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Fig. 1. Linear classifier, support vectors and their margins 
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Abstract—This paper addresses two practical problems: the 
classification and prediction of properties for polymer and glass 
materials, as a case study of evolutionary learning for tackling 
soft margin problems. The presented classifier is modelled by 
support vectors as well as various kernel functions, with its hard 
restrictions relaxed by slack variables to be soft restrictions in 
order to achieve higher performance. We have compared 
evolutionary learning with traditional gradient methods on 
standard, dual and soft margin support vector machines, built by 
polynomial, Gaussian, and ANOVA kernels. Experimental 
results for data on 434 polymers and 1,441 glasses show that both 
gradient and evolutionary learning approaches have their 
advantages. We show that within this domain the chosen gradient 
methodology is beneficial for standard linear classification 
problems, whilst the evolutionary methodology is more effective 
in addressing highly non-linear and complex problems, such as 
the soft margin problem. 

Keywords— evolutionary learning, soft margin, support vector, 
kernel function, slack variables  

I. INTRODUCTION 

Support vector machines (SVMs) [1] have proved to be an 
effective classifier for binary classification. Essentially, an 
SVM aims to find the specific data points (named as support 

vectors) located both on the positive and negative bounds that 

can maximise the margin between the data class and the 
classifier. In linear cases, the classifier is supposed to be a line 
or hyperplane in feature space, as shown in Fig. 1. Given w and 
b, a hyperplane can be defined as follows [2, 3]: 

 H = { x | < w, x > + b = 0},                        (1) 

where x is a m dimension variable vector in feature space, w is 
the normal vector of hyperplane, <w, x> stands for the inner 
product, and b  is a constant parameter. The hyperplane H 
divides the feature space into two parts standing for the two 
classes, thus a new data point  xi  can be classified by 
calculating: 

f ( w, b, xi) = sgn ( < w, xi > + b )},                   (2) 

where sgn stands for the signum function, and i = 1,…, n is the 
index of observations. As shown in Fig 1, for the same training 
data set, different parameters w  and b  will lead to different 
classifiers with varying margins, while a larger one is more 
profitable to achieve higher prediction accuracy and lower risk 
of error. Furthermore, if we term the predicted value f (w, b, xi) 
as yi, and normalize w and b in a way to let all the data points 
closest to the hyperplane satisfy the following: 

∀i,  yi ( < w, xi > + b ) ≥ 1,                          (3) 

the standard linear SVM optimization will be deduced as: 

min  
1

2
|w|

2
,                                      (4) 

s.t. ∀i,  yi ( < w, xi > + b ) ≥ 1,                      (5) 

where ||w||  denotes the Euclidean norm of vector 𝒘 . For 
solving the quadratic problem (4) under inequality constraints 
(5), we usually combine (4) and (5) by Lagrange multipliers [4] 
as follows: 

Lp:   min  
1

2
|w|

2
+ ∑ αiyi

( < w, xi > + b)n
i=1                 (6) 

where αi  (i = 1,…, n) are n positive Lagrange multipliers. 
Finding a minimum of this combined objective requires a 
gradient method and it is necessary to transfer the inequality 
constraints (5) to be inequality constraints by using Wolfe 
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duality. In short, here we give the final expression of SVM 
dual problem as follows: 

Ld:   max   ∑ αi
n
i=1 −

1

2
∑ ∑ yiyjαiαj

n
j=1

n
i=1 < xi, xj >         (7) 

s.t.  ∀i,  αi ≥ 0  and  ∑ αiyi
n
i=1 = 0                   (8) 

where n is the number of observations, <xi, xj> stands for the 
kernel function which can be either linear or non-linear 
depending on the particular problem. By solving the dual 
problem (7) restricted by (8), we obtain the optimal parameters 
𝛼∗, and further calculate the optimal parameter w* and b* to get 
the classifier for the original problem (4). 

Generally, researchers use gradient-based optimization 
methods [2], [5] to solve (7) and (8). However, there are two 
tough issues usually encountered in tacking practical problems: 
(A) Uncertainty over choice of kernel functions. In most cases 
solving practical problems, such as the polymer and glass 
classification problems in this work, we do not have prior 
knowledge of the most appropriate kernel(s). Thus, choosing 
the kernel by either empirical models or feature mining 
approaches, is still challenging. (B) The failure of the 
traditional gradient method. First, in non-linear and large-scale 
cases [6], some employed kernels would be very complex and 
might introduce unexpected computational error. Second, for 
kernels that are not positive semidefinite, the unique global 
optimum does not exist, which means we cannot approach the 
optimal solution by using gradient method. 

For the first issue (Issue A), a heuristic method for 
automatic feature selection was designed by using an 
evolutionary algorithm [7], where the kernels were treated as 
individuals in the population, and the best kernel will be 
presented as the final output. However, this will divide the 
original problem into two stages: kernel selection and problem 
solving. Recently, ensemble learning approaches have been 
developed by maintaining a set of kernels and driving them 
adaptively by the proposed strategies or criteria [3, 7]. 
However, in this way, some of the kernels in the pre-set 
ensemble may be not so exact to approximate the ideal kernel. 
Therefore slack variables were introduced which could relax 
the hard constraints (5) to become softer constraints [8, 10], so 
that the kernels used could be equally considered as the ideal 
unknown one. Of course, the introduced positive slack 
variables will form an additional objective to be minimized, 
thus choosing an appropriate weighting parameter for 
balancing the margin objective and slack objective will affect 
the final optimum [10, 11].  

For the second issue (Issue B), evolutionary learning [13] 
works, and it is a type of bio-inspired method for solving 
highly complex, non-linear and larger-scale optimization 
problems by combining an evolutionary strategy with machine 
learning [7, 13–17]. Compared to the traditional gradient 
methods, evolutionary learning has shown advantages in 
tackling practical problems, especially those which are non-
differentiable or very difficult to model mathematically. 
Evolutionary learning shows the effectiveness in running 
combinations of multiple SVMs [14], parallel evolutionary 
algorithms [6], and evolving an ensemble of models [17]. 
Moreover, the evolutionary learning method is good at dealing 

with multi-objective optimisation problems [18], which avoids 
the need of weighting parameters to balance various objectives. 

In this research, aiming to tackle polymer and glass 
materials classification and prediction problems, both of the 
kernel and slack methods will be used to model the classifiers, 
and the evolutionary algorithm be carried out on the Ld model 
in (7) and (8). We will treat information such as properties and 
chemical compositions as problem features, and the types of 
polymer and glass materials as labels. The classification task is 
essentially to construct a mapping modelled from the feature 
data to their labels. These mappings are usually highly coupled 
by unknown functions and thus are so complex that a linear 
kernel is not competent. One way to approach this is to use 
non-linear kernels, such as polynomial, Gaussian [2, 9] and 
ANOVA [19] kernels.  

The rest of this paper is organised as follows: Section II 
briefly reviews three common non-linear kernels and the soft 
margin problem by introducing slack variables. An 
evolutionary learning method is introduced in Section III, and 
this is compared with a traditional gradient method on two 
practical problems by using standard, dual, and soft margin 
SVMs in Section IV. The experimental investigation on 
different kernels is also carried out in Section IV. Finally, 
conclusions are drawn, and future work outlined in Section V. 
The contributions of this paper are summarized as follows: 

(1) Two practical problems are presented in this work as a 
case study for the soft margin problem-solving by 
evolutionary learning. 

(2) The performance of both evolutionary learning and 
gradient-based methods are demonstrated to compare 
their particular advantages. 

II. KERNEL AND SLACK METHODS 

A. Kernel Functions for SVM 

In the feature space shown by Fig. 1, as we suppose a 
hyperplane to be the binary classifier, in (7) we have a linear 
kernel function <xi, xj> =xi

T xj . However, in most practical 
cases, the data is non linearly separable, and it needs to be 
transferred to another feature space by: 

ϕ: x ∈ RM ⟼ ϕ(x) ∈ F ∈ ℝm                      (9) 

In the new feature space 𝐹 ∈ ℝ , the data are expected to 
be separated by a linear SVM. For simplicity, we briefly list 
three common kernels [9] which will be tested in our 
subsequent experiments. 

1) Polynomial Kernel 
Frequently, a polynomial kernel refers to the following 

case: 

kd (x, z) = ( < x, z > + R )d                       (10) 

where x and z denotes vector variables in RM, d stands for the 
degree of polynomial kernel, R is a constant parameter. 
Expanding the polynomial kernel by using the binomial 
theorem [20] we have a general expression as: 

kd (x, z) = ∑ d
s Rd s< x, z >sd

s=0                   (11) 



where s = 0,1,…d is a integer parameter. 

2) ANOVA kernel 
First we define a feature mapping as follows: 

ϕd : x ∈ RM ⟼ ϕA 
(x)(|A| = d)                     (12) 

where |A| = d denotes the cardinality of set A, and ϕA 
(x) is 

defined as: 

ϕA
(x) = x1

i1x2
i2…xn

in                                 (13) 

where A = (i1, i2,…, in) ∈ {0, 1}n with a further restriction that: 

∑ ij
n
j=1  = d                                         (14) 

The ANOVA kernel is defined as the summation of all 
expressions that satisfy|A| = d, as: 

kd(x, z) = <ϕd
(x), ϕd

(z)> = ∑ ϕd
(x)ϕd

(z)|A|=d        (15) 

3) Gaussian kernel 
Given the mean square variance of population as σ > 0, the 

Gaussian kernel is defined as: 

 k(x, z) = exp

|x z|
2

2σ2
                              (16) 

A Gaussian kernel is the most widely used kernel and it 
forms the hidden units of a radial basis function (RBF) 
network, and hence using this kernel will mean the hypotheses 
are radial basis function networks [5, 7]. It is therefore also 
referred to as the RBF kernel. 

B. Slack Method for Non Linearly Seperatable Data 

We now return to the binary classification problem which 
is non-separated by a linear model, nor even by non-linear 
kernels. Here we take a linear case as an example. Recalling 
constraints (5), we now relax them by introducing slack 
variables as: 

 s.t.   ∀i,  yi ( <w, xi> + b) ≥ 1 − εi                  (17) 

where εi (i = 1,…, n) are positive slack variables for relaxing 
constraints. In order to minimize the number of wrong 
classifications, we need to introduce the second objective as a 
part of (4), as follows: 

min  
1

2
|w|

2
 + C ∑ εi

n
i=1                             (18) 

where C is a constant factor parameter which determines the 
weight of wrong predictions (or not exact predictions). We 
expect both parts in (18) to be minimum.  

By using a Lagrange multiplier and dual transform, the 
slack variable 𝜀  vanishes and we can get the dual SVM 
optimization problem below [18, 20]: 

Ld: max   ∑ αi
n
i=1 −

1

2
∑ ∑ yiyjαiαj

n
j=1

n
i=1 < xi, xj >      (19) 

s.t.  ∀i,  0 ≤ αi ≤ C and ∑ αiyi
n
i=1 = 0                 (20) 

This term can be solved by the evolutionary algorithm 
introduced in Section III. 

III. EVOLUTIONARY COMPUTATION 

In this section we combine evolutionary computation with 
SVM learning. Consider optimization problem (19) with 
constraint (20), for simplicity we re-term them to a standard 
format as:  

max   f (α)                                          (21) 
 s.t.     g (α)=0                                     (22) 

  ∀ i,    0 ≤ αi ≤ C                                   (23) 

Next, we will introduce the main steps of evolutionary 
computation to solve the above optimization problem. 

A. Population Initialization and Evaluation 

Evolutionary computation starts from an initial population 
composed of a pre-specified number N of individuals 
representing potential solutions. In this work, solution vector 𝜶 
is encoded by a real number bounded in [0, C] , i.e. the 
searching space for this problem is [0, C] . Generally, we 
generate individuals by uniform distribution on the hyperplane 
defined by (22) as the initial population, then evaluate the 
quality of each individual by calculating (21). For the 
maximum problem (21), an individual with higher fitness value 
calculated by (21) means that this individual will be given 
more chance to generate offspring in the population.  

B. Evolution Strategy 

Evolutionary strategy is a bio-inspired method for search 
and optimisation problems, and it mimics the natural 
environments, criteria and processes. There are many well-used 
evolutionary operators, such as simulated binary crossover 
(SBX) [22], polynomial-based mutation (PM) [23] and others 
[11, 13]. Here we take SBX as an example to introduce 
evolutionary strategy. 

1) Parent Selection 
For passing “good” properties to offspring, elite individuals 

with higher fitness values have more chance to be selected as 
parents. For SBX, we select two parents by the tournament 
method with an empirical fraction parameter 𝑇𝐹= 0.75 [23].  

2) Generation by SBX and PM 
In SBX generation, suppose that 𝜶  and 𝜶  are selected 

parents, for the randomly selected entry j (j = 1, 2, …, n) of 𝜶  
and 𝜶 , their offspring 𝒐  and 𝒐  are generated by: 

oj
1 = 0.5 wj + vj  −  β1 × wj − vj              (24) 

oj
2 = 0.5 wj + vj  −  β2 × wj − vj              (25) 

where wj = max (α
j

1,αj
2) ,  vj = min (α

j

1,αj
2) , βk (k = 1, 2)  are 

defined as follows: 

βk=

⎩
⎨

⎧ [rk × ak]
1

η+1 if rk ≤ 
1

ak

[
1

(2  rk × ak)]

1
η+1 otherwise

                        (26) 

where rk (k = 1, 2) are random numbers uniformly distributed 
in [0, 1]. Integer k is randomly chosen as 1 or 2 to determine a 
final offspring from o1 and o2. 𝜂 is the crossover distribution 
index; ak are defined as follows (assuming that wj ≠ vj): 



ak = 

⎩
⎨

⎧2 −  [1 + 2
vj lj

wj vj
]-(η+1) if k = 1

2 − [1 + 2
uj wj

(wj vj)]

-(η+1)

if k = 2
           (27) 

where lj  and uj  are the lower and upper bounds of the j-th 
decision variable, respectively. 

In PM, we randomly choose the j-th entry of individual 𝜶 
to be evolved by the following equation: 

oj = αj + δj uj − lj                               (28) 

where parameter δj is calculated by: 

δj = 

2r + 
1

[(1 2r)(1 δ)ηm+1]
ηm+1 − 1     if  r ≤ 0.5

1 −
1

[2(1 r) + 2(r 0.5)(1 δ)ηm+1]
ηm+1          else

        (29) 

In the above, r are uniformly distributed random numbers 
in [0, 1], and δ is defined as follows: 

δ = min [ (αj − lj), (uj − αj)]/(uj − lj)               (30) 

In (29), ηm  is the mutation distribution parameter which 
controls the expectation of disturbance. Generally, we set it as: 

ηm = 100 + t                                     (31) 

where t denotes the number of evolving generations. In this 
case the mutation property will be calculated as: 

pm = 
1

n
 + 

t

tmax
1 −  

1

n
                            (32) 

where tmax  is the maximum number of evolving generations. 
As parameter ηm is a polynomial with respect to t, this is called 
polynomial mutation. 

3) Environment Selection 
These newly generated offspring individuals are then 

combined with their parents to form a new population. The 
combined population is maintained by environmental selection 
which mimics natural criteria [24]. For example, individuals 
with higher fitness values will be more likely to survive than 
those with lower fitness values. Another popular criterion is the 
diversity metric [24, 25] of a population, e.g. an individual with 
higher diversity will have more chance to be maintained in the 
population, in order to avoid the whole population falling into 
local optima. It should be noted that there are many criteria for 
environmental selection, and each criterion has its own 
advantages for population maintenance, thus the selection 
criterion should be designed specifically for a given practical 
problem. In this work, we will only use the fitness value of an 
individual for environmental selection. 

C. Termination Criterion 

 Criterion 1: For a pre-specified number Nstay, e.g. 100, 
when the best fitness of elite individual (or other quality 
metric) is not improved for Nstay epochs.  

 Criterion 2: Between two consecutive epochs, the 
improvement of fitness of the best elite individual 
should not be more than a small specified number as a 
threshold.  

 Criterion 3: When the epoch reaches a pre-specified 
number Nepoch representing the maximum epoch. 

It should be noted that we can use one of the above criteria 
as a termination condition, while sometimes all three criteria 
should be satisfied for higher qualified convergence. 

IV. EXPERIMENTAL INVESTIGATION 

A. Two Practical Problems with Associated Datasets 

 Problem 1: Polymer Classification [27] 

The work of Huan et al [26] provides a set of computed 
polymer data with 7 materials properties, namely atom type 
(AT), total atom number (AN), band gap (BG), atomization 
energy (AE), dielectric constant of electron (DE), dielectric 
constant of ion (DI) and total dielectric constant (DC). Within 
this data set are polymers labelled as distinct classes: (1) 
‘organic molecular crystal’ and (2) ‘organic polymer crystal’. 
The practical problem was to construct a classifier by using 
SVMs with various kernels and then train and test it with 
training and test sets, respectively.  

This dataset contains 434 polymers [27], with 124 
polymers classed as being of type ‘organic molecular crystal’ 
and 310 polymers as being of type ‘organic polymer crystal’. 
For this study, we randomly selected 40% from each set of the 
two types to construct one test dataset. The remaining data was 
combined to form the training set. This gave a training set with 
262 polymer data, and a test set with 172 polymer data. Each 
entry of polymer data was recorded as shown in Table I. 

TABLE I.  TWO EXAMPLE ENTRIES IN THE POLYMER DATASET 

 
ID 

Feature Variables (x) Labels (y) 

AT AN BG AE DE DI DC Type 
336 4 76 3.4 5.8 3.0 0.78 3.8 Organic 

polymer 
944 3 60 6.2 5.0 2.5 0.53 3.1 Organic 

molecular 

 Problem 2: Glass Classification 

We used a data set for 1,441 glasses composed of SiO2, 
Al2O3, B2O3, Na2O, K2O, MgO and CaO. We recorded their 
chemical compositions as feature variables (formatted so that 
the sum of these variables summed to 100), and converted their 
glass transition temperatures (Tg) to form a binary label of 
‘High Tg’ or ‘Low Tg’ by follows: 

yi = 
 High if Tgi ≥ Tg

 Low   if Tgi < Tg ,
                         (33) 

where  Tg = 566 stands for the mean value of Tg of all 1,441 
samples. Examples of data entry are shown in Table II. 

TABLE II.  TWO EXAMPLE ENTRIES IN THE GLASSES DATASET 

 

ID 

Compositional Variables (x) Labels (y) 

SiO2 Al2O3 B2O3 Na2O K2O MgO CaO Tg/oC Type 

25 30 0 45 15 0 0 10 475 Low 

128 80 0 10 0 10 0 0 658 High 



The task was to construct a model which can classify 
glasses with high or low Tg with the aim that the constructed 
and trained model could predict Tg values using the labels 
‘High Tg’ or ‘Low Tg’ when presented with new glass 
compositions. 

B. Experiment and Algorithm Setting 

SVM was used to tackle the classification and prediction 
tasks with three commonly used kernels: the polynomial, 
Gaussian, and AVONA kernels. Both the traditional gradient-
based training and evolutionary methods for dual soft margin 
problems are assessed in this research.  

TABLE III.  DETAILS OF THE EXPERIMENTS 

Solver SVMs 

Standard: 
(4) & (5) 

Dual: 
(7) & (8) 

Soft Margin: 
(19) & (20) 

C = NULL C = ∞ C > 0 C > 0 

Polynomial (P) GM EA GM EA 

Guassian (G) GM EA GM EA 

ANOVA (A) GM EA GM EA 

In Table III, GM and EA stand for the gradient method and 
evolutionary algorithm respectively. As the standard SVM 
cannot be solved by EA, we only use GM to solve (4) under 
(5). The dual SVM (7) under (8) is essentially equal to the 
standard SVM (4) under (5), thus we employ EA to solve (7) 
under (8). It should be noted that we should generate solution 
individual α under restriction (8), just as that used in solving 
(19) under (20) with C = ∞. In summary, totally we have 
carried out 12 experiments as shown in Table III, which 
basically contains three SVMs on three kernels solved by GM 
and EA. For the soft margin model, we used both gradient and 
evolutionary methods to solve them, with the primary 
experiment settings are shown in Table IV.  

TABLE IV.  PRIMARY PARAMETER SETTINGS OF EXPERIMENTS 

Parameter Setting for Evolutionary Algorithm 
Population 

Size N 
Constant C 

in (23) 
Max Epoch 

Nepoch 
Non-improved 
Epoch No. Nstay 

100 
{0.01, 0.1, 0, 

1, 106} 
100,000 30 

Cross 
Validation 
Folds No. 

Crossover 
Parameter η 

in (26) 

Mutation 
Parameter 
ηmin (31) 

Tournament 
Fraction TF in 

[22] 

10 20 1 0.75 

Parameter Setting for Kernel Models 

Polynomial 
Kernel 

Degree d in 
(10) 

ANOVA 
Kernel 

Degree d in 
(14) 

Gaussian 
Kernel, 

Parameter σ 
in (16) 

Slack Variables 
εi (i =1, ..., n) in 

(17) 

{1, 2, 3} 1 {√0.52 ,√0.052
} 0.1 

In Table IV, the upper part shows the parameter setting for 
the evolutionary algorithm, where N stands for the pre-set 
number of individuals in the initial population, i.e. population 
size mentioned in section III.A. C is the parameter for 
bounding in (23) as well as the penalty parameter in (18), Nepoch 
stands for the pre-set maximum number of epoches, and Nstay 

denotes the pre-set epoch number for the so-called non-
improvement evolution. We used 10-fold cross-validation for 
our experiments, and the parameters for generating new 
offspring are η, ηm and TF. The lower part of Table IV lists the 
primary parameters used in the kernels, where d stands for the 
kernel degrees used for polynomial and ANOVA kernels. σ 
denotes the mean-square variance in Gaussian kernel, and εi is 
the ith slack variable in (17). It should be noted that some of the 
parameters arise from literature and some of them are drawn 
from trials. For instance, the bounding C in (23) in our 
experiment comes from an empirical set {0.01, 0.1, 0, 1, 106}, 
as there is no prior knowledge of these practical problems 
presented in this work.  

C. Metrics and Results Analysis 

As both practical problems are binary classification tasks, 
we can record outputs as one of four commonly used variables, 
i.e. the false positive (FP), true positive (TP), false negative 
(FN) and true negative (TN) values as results. In addition, the 
metrics of accuracy (A), precision (P), recall (R) and F1-score 
(F1) are calculated as follows: 

A = 
TP+TN

FP+TP+TN+FN
 × 100%                        (34) 

P = 
TP

FP+TP
 × 100%                                   (35) 

R = 
TP

FP+TN
 × 100%                                  (36) 

𝐹  = 
2PR

P+R
=

2TP

2TP+FP+FN
 × 100%                (37) 

Due to space limitations, we do not listed here all metrics 
results, but only the accuracy A for illustration. In the 10-fold 
cross-validation, we calculate the mean accuracy A and 
standard deviation σA of 10 accuracy scores as follows: 

A = 
1

10
 ∑ Ai

10
i=1                                  (38) 

 σA=
1

10 1
∑ (Ai − A)

2
 10

i=1                          (39) 

For evolutionary computation, the mean values of 30 
independent runs were used for final results. 

 Results of Polymer Classification and Prediction 

As shown in Table V, the standard SVMs (4), (5) used the 
gradient method to enable them to be solved. For the soft 
margin problems (19), (20) both gradient and evolutionary 
methods were used with various values of parameter C, with 
only the best results listed in Table V. For dual SVMs (7), (8) 
only the evolutionary method was used, but with C = 106 
replacing C = ∞. 

There are two points to be noted here: (1) In fact, the 
standard SVM (C=NULL) and dual SVM (solved by EA with 
C=∞) are equal. However, when C = 106 was used to replace C 
= ∞, some errors were introduced. Thus, the gradient method 
should be preferred for the standard and the dual SVM model. 
(2) Each evolutionary computation starts from a random 
initialized population, thus a number1 of independent runs are 

 
1 In this work, 30 × independent run are carried out on each trial. 



needed. However, the aim of evolutionary computation is to 
find the support vectors via solving (19) or (21), and all 30 runs 
with respect to any case had converged to give the same 
support vectors. Thus, we cannot obtain the statistical analysis 
for the classification results, though we could obtain the results 
of α in each of the 30 runs with slight differences. 

TABLE V.  (A) RESULTS OF POLYMER CLASSIFICATION 

Cross Validation on Training Data Set 

Model Kernel FN TP FP TN A σA 

(4), (5) 

by 

GM 

P (C=0) 24 169 17 52 84.4% 6.2% 

G (C=0) 15 169 17 61 87.8% 6.8% 

A (C=0) 15 167 19 61 87.0% 6.3% 

(7), (8) 

by EM 

P (C=106) 8 148 38 68 82.4% 8.5% 

G (C=106) 10 150 36 66 82.4% 8.0% 

A (C=106) 2 147 39 74 84.3% 7.0% 

(19), 

(20) by 

GM 

P (C=0.1) 23 169 17 53 84.8% 5.6% 

G (C=0.1) 39 180 6 37 82.8% 4.6% 

A (C=0.1) 16 167 19 60 86.6% 6.6% 

(19), 

(20) by 

EM 

P (C=0.01) 18 170 16 58 87.0% 6.2% 

G (C=1) 24 171 15 52 85.1% 2.9% 

A (C=0.1) 9 161 25 67 87.0% 3.8% 

TABLE V.  (B) RESULTS OF POLYMER PREDICTION 

Prediction on Test Data Set 

Model Kernel FN TP FP TN A 

(4), (5) 

by 

GM 

P (C=0) 17 114 10 31 84.3% 

G (C=0) 11 116 8 37 89.0% 

A (C=0) 5 104 20 43 85.5% 

(7), (8) 

by EA 

P (C=106) 9 102 22 39 82.0% 

G (C=106) 8 104 20 40 83.7% 

A (C=106) 5 97 27 43 81.4% 

(19), 

(20) by 

GM 

P (C=0.1) 17 115 9 31 84.9% 

G (C=0.1) 29 121 3 19 81.4% 

A (C=0.1) 15 120 4 33 89.0% 

(19), 

(20) by 

EA 

P (C=0.01) 18 114 10 30 83.7% 

G (C=1) 19 117 7 29 84.9% 

A (C=0.1) 11 115 9 37 88.4% 

With respect to the methods used, for soft margin SVM, the 
evolutionary method performs better at cross validation in 
Table IV. In Table V, GM was a completely winner for 3 
kernels, when comparing ‘(4), (5) by GM’ with ‘(7), (8) by 
EA’ as these two models are equal, and win 2 out of 3 when 
comparing ‘(19), (20) by GM’ to ‘(19), (20) by EA’. EA wins 
only in 1 out of 3 on the Gaussian kernel.  

With respect to the performance of kernels in Table IV and 
V, the ANOVA kernel wins 5 out of 8 experiments, and holds 
rank 2 for twice; while the Gaussian and polynomial kernel 
win 2 out of 8 experiments respectively (there is a draw best 
between ANOVA and polynomial kernel). However, it should 
be noted that the Gaussian kernel used in basic SVM exhibited 
the highest prediction accuracy which was also achieved by 
dual SVM with ANOVA kernel. 

 Results of Glass Classification and Prediction 

As shown in Table VI, the gradient method on standard 
SVM (4), (5) performs better than the evolutionary algorithm 
on dual SVM (7), (8), on all three kernels. While in the soft 
margin SVM, the evolutionary method outperforms slightly the 
gradient method, as shown in both cross validation in Table VI 
(A) and prediction in Table VI (B). Moreover, it is noted that 
the FN scores are obviously different between the gradient 
method and the evolutionary method, however, the reasons for 
this still require further investigation.  

TABLE VI.  (A) RESULTS OF GLASS CLASSIFICATION 

Cross Validation on Training Data Set 

Model Kernel FN TP FP TN A σA 

(4), (5) 

by 

GM 

P (C=0) 8 223 145 633 84.8% 2.8% 

G (C=0) 6 260 108 635 88.7% 3.8% 

A (C=0) 9 219 149 632 84.3% 2.0% 

(7), (8) 

by EA 

P (C=106) 125 286 82 516 79.5% 5.5% 

G (C=106) 116 337 31 525 85.4% 3.8% 

A (C=106) 76 266 102 565 82.4% 3.0% 

(19), 

(20) by 

GM 

P (C=0.1) 8 219 149 633 84.4% 2.4% 

G (C=0.1) 4 224 144 637 85.3% 3.0% 

A (C=0.1) 4 224 144 637 85.3% 3.0% 

(19), 

(20) by 

EA 

P (C=0.01) 53 271 97 588 85.1% 4.4% 

G (C=1) 39 311 57 602 90.5% 3.5% 

A (C=0.1) 59 272 96 582 84.6% 2.4% 

TABLE VI.  (B) RESULTS OF GLASS PREDICTION 

Prediction on Test Data Set 

Model Kernel FN TP FP TN A 

(4), (5) 

by 

GM 

P (C=0) 0 100 59 273 86.3% 

G (C=0) 3 115 44 270 89.1% 

A (C=0) 3 101 58 270 85.9% 

(7), (8) 

by EA 

P (C=106) 50 123 36 223 80.1% 

G (C=106) 37 149 10 236 89.1% 

A (C=106) 35 111 48 238 80.8% 

(19), 

(20) by 

GM 

P (C=0.1) 0 100 59 270 86.3% 

G (C=0.1) 0 97 62 273 85.7% 

A (C=0.1) 0 97 62 273 85.7% 

(19), 

(20) by 

EA 

P (C=0.01) 18 121 38 255 87.0% 

G (C=1) 10 138 21 263 92.8% 

A (C=0.1) 24 121 38 249 85.7% 

In the soft margin problem, the Gaussian kernel solved by 
the evolutionary method achieved high accuracies at 90.5% (in 
Table VI (A)) and 92.8% (in Table VI (B)) in cross validation 
and predictions, respectively. Thus we can conclude that the 
Gaussian kernel is more promising than the other two in the 
glass Tg classification and prediction. 

 Further Analysis 

a) Parameters. All parameters in Table IV may affect 
the final results in Table V and Table VI. Thus, it is 
difficult to prepare absolutely fair comparisons 
between SVM models, kernels and solvers. 



b) Cost. The evolutionary method consumes more 
computational resource than the gradient method, 
especially as the scale of dataset increases. 

c) Performance. The evolutionary method achieved the 
best results on soft margin SVM with ANOVA kernel 
in Table V (A), with the Gaussian kernel in Table VI 
(A) and Table VI (B), and hence this exemplifies the 
advantages of the evolutionary method in solving 
complex practical problems. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we have reviewed three SVMs and kernel 
functions, as well as evolutionary methods for solving soft 
margin SVM model. We tested these approaches on two 
practical problems, i.e. the classification and prediction of 
polymer and glass materials datasets. By analysing 
experimental results, conclusions can be drawn as follows:  

(1) By selecting the proper parameters, we can achieve more 
than 80% accuracy in both validation and prediction in 
nearly all cases studied here. 

(2) On the polymer dataset, the kernels and SVM models 
performed similarly, while with the glass dataset, the 
Gaussian kernel on soft margin SVM outperformed the 
other methods. 

(3) Both evolutionary and gradient methods have their 
specific advantages. It should be emphasized that the 
evolutionary method has great potential for tackling more 
complex practical problems, and so this method needs 
further investigation when solving practical problems.  

For our future work, we would like to study further 
practical cases and feature learning models that can be solved 
by evolutionary methods. These current case studies suggest 
that when facing a practical problem, as it is unknown at the 
outset which model will perform the best, an ensemble strategy 
[8] which contains all available approaches should be used. 
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