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Abstract—Classification has been widely studied due to its
practical applications. Feature selection aims to improve the
classification accuracy by selecting a small feature subset from
the original full feature set. However, identification of relevant
features is not trivial due to the large search space. Particle
swarm optimisation (PSO) is an efficient meta-heuristic algorithm
which has shown to be promising in feature selection. However,
traditional PSO uses its personal best experience and its historical
best experience to determine its search direction, but this learning
strategy may limit its performance for feature selection due to the
premature convergence. Therefore, the potential of PSO needs to
be further explored. In this paper, a new evolutionary learning
algorithm termed hybridising PSO with differential evolution
(HPSO-DE) is proposed to develop new feature selection methods.
In HPSO-DE, differential evolution is applied to breed promising
and efficient exemplars for PSO to guide its search, which is
expected to not only preserve the diversity of the population
but also guide particles to fly to promising areas. HPSO-DE is
compared with three classic PSO variants and five traditional
feature selection methods on 15 classification problems. The
results show that the proposed algorithm can effectively achieve a
higher classification accuracy with a smaller feature subset than
the compared methods.

Index Terms—Particle swarm optimisation, feature selection,
differential evolution, classification

I. INTRODUCTION

Classification is an important and widely-studied data min-
ing task [1], and its purpose is to assign each instance a class
label according to the information presented by its features.
In a classification problem, it often contains a large quantity
of features, but not all of them are useful to help in class
prediction. Many features may be irrelevant and redundant,
and these features may even degrade the performance of a
learning algorithm due to the large search space [2], [3]. Fea-
ture selection is an effective and important data preprocessing
technique to address above issue by choosing a subset of
relevant features from the original features.

Recently, many feature selection approaches have been
presented by researches, which can be generally classified
into two categories according to the different evaluation
criteria, that is, wrapper-based approaches and filter-based
approaches [4]. Filter-based approaches determine features

according to their intrinsic characteristics (e.g. correlation, dis-
tance, information theoretic, consistency) [5]. Wrapper-based
approaches use the predicted accuracy of a learning algorithm
to assess the selected feature subset. In general, wrapper-
based approaches can obtain higher classification accuracy
than filter-based approaches. However, these wrapper-based
approaches are computationally expensive, especially when
the search space is large and complex [6]. On the contrary,
the filter-based approaches are typically computationally less
expensive, but often obtain lower classification accuracy [7].

Feature selection can be viewed as a combinatorial opti-
misation problem [7]. Suppose a dataset contains n original
features, the feature selection process tends to choose one
from 2n possible feature combinations. Therefore, it is almost
impossible to perform an exhaustive search when the number
of features is large. A lot of heuristic search approaches have
been used to address this problem, such as sequential backward
or forward search techniques [8]. However, these methods may
fall into local optima and need long computational time during
the feature selection process.

So as to better solve feature selection, an algorithm with
strong global search ability is required to improve search
efficiency [9]. Evolutionary computation (EC) techniques have
been proved to have strong global search ability and can
effectively search in complex spaces to achieve optimal or
near-optimal solutions. Particle swarm optimisation (PSO) [10]
is one of EC techniques, which has been widely and success-
fully adopted to address many practical applications due to
its efficiency and simplicity of implementation. A review of
EC-based feature selection approaches was completed in [4].
Compared with other EC methods, PSO is preferred since it
has a natural representation for feature selection.

In canonical PSO, each particle denotes a potential solution
in the search space. During the search process, all particles in
the population keep learning from the personal best position
(pbest) and the global best position (gbest) to update their
position and velocity. This learning strategy is easy to im-
plement but may cause particle oscillation if pbest and gbest
are situated on different sides of the current location [11].
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In addition, if pbest and gbest are situated in the same local
optimum, which may lead to premature convergence during
the evolutionary process. During the past two decades, a
host of variants have been designed to enhance the search
performance of canonical PSO. According to the different
objectives to be addressed, these PSO variants can be generally
categorized into four cases, that is, topology adjustments [12],
parameter adjustments [13], hybrid methods [14], and novel
learning strategies [15]. However, many PSO variants fail
to maintain their improvement to problems with different
characteristics, especially when the search space is complex
and large. Therefore, improving the overall performance of
PSO is still a challenging problem for wider applications.

Differential evolution (DE) [16] is another efficient nature-
inspired algorithm that finds the optimal solution for a task by
repeatedly trying to enhance the quality of the current solutions
based on the DE operators (i.e. mutation, crossover, and
selection). Compared with PSO, DE can discover more useful
information during the search process, which can improve
the search performance of canonical PSO using such useful
information.

A. Goals

The overall goal of this paper is to develop an effective
PSO variant based on DE operators for feature selection
problems. In the proposed algorithm, the DE operators are
used to provide good guidance for each particle by breeding a
promising and efficient exemplar. The proposed algorithm is
expected to achieve a high classification accuracy with a small
feature subset in a reasonable time. Specifically, this work has
the following research objectives:

• Propose a new PSO variant that based on the differential
evolution operator to improve the search performance of
PSO,

• Design a new exemplar updating operator to help PSO
fly out of the local optimum, and

• Verify the performance of the proposed algorithm in
terms of classification accuracy and feature subset size
by comparing with the state-of-the-art algorithms.

II. BACKGROUND

A. Particle swarm optimisation and its variants

Particle swarm optimisation (PSO) is a nature-inspired
optimisation algorithm originally introduced by Eberhart and
Kennedy in 1995 [10], [17]. Each particle in canonical PSO
has a location which denotes a potential solution in the
search space. In the D-dimensional feasible search space, the
location and the velocity of particle i can be represented
by a position vector Xi = [Xi1, Xi2, · · · , XiD] (Xid ∈
[Xmin, Xmax]) and a velocity vector V i = [Vi1, Vi2, · · · , ViD]
(Vid ∈ [Vmin, Vmax]), respectively. The previously best
location of the i-th particle is represented by pbesti =
[pbesti1, pbesti2, · · · , pbestiD], and the best location among
the whole particles achieved so far is represented as gbest =
[gbest1, gbest2, · · · , gbestD]. At each step, the individual best
location pbest and the global best location gbest are used to

generate a new velocity for the i-th particle. The updating pro-
cess for the d-th dimension of the i-th particle are represented
as follows:

Vid =ω ∗ Vid + c1 ∗ r1 ∗ (pbestid −Xid)+

c2 ∗ r2 ∗ (gbestd −Xid)
(1)

Xid = Xid + Vid (2)

where ω denotes the inertia weight. c1 and c2 are acceleration
constants. r1 and r2 are two uniform distributed values within
the range [0, 1].

In the traditional PSO, each particle uses its personal best
location (pbest) and global best location (gbest) to determine
its position and velocity. This learning scheme may cause
particle oscillation because the guidance of these two positions
may be on different sides of Xi. In addition, since each particle
of the population is learning from pbest and gbest even if
gbest and pbest are situated in a same local optimum. This
may cause the search of PSO to stagnate in the local region
due to rapid convergence, especially when the number of local
optimum solutions is large.

So as to address these deficiencies in canonical PSO,
researchers have designed a variety of learning strategies to
make better use of beneficial information to determine the
search direction of PSO, and the widely used velocity updating
formula is shown as follows [18]:

Vid = ω ∗ Vid + c ∗ r ∗ (EVid −Xid) (3)

where c is acceleration constant, and r is a uniform distributed
number within the range of 0 to 1. Here, a exemplar vector
EV i = [EVi1, EVi2, · · · , EViD] is constructed to guide the
i-th particle during the search process. For example, a linear
combination of pbest and gbest is used to form the exemplar
vector EVi in [18]. Eq. (4) shows the linear combination
formula.

EVid =
c1 ∗ r1 ∗ pbestid + c2 ∗ r2 ∗ gbestd

c1 ∗ r1 + c2 ∗ r2
(4)

B. PSO for feature selection

In the last decades, a large number of PSO-based approaches
have been developed and shown good results for feature se-
lection problems [19]. In these approaches, different strategies
have been designed to enhance the overall performance of
canonical PSO during the evolutionary process.

Resetting the position of gbest, pbest, and particle is an
effective way to overcome premature convergence in the large
search space. In [20], a gbest update strategy was proposed
to help PSO escape from local optima. In this method, gbest
was created based on a Boolean function when the fitness
value of gbest does not change within a given number of
generations. In [21], gbest was reset to zero when PSO’s
search process stagnates, which encourages PSO to select a
smaller feature subset. The experimental results showed that
these methods could obtain higher classification accuracy in
most cases. However, the modifications in these methods may
ignore some useful information during the feature selection
process.



Maintaining the diversity of the population is a useful
way to enhance the search performance of canonical PSO.
In [22], a PSO variant was proposed for feature selection,
which aimed to explore untried areas of the search space. In
this method, a mutation strategy was applied to maintain the
population diversity. The experimental results showed that this
method could achieve higher classification accuracy than other
compared methods. However, this method may reduce the
convergence performance of PSO within a predefined number
of iterations.

Reducing the search space by removing redundant and irrel-
evant features is also presented to enhance PSO performance.
In [23], an adaptive multi-subswarm PSO algorithm was
designed for feature selection problems. This method divided
the whole search space into smaller subspaces according to
the importance of features, and then using PSO to select
features from these smaller subspaces. The results showed that
this method is more effective than other compared methods
in terms of the classification accuracy and the number of
selected features. However, the lack of information exchange
between subspaces may reduce the search performance during
the feature selection process.

Designing some local search strategies to exploit the fruitful
regions is another effective way to improve PSO performance.
In [24], a new PSO-based feature selection method was de-
veloped to address feature selection problems. In this method,
a local search operator was embedded in PSO, which uses
correlation information of each feature to conduct the feature
selection process. The results on twelve datasets showed that
this method could choose a smaller feature subset to obtain
higher classification accuracy than using all available features
and the compared feature selection approaches. However, this
method requires more computing resources, especially when
dealing with a large dataset.

In summary, although the existing PSO-based feature s-
election approaches have shown to be effective, the search
performance of these approaches is still limited when applying
PSO to solve complex feature selection problems. PSO for
feature selection still needs further investigation.

III. THE PROPOSED METHOD

In this section, we describe the proposed PSO variant
based on DE operators to address feature selection problems.
The details of using DE operator to breed an exemplar are
presented first. Then, a fitness function is presented, which is
applied to assess the selected feature subset.

A. Differential evolution operators

As mentioned in Section II-A, the exemplar vector EVi
plays an important role to determine the search behaviour of
particles. In this study, DE operators are used for breeding
exemplars during the evolutionary process, which can provide
a promising solution in the large search space. There are two
potential benefits of using DE to breed exemplars. First, DE is
expected to maintain the diversity of the population to prevent
the premature convergence of PSO. Second, these exemplars

constructed by DE can improve the search effectiveness of
PSO by providing good guidance for each particle during the
evolutionary process. The implementation of the DE operators
is described step by step below.

1) Mutation operation: In the proposed algorithm, the
mutation operation is applied to produce a mutant vector
Mi on the i-th particle. According to [12], DE/best/1 is
most suitable to discover useful information during the search
process. This is because its composition takes into account
the requirements of maintaining the diversity of population
and improving convergence performance. DE/best/1 is shown
as follows:

Mid = Xbest,d + F ∗ (Xr1,d −Xr2,d) (5)

where r1 and r2 are random unequal integers obtained for each
mutant vector within [1, NP ], and NP denotes the number of
particles. The scale factor F is a parameter, which is used to
scale the difference vector during the search process. Xbest

denotes the current best individual in the whole population.
In this paper, DE/best/1 is used to generate Mi and it can

be expressed as follows:

Mid = gbestd + F ∗ (pbestr1,d − pbestr2,d) (6)

During the search process, the mutant vector Mi may exceed
the pre-determined boundary of the search space. Therefore, a
boundary handling strategy is adopted to address this problem.

Mid =

{
Xmin, if Mid < Xmin

Xmax, if Mid > Xmax
(7)

2) Crossover operation: For each particle, the crossover
operation is conducted on pbesti and Mi to produce a new
trial vector Ui. This updating process is described as follows:

Ui,d =

{
Mid, if randj ≤ CR or j = jrand

pbestid, otherwise
(8)

where jrand is an integer randomly chosen from [1, D] and
randj is a random number within the range [0, 1]. The
crossover probability CR is a user-defined number, which is
used to control the number of bits copied from the mutant
vector Mi. Here, the condition j = jrand in Eq. 8 is adopted
to assure that the new trial vector Ui has at least one parameter
different from its corresponding original vector pbesti.

3) Selection operation: After the mutation and crossover
operations, a selection operation is conducted to determine
whether Ui or pbesti survives for the next generation. This
operation is expressed as follows:

EVi =

{
Ui, if f(Ui) ≤ f(pbesti)
pbesti, otherwise

(9)

where f(Ui) and f(pbesti) denote the fitness values of Ui and
pbesti, respectively. It is noted that the number of function
evaluations consumed by Ui will be counted in the new
algorithm.

As can be seen from Eq (9), the new trial exemplar Ui will
replace the original exemplar pbesti if the fitness value of Ui is
less than pbesti. This elitism strategy can effectively maintain
the evolution of particles during the search process. Moreover,



Algorithm 1: Hybridising PSO with DE (HPSO-DE)
Input: Initialise parameters (i.e. NP , the number of particles;

D, dimension, c, acceleration constant; w, inertia
weight; F , scale factor; maxFEs, the maximal number
of function evaluations);

Output: The best solution gbest;
1 Initialise the positions X and velocities V of NP particles

randomly;
2 Evaluate f(Xi);
3 Set X to be pbest and find the current gbest;
4 while FEs < maxFEs do
5 for i = 1 to NP do
6 /* Exemplar update: Mutation operation */
7 Construct Mi using Eq. (6);
8 Update Mi using Eq. (7);
9 for d=1 to D do

10 /* Exemplar update: Crossover operation */
11 Construct Ui using Eq. (8);
12 end
13 /* Exemplar update: Selection operation */
14 Evaluate f(Ui);
15 Determine EVi using Eq. (9);
16 if gbest does not change for G generations then
17 Update the exemplar EVi using Eq. (10);
18 end
19 /* Particle update */
20 Update the velocity Vi using Eq. (3);
21 Update the position Xi using Eq. (2);
22 Evaluate f(Xi);
23 Update pbesti and gbest;
24 end
25 end
26 return gbest

if gbest does not change within a given number of generations
(G), PSO may be stuck in a potential local optimum during
the search process. In this study, we design a exemplar
updating operator based on the spiral-shaped mechanism to
update the exemplar EVi. During the evolutionary process, this
mechanism has the potential to change the search direction of
particles, thereby increasing the possibility of escaping from
the local optima. This mechanism is described as follows:

EVi = D ∗ eb∗l ∗ cos(2πl) + EVi (10)

where D = |gbest− EVi| represents the distance of the
exemplar EVi to the current global best position. b is a
constant that is defined to tune the shape of the spiral. l is
a random number and its range is [0, 1]. More information
about the spiral-shaped mechanism can be achieved in [25].

For each particle, the above three operations (i.e. mutation,
crossover, and selection) are repeated until a termination
criterion (e.g. the maximal number of function evaluations) is
met. With the DE operators, a novel hybridising PSO with DE
(HPSO-DE) algorithm is designed. The pseudo-code of HPSO-
DE is presented in Algorithm 1. It can be seen that HPSO-
DE is very easy to implement. Note that the fundamental
component of HPSO-DE is PSO, and DE is only adopted as
an auxiliary algorithm to construct promising exemplars.

When using HPSO-DE for FS, a particle represents a feature
subset, and each position value of the particle within a fixed

range (e.g. between 0 and 1) represents that whether the
corresponding feature should be reserved or abandoned by
using a user-defined threshold value (e.g. 0.6).

B. Fitness function

During the feature selection process, feature evaluation is an
important step to evaluate the goodness of selected features.
The k-nearest neighbour (KNN) is selected as the classification
algorithm due to its effectiveness and simplicity, where K
equals to 5. In this study, a fitness function is adopted to assess
the selected subset, which combines the feature subset size and
the classification accuracy of using the feature subset into one
by setting a weight factor. The fitness function is shown as
follows:

fitness = α ∗ γR(D) + (1− α) ∗ |S|
|N | (11)

where γR(D) represents the classification error rate of the
classification algorithm, |S| denotes the feature subset size,
|N | indicates the number of all features. α is a parameter that
is applied to influence the role of the classification error rate
and the feature subset size, where α is set to 0.9 to balance
these two components [26].

Since most of these datasets are unbalanced, we adopts a
balance accuracy [27] to calculate the first component of the
fitness function in this study. Furthermore, in order to avoid
feature selection bias, 5-fold cross-validation is adopted to
assess the classification accuracy on the training set. Eq. (12)
shows the equation of the classification error rate.

γR(D) = 1− 1

c
∗

c∑
i=1

TPRi (12)

where c denotes the number of classes in a classification
problem, and TPRi represents the proportion of correctly
identified instances in class i. Since there is no bias to each
class in the classification problem, and the weight for each
class is set to 1/c.

C. Summary

From an overall perspective, designing an efficient search
algorithm with strong global search ability will improve the
performance of the wrapper-based feature selection method.
The proposed algorithm is expected to improve the search
effectiveness by breeding a promising exemplar based on the
DE operators. It can increase the population diversity during
the feature selection process and provide effective guidance
for particles.

IV. EXPERIMENT DESIGN

To investigate the efficiency and effectiveness of the pro-
posed algorithm, two experiments have been implemented for
feature selection problems. In this section, we describe the
details of the experiment design including the investigated
datasets, the fitness function, and the compared methods.



TABLE I
LIST OF DATASETS USED IN THE EXPERIMENTS

Dataset #Features #Instance #Class %Smallest %Largest
class class

Breastcancer 9 699 2 34.48 65.52
Glass 9 214 6 4.21 35.51
Zoo 16 101 7 3.96 40.59
Segmentation 19 2310 7 14.29 14.29
WaveformEW 21 5000 3 32.94 33.92
SpectEW 22 267 2 41.20 58.80
WDBC 30 569 2 37.26 62.74
IonosphereEW 34 351 2 35.90 64.10
KrvskpEW 36 3196 2 47.78 52.22
Satellite 36 6435 6 9.73 23.82
Movementlibras 90 360 15 6.67 6.67
Musk1 166 476 2 43.49 56.51
Semeion 256 1593 10 9.73 10.17
Madelon 500 2000 2 50.00 50.00
Isolet 617 1559 26 3.78 3.85

A. Datasets

Fifteen different feature selection problems from the UCI
machine learning repository are employed to verify the pro-
posed algorithm [28]. Table I shows the key characteristics (i.e.
the number of features, instances, classes) of these datasets.
Furthermore, the distribution of these data is unbalanced.
In the experiments, each classification dataset is randomly
divided into two sets, that is, 70% of the instances as the
training set, and the remaining 30% as the test set.

B. Benchmark methods

So as to evaluate the performance of the proposed algorithm,
we compare HPSO-DE with three classic PSO variants on
all datasets, which are PSO with inertia weight (GPSO) [29],
fully informed particle swarm (FIPS) [18], and comprehen-
sive learning PSO (CLPSO) [15]. The parameter settings of
these compared approaches are according to its corresponding
reference. For the proposed HPSO-DE algorithm, the inertial
weight ω, the acceleration constant c, the scale factor F and
the crossover probability CR are set to 0.7298, 1.49618, 0.5,
and 0.2, respectively. Several different values (i.e. from 2 to
10) for the predefined generation G are conducted to determine
the appropriate value. The results of G=5 is better than other
values. Therefore, G is set to 5 in HPSO-DE for all datasets.
The maximum number of function evaluations (FEs) and the
population size are set to 4,000 and 40 for all algorithms, re-
spectively. In addition, we also compare the developed HPSO-
DE algorithm with five traditional feature selection approach-
es, which are Correlation-based FS (CFS) [30], Fast Corre-
lation Based Filter (FCBF) [31], Information Gain (IG) [32],
Fisher Score (F-Score) [1], and ReliefF [33]. This is because
these six approaches are commonly used and represent typical
traditional methods to address feature selection problems. CFS
and FCBF can determine the feature subset automatically.
According to [34], IG, F-Score, and ReliefF use the top 5
features to perform the classification accuracy.

In this study, each stochastic approach is performed 30
independent times on each dataset. The results are recorded

for each approach, which are the best classification accuracy
(BeAcc), the average classification accuracies (AvgAcc), the
best feature subset size (BeNF), the average feature subset size
(AvgNF), and their corresponding standard deviations (Std)
based on the results of the 30 independent runs.

V. RESULTS AND DISSCUSSIONS

In this section, two set experiments are conducted to evalu-
ate the effectiveness and efficiency of the proposed algorithm.
Best results are shown in bold. In the following results, “+”, “-
”, and “≈” indicate that the proposed algorithm is significantly
better than, worse than, and similar with the compared algo-
rithms in Wilcoxon rank-sum test with a significance level of
0.05. This indicates that the more “+” symbols, the better the
proposed algorithm is. In addition, Friedman’s test is adopted
to assess the overall performance of the algorithms on the
15 classification problems. In each Table, “Mean rank” and
“Final rank” denote the average of ranks in each column and
the order of the algorithms, respectively.

A. Comparisons with other PSO variants

In this subsection, the experimental results of the four
algorithms are showed to illustrate the effectiveness of the
proposed algorithm. Table II shows the results of the best and
average classification accuracy on the test set and its standard
deviation on all algorithms. In Table II, “All” denotes that all
available features are used for classification. We notice that
the proposed HPSO-DE algorithm has the best classification
performance, where it achieved the best average classification
accuracy on 10 out of the 15 datasets (i.e. Breastcancer,
Glass, Zoo, WaveformEW, WDBC, Ionosphere, KrvskpEW,
Movementlibras, Musk1, and Isolet). FIPS comes next by
obtaining the best average accuracy on two datasets (i.e.
SpectEW and Madelon). GPSO is the third most effective algo-
rithm at achieving best average classification accuracy on two
datasets (i.e. Satellite and Semeion). CLPSO comes as the last
algorithm by achieving the best accuracy on the Segmentation
dataset. Compared with the complete set of features, HPSO-
DE significantly improves the classification accuracy on all
datasets. The highest improvement is on the WaveformEW
dataset by 8.23% on the average classification accuracy and
10.40% on the best classification accuracy. In addition, the
results of the significance test indicate that HPSO-DE achieves
significantly better results than other algorithms (GPSO, FIPS,
and CLPSO) in most cases.

Table III compares HPSO-DE with the other three algo-
rithms in terms of the number of selected features. As can
be seen from Table III, the proposed HPSO-DE algorithm
conducts better than other compared methods, followed by
FIPS, GPSO, and CLPSO. For Isolet, which is the highest
dimensional classification problems with 617 features, the
proposed algorithm obtains the best average classification
accuracy of 84.75%, and the subset size is only 215 features.
FIPS is the most second effective algorithm for the Isolet
dataset, which uses about 228 selected features to achieve



TABLE II
COMPARISON BETWEEN THE PROPOSED METHOD BASED ON THE CLASSIFICATION ACCURACY ON THE TEST SET

Dataset HPSO-DE GPSO FIPS CLPSO All

BeAcc AvgAcc Std BeAcc AvgAcc Std BeAcc AvgAcc Std BeAcc AvgAcc Std Acc

Breastcancer 97.34 96.68 4.34E-14 96.78 95.89 1.14E+00 96.84 96.61 3.46E-01 96.88 96.62 2.06E-01 91.66
Glass 70.70 65.10 2.80E+00 69.70 64.09 4.74E+00 69.31 64.55 3.10E+00 68.18 64.24 3.46E+00 60.56
Zoo 92.91 86.67 3.52E+00 90.91 80.81 5.36E+00 90.91 82.42 5.12E+00 91.94 84.14 6.04E+00 78.06
Segmentation 96.86 95.44 7.82E-02 95.86 95.36 2.78E-01 95.86 95.46 1.09E-01 96.14 95.58 2.49E-01 89.74
WaveformEW 82.72 80.55 1.15E+00 81.76 80.22 8.77E-01 82.62 80.42 1.24E+00 82.09 79.91 1.27E+00 72.32
SpectEW 60.02 52.55 3.15E+00 59.49 52.35 3.95E+00 58.02 53.21 3.50E+00 58.02 51.48 3.97E+00 49.78
WDBC 96.19 94.19 2.89E-14 94.19 93.41 1.58E+00 95.19 93.95 8.85E-01 95.35 93.68 1.33E+00 92.20
IonosphereEW 92.51 90.19 1.98E+00 91.02 87.52 3.06E+00 90.45 89.91 2.02E+00 90.57 85.13 2.41E+00 82.17
KrvskpEW 97.15 95.90 8.48E-02 96.15 95.54 1.03E+00 96.35 95.89 1.20E-01 94.69 92.13 1.64E+00 89.53
Satellite 90.73 89.49 5.93E-01 90.89 89.66 4.70E-01 89.76 89.35 2.93E-01 90.74 89.61 5.80E-01 86.09
Movementlibras 80.47 75.47 1.89E+00 78.97 75.14 1.86E+00 79.37 75.39 2.23E+00 79.57 74.25 2.45E+00 73.52
Musk1 91.67 86.90 2.53E+00 90.28 85.76 2.97E+00 90.67 86.67 2.11E+00 88.19 84.88 2.25E+00 81.09
Semeion 91.68 89.10 8.69E-01 90.80 89.56 8.66E-01 90.89 89.19 9.75E-01 92.13 88.00 1.34E+00 84.51
Madelon 81.69 78.03 1.47E+00 81.90 77.37 1.59E+00 81.67 78.28 1.37E+00 75.00 72.23 2.34E+00 70.93
Isolet 87.97 84.75 1.21E+00 87.61 84.19 1.44E+00 87.39 84.47 1.45E+00 84.19 80.93 1.19E+00 79.78

Mean rank 1.53 3.07 2.13 3.27 5.00
Fianl rank 1 3 2 4 5
+/≈/– 7/8/0 4/11/0 10/4/1 15/0/0

TABLE III
COMPARISON BETWEEN THE PROPOSED METHOD BASED ON THE NUMBER OF SELECTED FEATURES

Dataset HPSO-DE GPSO FIPS CLPSO All

BeNF AvgNF Std BeNF AvgNF Std BeNF AvgNF Std BeNF AvgNF Std NF

Breastcancer 3.00 3.00 0.00E+00 3.00 3.10 3.05E-01 3.00 3.00 0.00E+00 3.00 3.03 1.83E-01 9
Glass 3.00 3.53 7.30E-01 3.00 3.97 9.64E-01 3.00 3.43 7.28E-01 3.00 3.70 6.51E-01 9
Zoo 3.00 5.67 1.12E+00 3.00 5.20 1.58E+00 3.00 4.43 1.14E+00 3.00 5.60 1.79E+00 16
Segmentation 4.00 4.00 0.00E+00 4.00 4.23 4.30E-01 4.00 4.00 0.00E+00 4.00 4.63 6.15E-01 19
WaveformEW 9.00 9.40 6.75E-01 8.00 9.77 1.01E+00 9.00 9.57 7.74E-01 8.00 9.90 1.42E+00 21
SpectEW 6.00 7.50 8.61E-01 5.00 7.93 1.48E+00 6.00 7.60 1.43E+00 7.00 8.73 1.17E+00 22
WDBC 2.00 2.03 1.83E-01 2.00 2.13 4.34E-01 2.00 2.10 4.03E-01 2.00 5.47 1.33E+00 30
IonosphereEW 2.00 3.27 5.83E-01 3.00 5.20 1.81E+00 2.00 3.30 7.02E-01 3.00 6.50 1.89E+00 34
KrvskpEW 9.00 9.47 5.07E-01 8.00 9.63 7.65E-01 9.00 9.40 4.98E-01 11.00 14.73 2.20E+00 36
Satellite 7.00 9.33 9.59E-01 8.00 9.97 1.03E+00 7.00 9.23 9.35E-01 8.00 11.10 1.35E+00 36
Movementlibras 16.00 27.37 3.74E+00 24.00 30.93 4.10E+00 20.00 27.37 3.39E+00 24.00 32.17 5.21E+00 90
Musk1 46.00 56.53 4.67E+00 52.00 64.10 5.93E+00 48.00 58.13 5.73E+00 50.00 61.73 6.21E+00 166
Semeion 89.00 101.90 7.21E+00 92.00 110.53 6.66E+00 95.00 105.67 4.74E+00 90.00 103.50 6.28E+00 256
Madelon 149.00 172.20 1.13E+01 163.00 194.87 1.25E+01 146.00 175.87 1.29E+01 179.00 200.17 1.19E+01 500
Isolet 194.00 215.43 1.17E+01 218.00 244.23 1.25E+01 205.00 228.97 1.12E+01 224.00 246.43 1.30E+01 617

Mean rank 1.50 3.2 1.70 3.60 5.00
Final rank 1 3 2 4 5
+/≈/– 9/6/0 4/10/1 10/5/0 15/0/0

84.47% classification accuracy. This indicates that the pro-
posed HPSO-DE algorithm is more effective to eliminate
irrelevant and redundant features and does not reduce the
classification accuracy. The results of Friedman’s test show
that HPSO-DE obtains significantly better average feature
subset size than other compared algorithms. In terms of the
significance test, the proposed algorithm wins 38, draws 21,
loses 1 over the 60 comparisons.

Fig. 1 shows the fitness value changing of HPSO-DE and
other compared algorithms on the fifteen datasets during the
feature selection process. As can be seen from Fig. 1, we can
see that the proposed algorithm is the fastest to converge than
other algorithms on thirteen out of fifteen datasets (i.e. Breast-
cancer, Glass, Zoo, Segmentation, WaveformEW, SpectEW,

WDBC, Ionosphere, Satellite, Movementlibras, Musk1, Made-
lon, and Isolet). This is due to using the differential operators
to breed exemplars that can effectively help PSO fly out of
potential local optima.

B. Comparisons with traditional methods

In this subsection, the proposed HPSO-DE algorithm is
compared with five traditional feature selection methods in
terms of the classification accuracy. Table IV shows the results
of each method. It is obviously that the proposed HPSO-DE
algorithm achieves the highest accuracy on 11 out of the 15
datasets (i.e. Glass, Zoo, Segmentation, WaveformEW, WD-
BC, IonosphereEW, KrvskpEW, Satellite, Musk1, Semeion,
and Isolet). This verifies that HPSO-DE can effectively explore
the search space to obtain better feature subsets from the



   

   

   

   

   

 

Fig. 1. Convergence curve of HPSO-DE and other three algorithms for fifteen datasets (X-axis represents the number of fitness evaluations and Y-axis denotes
the fitness value).

original features than other five traditional feature selection
methods. Furthermore, according to the results of Friedman’s
test, the proposed algorithm obtains the highest classification
performance, followed by ReliefF, FCBF, F-Score, IG, and
CFS.

VI. CONCLUSIONS

The goal of this article was to design an effective feature
selection method in classification problems. The goal has been
successfully implemented by developing a novel hybrid PSO
variant based feature selection method that can effectively
choose a feature subset by constructing promising exemplars
based on DE operators during the search process.

The results showed that the proposed HPSO-DE algorithm
can obtain a higher classification accuracy with a small feature
subset than the compared methods in most of the examined
datasets. This is because these exemplars constructed by DE
operators can provide the ability for particles to do an efficient
search. In addition, the proposed exemplar updating operator

based on the spiral-shaped mechanism can effectively change
the search direction of particles to help HPSO-DE fly out of
potential local optima and explore more fruitful regions. In
general, the proposed algorithm can successfully enhance the
performance of canonical PSO, and achieve a good feature
subset automatically for feature selection in classification.

As future work, we would like to apply the proposed HPSO-
DE algorithm to other search and optimisation problems such
as travelling salesman problem and knapsack problem.
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