,
other assignments from P to P

′
and to Q are capable to

generate the same value.

p1

p2

p3

p
′

1

p
′

2

p
′

3

p
′

4

p
′

5

p
′

6

p
′

7

p
′

8

p
′

9

q1

q2

q3

Figure 1. One possible example of assignment between P , with NP = 3, and
Q with NQ = 3. Considering improvements in P , P

′
is generated, and in

this example, NP
′

= 9. The distances between P to P
′

and P
′

to Q are,
respectively, d(pi, p

′
k) and d(p

′
k, qj) corresponding to edges.

Inspired by an assignment problem approach, the proposed
DoM calculation is explained in detail. Let P and Q be two
sets of points, with pi points i ∈ {1, .., NP} and qj points
j ∈ {1, .., NQ}. P and Q are given in the problem. P

′
is

a set of points containing the candidates to dominate Q with
some update in one or many objectives. This update generates
a better distance such as expressed in (4). It should be noted
that p

′

k with k ∈ {1, .., NP ′} can be generated from p.
To better understand our approach, this concept is illustrated

in Figure(1). Suppose the solution sets P and Q have both
NP = NQ = 3. P

′
is generated with 3 possibilities for each



pi. In total, there are 9 p
′

k generated. The first assortment of
edges from pi to p

′

k represents the distance d(pi, p
′

k) as a way
to improve pi generating p

′

k candidate. The second assortment
is from p

′

k to qj , and represents the distance d(p
′

k, qj), which
can be seen as the distance from some p

′

k to weakly dominate
some qj or a g group formed by more than one qj .

In a typical assignment problem, the goal is to find a one-
to-one match between n tasks and o agents, for example. The
objective function minimizes the total cost of the assignments
as c(i,j), from task j to agent i. At most, one agent must
do a task, and every task must be done, as proposed in [12].
The mathematical model for the classic assignment problem
is given as in (5):

minimize
N∑
i=1

O∑
j=1

c(i,j)x(i,j)

subject to
N∑
i=1

x(i,j) = 1, ∀j ∈ O

O∑
j=1

x(i,j) = 1, ∀i ∈ N

x(i,j) ∈ {0, 1} ∀i ∈ N, ∀j ∈ O (5)

The DoM assignment model is detailed in (6). The objective
function searches for a valid path from pi to qj through
p
′

k with the minimum distance between pairs. The first set
of constraints guarantee that, for each qj , there is a valid
path. The next constraints involving xc(k,j), a binary variable,
guarantee that the path from pi to qj is valid. When xc(k,j) is
1, then there is a valid path in the assignment graph. On the
other hand, if xc(k,j) is 0, the path is infeasible. Essentially,
it is necessary that p

′

k, generated from pi, must be shared
between pi and qj . Again, the problem can be viewed as a
bipartite graph with two layers, such as the example in Figure
1.

minimize
NP∑
i=1

NP
′∑

k=1

d(pi, p
′

k)x(i,k) +

NP
′∑

k=1

NQ∑
j=1

d(p
′

k, qj)x(k,j)

subject to

NP
′∑

k=1

xc(k,j) = 1, j = (1, .., NQ)

xc(k,j) ≤ x(i,k), i = (1, .., NP ), k = (1, .., NP
′
),

j = (1, .., NQ)

xc(k,j) ≤ x(k,j), k = (1, .., NP
′
), j = (1, .., NQ)

xc(k,j) ≥ x(i,k) + x(k,j) − 1, i = (1, .., NP ),

k = (1, .., NP
′
), j = (1, .., NQ)

x(i,k) ∈ {0, 1}, i = (1, .., NP ), k = (1, .., NP
′
)

x(k,j) ∈ {0, 1}, k = (1, .., NP
′
), j = (1, .., NQ)

xc(k,j) ∈ {0, 1} k = (1, .., NP
′
), j = (1, .., NQ) (6)

In (6), the d(pi, p
′

k) and d(p
′

k, qj) must be computed
beforehand. Two distance matrices can represent these two
parameters. Consider that |L| is the number of solutions in an
arbitrary set, for example, and —M— the number of objectives.
The total number of pairwise comparisons to calculate the
distance matrix is d|L|(|L| − 1)/2e. Each comparison can
be a vector operation with —M— summations to obtain a
pairwise distance element. Some works deal with the task
of how to calculate the distance matrices efficiently such as
in [15]. However, these computations can become prohibitive
when either |L| or |M | are large (thousands of magnitude). For
the solution sets context, the number of elements represents a
critical value to be chosen.

It is important to note that model (6) does not deal with
the problem of finding the p

′

k candidates. Proposing the p
′

k

candidates is a hard task given its combinatorial nature. Still,
it is possible to use the full combinatorial approach, which
represents all the combinations selecting one pi and all the
possible g groups in Q. Another exploratory possibility could
try to learn ‘good’ candidate features. A machine learning
approach could use a limited number of generated candidates
and find such characteristics in candidates using a loss function
as in (6). Considering g as a group with one or many qj , and
assuming that pi will be used as a base to be updated, one
could generate p

′

k candidates which weakly dominate all g
group while minimizing (6).

IV. EXPERIMENTS

A. Bi-objective experiments

The first experiment was done to show that DoM and ε-
indicators have a similar interpretation. We used the same
simple bi-objective problem proposed in [4]. There are four
solution sets as can be viewed in Figure 2. P is the Pareto
front and there is a dominance relation among A1, A2 and
A3: A1 � A2,A1 � A3, A2 � A3.

2 4 6 8 10

f1

1

2

3

4

5

6

7

8

f2

A1

A2

A3

P

Figure 2. Experiment using four solution sets proposed in [4] to show how
ε-indicators assess the sets characteristics. There are four solutions sets. P is
the Pareto front and there are explicit relations among the other solutions sets:
A1 � A2,A1 � A3,A2 � A3



It is expected that an indicator should reflect all the solution
set features. In this sense, Table I presents the values for all
combinations among A1, A2, A3, and P . It can be observed
that DoM and ε-indicators have the same interpretation, and
the comparisons lead to the same conclusions among the
solution sets. Nonetheless, it is relevant to observe some
differences:
• ε-indicators are only related to one particular solution

and only one objective in whole solution set. There is an
information loss, because the indicator ignores the differ-
ence in other objectives. It can be viewed, for example,
in comparison with ε-indicator(A1,P) and DoM(A1,P).
Considering ε-indicator(A1,P), it was obtained using the
first solution from A1 and P on f2 objective; otherwise,
the DoM(A1,P) has explored f1 and f2 objectives, the
distance value was generated using the optimal problem
resolution that was obtained from the first A1 solution
a1 = (4, 7), generate a surrogate point a′1 = (2, 2) that
dominate p2 and have a dominance move distance of one
for each p1 and p3, summing the whole dominance move
equals to nine;

• ε-additive is not able to capture differences concerning
cardinality of solution sets (observe ε-additive(A3,A1)
and ε-additive(A3,A2)). At the same time, ε-
multiplicative presents the same proportion related
as DoM;

• DoM presents greater values than ε-indicators (observe
DoM(A1,P) versus ε-indicator(A1,P), or DoM(A3,P) ver-
sus ε-indicator(A3,P)). This fact can be explained since
DoM takes into account information from all objectives.

The ε-indicators also measure the minimum value added to
one solution set to make it be weakly dominated by another
set. However, as it can be observed in Table I, there is an
information loss. This information loss is critical, considering
many objectives scenarios. One simple example, proposed
in [10], can be easily observed: consider two 10-objective
solutions, such as p1 = {0, 0, 0, .., 1} and q1 = {1, 1, 1, .., 0}.
In this case, ε-additive(p1, q1) = ε-additive(q1, p1) = 1.

The second experiment was done to show the correctness
of DoM assignment calculation, and how it addresses the
quality indicator facets: convergence, spread, uniformity, and
cardinality [2]. The same guidelines proposed in [10] to
solve DoM in the bi-objective case were applied. The data
was provided by Dr Miqing Li. Our method presented the
same results, which were found in the original work. This
concordance showed that the proposed DoM assignment model
was not only correct, but in agreement with the DoM concept
and with the exact algorithm for the bi-objective case presented
in [10].

B. Multiobjective experiments

After using some artificial test sets, the next experiment
aimed to (i) validate the DoM assignment model using prob-
lems with three objectives and (ii) assess the comparison
results with other state-of-the-art quality indicators, such as
HV and IGD. Visualization of approximation sets was also

Table I
COMPARISONS AMONGST ε-ADDITIVE, ε-MULTIPLICATIVE, AND DOM
INDICATORS. A VALUE OF ε-ADDITIVE ≤ 0, ε-MULTIPLICATIVE ≤ 1 OR

DOM ≤ 0 IMPLIES THAT P WEAKLY DOMINATES Q. THE SOLUTIONS SETS
ARE PRESENTED GRAPHICALLY IN FIGURE 2

Quality P solution Q solution sets
indicator sets A1 A2 A3 P

A1 0.000 0.000 -1.000 4.000
ε-additive A2 2.000 0.000 0.000 4.000

A3 2.000 2.000 0.000 5.000
P -1.000 -3.000 -3.000 0.000
A1 1.000 1.000 0.900 4.000

ε-multiplicative A2 2.000 1.000 1.000 4.000
A3 2.000 1.500 1.000 6.000
P 0.500 0.428 0.333 1.000
A1 0.000 0.000 0.000 9.000

DoM A2 2.000 0.000 0.000 9.000
A3 8.000 6.000 0.000 12.000
P 0.000 0.000 0.000 0.000

applied to provide an important insight into the properties of
the approximation sets while validating the conclusions.

In all tests, algorithms such as IBEA, NSGAII, and SPEA2
were used to generate the solution sets. It is important to
note that any other algorithm could have been applied to
generate the solution sets. Our main goal was to validate the
effectiveness of the proposed DoM assignment formulation
and not perform an algorithm ranking.

In each experiment, and for our purpose, an important
parameter had to be chosen beforehand: the definition of the
population size (i.e., others parameters were kept default in
each software used). The question is closely related to the p

′

k

candidates and the solution set cardinality (one of the quality
indicator facet). Generally speaking, in order to have a good
approximation set of the Pareto front, in terms of convergence,
spread, and uniformity, the number of non dominated solutions
grows exponentially concerning the problem dimension.

Using the model in (6), the selection of the p
′

k candidates
was done using the full combinatorial approach: all possible
combinations selecting one pi and all the possible g groups in
Q. The number of such candidates is detailed in (7), in which
g is a group with one or many qj , and assuming that pi will
be used as a base to be updated, generating p

′

k, which can
weakly dominate all g group.

NP

NQ∑
g=1

(
NQ

g

)
=

NP

((
NQ

1

)
+

(
NQ

2

)
+ ...+

(
NQ

NQ

))
=

NP (2NQ − 1)

(7)

Based on (6) and (7), the population size for the algorithms
was set to 20. It is relevant to note that the number of
objectives does not change the model parameters, since the
matrices with d(pi, p

′

k) and d(p
′

k, qj) do not suffer structural
impact (i.e., the number of row and columns remains the same,
regardless of the number of objectives).
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Figure 3. Solution sets with NP = NQ = 20 solutions and three objectives, M
= 3, generated by IBEA, NSGAII, and SPEA2 algorithms applied to DTLZ1,
DTLZ2, DTLZ3, WFG1, WFG2, WFG3 and WFG9 problem sets.

Figure 3 presents all the solution sets. The DTLZ and
WFG families were chosen. These problems present many
different characteristics as convexity/concavity, disconnection,
multimodality, and degeneracy. In this way, DTLZ1, DTLZ2,
DTLZ3, and DTLZ7, WFG1, WFG2, WFG3, and WFG9 were
selected. Some algorithms were also used to test and compare
the DoM with other indicators: IBEA [16], SPEA2 [17], and
NSGAII [9]. The algorithms were run 21 times using each
problem set, and the final combined Pareto front is presented
in 3. The number of function evaluations to each algorithm
run was set to 10000 in each experiment.

Tables II and III show two unary quality indicators: the
inverted generational distance (IGD) and hypervolume (HV)
for the problem sets depicted in 3. It is mandatory to have
a reference set and point, respectively, to calculate these
indicators, and this task is not only a challenging one [2],
but also sometimes provided by the user [8]. For HV, we
decided to use a dominated point chosen amongst all algorithm
solutions and objectives. Concerning IGD, we built a reference
set using the following strategy: we took all the solutions from
all algorithms, and extracted the non dominated points, thus
creating the reference set.

The DoM quality measure is a binary indicator that takes
as input, two approximation sets. In Table IV, for example, it

is possible to see all the comparisons among the solution sets
generated by the algorithms for the DTLZ and WFG families.
P was the solution set generated by the algorithm which it
was trying to dominate, and Q was the solution set which was
being dominated.

Table II
IGD QUALITY INDICATOR FOR PROBLEM SETS: DTLZ1, DTLZ2, DTLZ3,

DTLZ7, WFG1, WFG2, WFG3 AND WFG9 GENERATED USING IBEA,
NSGAII AND SPEA.

Problem IGD
set IBEA NSGAII SPEA2

DTLZ1 0.175 0.024 0.056
DTLZ2 0.091 0.091 0.078
DTLZ3 0.132 0.052 0.049
DTLZ7 0.114 0.253 0.082
WFG1 0.144 0.112 0.096
WFG2 0.133 0.090 0.086
WFG3 0.061 0.055 0.053
WFG9 0.099 0.178 0.103

For the DTLZ1 test set, detailed in Tables II and III, the
algorithm which presented the best IGD was NSGAII. For
the HV indicator, it was difficult to compare the algorithms
due to the inflated values. There was a tie between IBEA
and NSGAII; however, SPEA2 showed a better value. Using
DoM approach and the comparison among algorithms, the
sets generated by IBEA and SPEA2 were both indicated as
the best solutions. The results are presented in Table IV. It
is clear that DoM indicated IBEA as the best choice when
compared with SPEA2, DoM(IBEA, SPEA2) = 0.769 against
DoM(SPEA2, IBEA) = 1.085. The solution sets from other
algorithms easily dominated NSGAII. Taking a closer look at
the DTLZ1 problem set presented in Figure 3, IBEA showed
the smallest scale in all graph axis. DoM is sensible to all
objectives, and the other algorithms had points near the IBEA
solution set. However, the ‘effort’ to dominate the solution sets
was smaller, favouring IBEA.

In the DTLZ2 case, IGD did not indicate differences be-
tween IBEA and NSGAII, and, in the end the best solution
set was generated by SPEA2 (see Table II). Considering HV,
the best algorithms were SPEA2 and IBEA (observe Table
III). Looking at Table IV, the best values pointed to NSGAII
and SPEA2. Observing NSGAII and SPEA2 in Figure 3, it is
possible to note that there is a similar graph scale, but SPEA2
and NSGAII presented a better uniformity among the points
in each solution set.

The results for DTLZ3 were presented in Tables II and III:
for IGD, the best algorithm was SPEA2; and for HV, SPEA2
had the best value. However, it is relevant to note that these
problem sets showed inflated solutions in the same way as
DTLZ1. The DoM values among all algorithms (as shown
in Table IV) favoured IBEA and SPEA2, but in a two by
two comparison, SPEA2 had a better value when compared to
IBEA, DoM(SPEA2, IBEA) = 7.645.

In the DTLZ7 problem set, the best HV values were given
by IBEA and SPEA2. Considering IGD, the best one was for



SPEA2. Using Table IV, SPEA2 generated the best candidate
solutions. Again, the values were smaller, when compared to
DoM values from SPEA2 to dominate all other sets.

Table III
HYPERVOLUME QUALITY INDICATOR FOR PROBLEM SETS: DTLZ1,

DTLZ2, DTLZ3, DTLZ7, WFG1, WFG2, WFG3 AND WFG9
GENERATED USING IBEA, NSGAII AND SPEA.

Problem HV
set IBEA NSGAII SPEA2

DTLZ1 1.048e+05 1.048e+05 1.049e+05
DTLZ2 0.352 0.319 0.356
DTLZ3 5.976e+06 5.969e+06 5.977e+06
DTLZ7 0.138 0.108 0.124
WFG1 3.832 3.255 3.541
WFG2 39.543 37.168 38.626
WFG3 17.952 16.757 16.492
WFG9 25.798 13.992 20.052

In the WFG family, results are presented in Tables II and
III. The best algorithms were SPEA2 and NSGAII for IGD;
however, for HV indicator, the best one was IBEA. In Table
IV, the best algorithm was IBEA. Comparing IBEA to SPEA2,
for example, IBEA had a lower value of DoM, DoM(IBEA,
SPEA2) = 0.493, in contrast with DoM(SPEA2, IBEA) =
0.655. Observe that the values were close to each other.

In WFG2, the best values for IGD, SPEA2 and NSGAII,
were close, presenting a little difference (see Table II). Con-
sidering HV, the best one was the IBEA (Table III), but the
values were once again subtle. Using DoM, detailed in Table
IV, there is an indication that IBEA was the best one when
comparing the algorithms in a two-by-two manner. Something
that should be noted is that the values were close to each other
in DoM; the same phenomenon could be observed in IGD and
HV, as well.

Using WFG3, for the IGD indicator, SPEA2 was the best
one (subtle difference related to NSGAII), and IBEA was the
best solution set considering HV. Assessing DoM in Table IV,
there was an indication that IBEA also had better values.

Finally, for the WFG9 problem set, Tables II and III showed
that for IGD, IBEA had lower value. For HV, IBEA algorithm
had a better value. Considering DoM, presented in Table IV,
IBEA was clearly the most competitive algorithm presenting
the best values.

All the experiments were done using Platypus [18] and
PyGMO [19] to generate the problem sets and to calculate the
indicators (HV and IGD). The model in (6) was implemented
using Python and GUROBI [20] version 9.0.0 build v9.0.0rc2
running on a Linux 64 bits operational system with 12 CPU’s
and 16Gb of RAM. The gap solver parameter was kept as
GUROBI default value 1e− 4.

The method proposed had two stages. The first one was
to calculate matrices involving the distances d(pi, p

′

k) and
d(p

′

k, qj). The distance calculation matrices were implemented
in O(n2), and, as discussed before, there is room for im-
provement in this implementation. The second step was to
generate and solve model 6, which was implemented using

Table IV
DOM VALUES FOR SOME MEMBERS OF THE PROBLEM SET FAMILIES DTLZ

AND WFG. THE APPROXIMATION SETS WERE GENERATED BY IBEA,
NSGAII, AND SPEA2 ALGORITHMS. IT MUST BE NOTED THAT P WAS

THE SOLUTION SET GENERATED BY THE ALGORITHM THAT IT WAS
TRYING TO DOMINATE, AND Q WAS THE SOLUTION SET GENERATED BY

THE ALGORITHM BEING DOMINATED. EACH SOLUTION SET HAD NP = NQ
= 20 SOLUTIONS AND M = 3 OBJECTIVES.

DoM(P,Q)
Problem set Q

P IBEA NSGAII SPEA2
IBEA 0.000 0.121 0.769

DTLZ1 NSGAII 1.535 0.000 1.535
SPEA2 1.085 0.176 0.000
IBEA 0.000 0.929 0.966

DTLZ2 NSGAII 0.757 0.000 0.778
SPEA2 0.726 0.908 0.000
IBEA 0.000 0.044 8.137

DTLZ3 NSGAII 16.468 0.000 16.474
SPEA2 7.645 2.121 0.000
IBEA 0.000 0.417 0.721

DTLZ7 NSGAII 1.559 0.000 1.736
SPEA2 0.667 0.420 0.000
IBEA 0.000 0.839 0.493

WFG1 NSGAII 1.092 0.000 1.015
SPEA2 0.655 1.506 0.000
IBEA 0.000 1.393 1.401

WFG2 NSGAII 1.514 0.000 1.608
SPEA2 1.556 1.731 0.000
IBEA 0.000 1.602 1.440

WFG3 NSGAII 2.226 0.000 1.923
SPEA2 2.732 1.954 0.000
IBEA 0.000 1.491 1.442

WFG9 NSGAII 2.643 0.000 2.372
SPEA2 3.210 2.394 0.000

Table V
EXPERIMENT EXECUTION METRICS: SIMPLEX ITERATIONS (FROM

BRANCH AND BOUND EXECUTION), AND THE TIME SPENT IN SECONDS TO
SOLVE THE MODEL. DESCRIPTIVE STATISTICS ARE MINIMUM, MAXIMUM,

AND QUARTILES.

Descriptive Statistics
Metric Min Q1 Q2 Q3 Max

simplex iterations 26212 43822 60457 75103 163869
time(seconds) 2.000 7.475 17.595 42.255 98.550

mixed-integer programming capabilities, such as branch and
bound.

Descriptive statistics from the tests are presented in Table
V. There are two metrics: simplex iterations from the branch
and bound algorithm, and the time spent to solve the model.
The median time spent by the model was ∼17 seconds, with
60457 simplex iterations. In some cases, the model was solved
in two seconds; however, in the worst case, the model spent
∼98 seconds to solve (i.e., this case happened in the WFG9
problem set when NSGAII was trying to dominate IBEA).

In this section, the goal was to verify if the DoM assignment
formulation was a feasible approach for dealing with problems
that have three objective functions. It is worthy to note that
the maximum number of points was established to 20 (more
solutions in each set increase the computational complexity



and time). Additionally, it is relevant to observe that the assign-
ment problem formulation is not affected by the problem set
dimensionality. The distance matrices, which are parameters
of the model, are not altered with the problem dimensionality.
Moreover, the proposed method has two stages, and just the
first one, distance matrices calculation, is affected by the
number of objectives/dimensions, which remains viable, at
least in some hundreds of objectives/dimensions.

V. CONCLUSION

DoM is a binary indicator that considers the minimum move
of one set to dominate the other set weakly. The indicator
is Pareto compliant and does not demand any parameters
or reference sets. Besides, it treats some weaknesses which
come from the ε-indicators but offers a similar interpretation.
In this sense, it represents a natural and intuitive relation
when comparing solutions, providing a valid measure to infer
Pareto dominance relations, mainly in high dimensions. The
great question about DoM is its calculation concerning its
computational complexity.

We explored a new formulation to calculate DoM and dealt
with it as an assignment problem. The idea used P and Q, for
example, as solution sets that have to be the solutions assigned
to each other. Comparisons with artificial bi-dimensional ex-
amples were made, detailing that DoM has the same interpre-
tation as the ε-indicators, and that our formulation presented
the same results provided by the original DoM formulation.
Additionally, some problem sets in three dimensions were
also tested and showed that DoM assignment results obtained
were in agreement and compliant when compared with other
common indicators used in literature (IGD and HV).

DoM formulations as an assignment problem brought some
particular constraints and questions, as it was discussed in
model formulation. Two calculation stages were presented: i)
the matrices distance calculation, which is smoothly affected
by the number of objectives (e.g., for some thousands of
dimensions), and ii) the model, as an assignment formulation,
implemented using mixed-integer programming, which is af-
fected by the number of the elements in each solution sets.
To the best of our knowledge, even with these limitations, an
exact method to calculate DoM in three or more dimensions
is not known until now.

As a future research, the assignment formulation could be
extended. One possible idea is to introduce the distance calcu-
lation inside the mixed-integer programming model. Possibly,
it could deal with a greater number of solutions in each set.
Yet, another possibility is to not use a full combinatorial
approach. Otherwise, a machine learning approach could be
applied to learn a function that describes features that good p

′

solutions should have to dominate some q′s being generated
by p set.

Finally, DoM is an indicator that is capable of expressing
many quality indicators characteristics. An indicator with such
a feature could improve not only the comparison among
algorithms, but also it the strategies used by the algorithms
which are indicator based, for example.
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