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Abstract—Multi-modal multi-objective optimization problems
may have different Pareto optimal solutions with the same
objective vector. A number of evolutionary multi-modal multi-
objective algorithms have been developed to solve these problems.
They aim to search for a Pareto optimal solution set with good
diversity in both the objective and decision spaces. Although
the normalization in both the objective and decision spaces
is very important for these algorithms, there are few studies
on this topic. In this paper, we investigate the effect of four
normalization methods on two evolutionary multi-modal multi-
objective algorithms. Six distance minimization problems are
chosen as test problems. The experimental results show that
the effect of normalization in evolutionary multi-modal multi-
objective optimization is algorithm- and problem-dependent.

Index Terms—multi-modal multi-objective evolutionary opti-
mization, normalization, objective space, decision space

I. INTRODUCTION

An optimization problem, such as job shop scheduling [1]

and financial portfolio management [2], may have multiple

objectives which conflict with each other. Such a problem is

regarded as a multi-objective optimization problem (MOP).

There is no single optimal solution for the problem. Instead,

it has a set of Pareto optimal solutions, i.e., the Pareto optimal

solution set (PS). The image of PS in the objective space is

called the Pareto front (PF). Without loss of generality, an

MOP with box constraints can be formulated as follows:

minf(x) = min(f1(x), . . . , fM (x)),
s.t. x ∈ S,

(1)

where x is an n-dimensional decision vector in the feasible

space S, fm(x) is the m-th objective to be minimized (m =
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1, ...,M ), and M is the number of objectives. S = {x ∈ Rn :
xlower
i ≤ xi ≤ xupper

i , i = 1, . . . , n} where xupper
i and xlower

i are

the lower and upper bounds of xi, respectively.

An MOP may have multiple Pareto optimal solutions cor-

responding to the same objective vector, which are called

equivalent Pareto optimal solutions. In such a case, the MOP is

termed as a multi-modal multi-objective optimization problem

(MMOP). In recent years, a number of evolutionary multi-

modal multi-objective algorithms (EMMAs) have been de-

veloped to solve MMOPs. The general goal of EMMAs is

to search for a set of Pareto optimal solutions with good

diversity both in the objective and decision spaces. Based on

the diversity evaluation mechanisms, existing EMMAs can be

roughly classified into two groups. One evaluates the diversity

in the objective and decision spaces simultaneously, while the

other separately.

The first group includes Omni-optimizer [3], Niching-

covariance matrix adaptation (Niching-CMA) [4],

double-niched evolutionary algorithm (DNEA) [5], [6],

multi-objective particle swarm optimization algorithm

using ring topology and special crowding distance

(MO Ring PSO SCD) [7], and multi-modal multi-objective

differential evolution optimization algorithm (MMODE) [8].

In the environmental selection, these algorithms usually

use the Pareto rank (i.e., the front number according to

the non-dominated sorting [9]) as the primary selection

criterion. For solutions with the same Pareto rank, they use

the objective and decision space density values to select

solutions with good diversity. One benefit for these EMMAs

is that there exist a larger number of state-of-the-art density

evaluation methods to choose. For example, DNEA uses two

niche-based sharing functions [10] to estimate the objective

and decision space density values, respectively, and then sum

them together. In Omni-optimizer, MO Ring PSO SCD, and

MMODE, the objective and decision space density values are

estimated by the crowding distance [9]. However, one open

issue of the EMMAs in this group is how to balance the
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diversities in the objective and decision spaces.

Multi-modal multi-objective evolutionary algorithm us-

ing two-archive and recombination strategies (TriMOEA-

TA&R) [11] and multi-objective evolutionary algorithm based

on decomposition with addition and deletion operators

(MOEA/D-AD) [12] are typical algorithms in the other group.

They use a set of uniformly distributed reference vectors to

guarantee diversity in the objective space. Then, for each

reference vector, they try to search for diverse Pareto optimal

solutions in the decision space. These EMMAs may have a

strength in handling the inconsistency between the diversities

in the objective and decision spaces. However, it is usually

difficult to specify the reference vectors for a real-world

MMOP.

One exception is a recently proposed evolutionary algorithm

using a convergence-penalized density method (CPDEA) [13].

CPDEA uses the convergence-penalized density method as a

selection criterion in the environmental selection, which is

different from those in the aforementioned two groups. It can

handle imbalanced MMOPs where the difficulties of finding

equivalent Pareto optimal solutions are different. CPDEA has

an extra archive which uses a similar selection criterion with

those in the first group.

Although a number of EMMAs have been proposed, there

are few discussions on the normalization in evolutionary multi-

modal multi-objective optimization, which is quite important

for EMMAs, especially those in the first group. If the scales

of the PF and PS are very different, the objective and decision

space density values of a solution are usually very different.

Then, either the objective space density value or the decision

space density value plays a leading role in the environmental

selection. This may result in losing diversity either in the

decision or objective space. One way to solve this issue is

to normalize the objective and decision values of a solution

into similar scales based on the true PF and PS, respectively.

Since the true PF and PS are usually unknown, we can use

some information before or during the evolution. There have

been several studies on normalizing the objective values [14]–

[16]. One of the most popular ways is to normalize the

objective values of a solution based on the objective values of

the non-dominated solutions during the evolution. However,

normalizing the decision values of a solution based on the

decision values of the non-dominated solutions during the

evolution may cause some issues. For example, if the PS is

a line segment parallel to one coordinate axis, using such a

normalization method will result in a convergence issue. In

such a case, it may be better to normalize the objective and

decision space density values into similar scales, rather than

the objective and decision values.

In this paper, we investigate the effect of four normalization

methods on EMMAs in the first group. In the first three

methods, the objective values of a solution are normalized

based on the objective values of the non-dominated solutions

in the current population. The decision values of a solution

are normalized based on the range of the feasible space, the

decision values of all the solutions in the current population,

and the decision values of the non-dominated solutions in

the current population in the first, second, and third methods,

respectively. In the fourth method, the objective and decision

space density values of solutions are normalized based on the

mean distances among solutions in the objective and decision

spaces, respectively.

The remainder of this paper is organized as follows. In

Section II, we describe the EMMAs examined in our experi-

ments. The four normalization methods are explained in detail

in Section III. Section IV shows the experimental design and

results. Section V concludes the paper and provides future

research directions.

II. EVOLUTIONARY MULTI-MODAL MULTI-OBJECTIVE

ALGORITHM

The framework of a conventional EMMA is shown as

Algorithm 1. In Algorithm 1, a population P of size N is

randomly initialized (line 1). The stopping criterion is usually

a predefined number of evaluated solutions. While the stopping

criterion has not been met (line 2), an offspring population Q
is generated by evolutionary reproduction operators (line 3). In

this study, we use simulated binary crossover and polynomial

mutation to generate Q. Then, P in the next generation is

selected from P ∪Q by the environmental selection operator

(line 4). At the end of evolution, P is returned (line 6).

Algorithm 1 Framework of EMMA

Require: P (Population), N (Population Size)

1: P = Initialization (P );

2: while the stopping criterion is not met do
3: Q = Reproduction (P );

4: P = Environmental Selection (P ∪Q);

5: end while
6: return P

In this study, we use the Pareto rank as the primary selection

criterion in the environmental selection. Since the crowding

distance is one of the most popular secondary selection

criterion, we choose a special crowding distance (SCD) [7]

as the secondary selection criterion. SCD is modified from

the density evaluation method in Omni-optimizer. In SCD,

the crowding distance of a boundary solution in the objective

space is no longer infinite. This makes SCD more appropriate

for multi-modal multi-objective optimization than its original

version. After calculating the crowding distances in both the

objective and decision spaces, the SCD value of a solution is

specified as follows:

If CDobj(x) > CDobj
mean or CDdec(x) > CDdec

mean,

SCD(x) = max(CDobj(x),CDdec(x)), (2)

where CDobj
mean and CDdec

mean are the mean crowding distances

in the objective and decision spaces, respectively;

otherwise,

SCD(x) = min(CDobj(x),CDdec(x)). (3)



In addition, we use a variant of SCD in this study. That is,

SCD′(x) = CDobj(x) + CDdec(x). (4)

Hereafter, the EMMAs using SCD and SCD′ are denoted

as EMMA1 and EMMA2, respectively. We will investigate

the effect of normalization on their performance through

computational experiments.

III. FOUR NORMALIZATION METHODS

Four normalization methods to be investigated are described

in detail in the following.

In the first method, the objective values of each solution are

normalized by

fm(x) = (fm(x)− fmin
m )/(fmax

m − fmin
m ),

m = 1, . . . ,M,
(5)

where fmin
m and fmax

m are the minimum and maximum values

of the m-th objective of the non-dominated solutions in the

current population, respectively.

The decision values of each solution are normalized as

follows.

xi = (xi − xlower
i )/(xupper

i − xlower
i ),

i = 1, . . . , n,
(6)

where xlower
i and xupper

i are the lower and upper bounds of xi

in the box constraint, respectively.

In the second method, the normalization in the objective

space is the same with that in the first method. The decision

values of each solution are normalized as follows.

xi = (xi − xPmin
i )/(xPmax

i − xPmin
i ),

i = 1, . . . , n,
(7)

where xPmin
i and xPmax

i are the minimum and maximum values

of the i-th decision variable of all the solutions in the current

population, respectively.

In the third method, the objective values of each solution

are also normalized using (5). The decision values of each

solution are normalized by

xi = (xi − xNmin
i )/(xNmax

i − xNmin
i ),

i = 1, . . . , n,
(8)

where xNmin
i and xNmax

i are the minimum and maximum values

of the i-th decision variable of the non-dominated solutions in

the current population, respectively.

In the fourth method, the objective and decision values of

each solution are normalized using (5) and (6), respectively.

Then, the objective and decision space density values (i.e., the

crowding distances CDobj(x) and CDdec(x) in this study) of

each solution are normalized as follows.

CDobj(x) = CDobj(x)/dobj
mean,

CDdec(x) = CDdec(x)/ddec
mean,

(9)

where dobj
mean (ddec

mean) is the mean distance between each non-

dominated solution and its closest non-dominated solution in

the objective (decision) space. That is,

dobj
mean =

∑K
k=1 d

obj
k /K,

ddec
mean =

∑K
k=1 d

dec
k /K,

(10)

where K is the number of the non-dominated solutions in

the current population, and dobj
k (ddec

k ) is the distance between

the k-th non-dominated solution and its closest non-dominated

solution in the objective (decision) space.

In the above four methods, if there is only a single non-

dominated solution in the population, the maximum and mini-

mum objective (decision) values of the non-dominated solution

are replaced by the maximum and minimum objective (deci-

sion) values of all the solutions in the population. Hereafter,

EMMA1 or EMMA2 with the X-th normalization method is

denoted as EMMA1-NX or EMMA2-NX.

It is worth noting that there are many other normalization

methods. For example, we can perform the normalization

based on the ranges of all solutions ever found during the

evolution. For another example, we can use a scaling method

based on sigmoid functions [17]. Due to space limitation, we

will investigate the effect of those normalization methods in

the future.

IV. EXPERIMENTS

A. Test Problems

We choose six instances of distance minimization problems

(DMPs) [18], [19] in our experiments. These instances are

denoted as DMP1-6. For DMP1-5, the objectives are to

minimize the distances to the vertexes of four rectangles in

the two-dimensional decision space. That is, they have four

objectives and four equivalent Pareto optimal regions. DMP6

has two objectives, which are to minimize the distances to

the endpoints of two line segments in the two-dimensional

decision space. The m-th (m = 1, . . . ,M ) objective function

of a DMP is defined as follows.

fm(x) = minp=1,...,P {d(Xp,m,x)},
s.t. xlower

i ≤ xi ≤ xupper
i , i = 1, 2

(11)

where Xp,m is the m-th vertex (or endpoint) of the p-th

polygon (or line segment), and d(Xp,m,x) is the Euclidean

distance between x and Xp,m in the decision space.

In each test problem, the size and the shape of each polygon

(or line segment) are the same. Thus the polygons (or line

segments) are equivalent Pareto optimal regions. That is, each

region corresponds to the entire PF. The equivalent Pareto

optimal regions of DMP1-6 are shown in Fig. 1. The sizes of

the feasible region, the PS, and an equivalent Pareto optimal

region of each DMP are listed in Table I.
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Fig. 1. The equivalent Pareto optimal regions of DMP1 to DMP6. In DMP1 to DMP5, they are four rectangles. In DMP6, they are two line segments.

TABLE I
THE SIZES OF THE FEASIBLE REGION, THE PS, AND AN EQUIVALENT

PARETO OPTIMAL SUBSET OF EACH DMP.

 

Size
Feasible Region

x 1 × x 2

PS
x 1 × x 2

Equivalent Pareto 
Optimal Region

x 1 × x 2

DMP1 2 × 2 1.91 × 1.91 0.42 × 0.42

DMP2 2 × 2 0.114 × 0.114 0.014 × 0.014

DMP3 2 × 0.2 0.114 × 0.114 0.014 × 0.014

DMP4 2 × 2 1.914 × 1.914 0.014 × 0.014

DMP5 2 × 2 1.014 × 0.014 0.014 × 0.014

DMP6 2 × 2 1.2 × 0 0.2 × 0

Based on Fig. 1 and Table I, the characteristics of DMP1-

DMP6 are summarized as follows.

• DMP1 is a normalized problem. The differences among

the sizes of the feasible region, the PS, and an equivalent

Pareto optimal region in DMP1 are not large. DMP1 is

expected to be easy for all the normalization methods.

• In DMP2, the size of an equivalent Pareto optimal region

is smaller than that of the PS. Both of them are much

smaller than the size of the feasible region.

• DMP3 is similar to DMP2. The difference is that, in

DMP3, the feasible range of x1 is much larger than that

of x2.

• In DMP4, the sizes of the feasible region and the PS are

similar. However, they are much larger than the size of

an equivalent Pareto optimal region.

• In DMP5, the PS size of x1 is much larger than that of

x2.

• In DMP6, the PS size of x2 is 0. Normalizing the x2

value of each solution may result in critical issues.

B. Parameter Settings and Performance Indicator
Both EMMA1 and EMMA2 with four normalization meth-

ods are applied to each test problem 40 times. Such a number

of run times is enough for the hypothesis test of the results.

For each run, the following specifications are used:

• Population size: 200

• Population initialization: random points in the entire

decision space



• Termination condition: 40,000 evaluations of solutions

(to make sure that both EMMAs converge on every test

problem)

• Crossover operator: SBX with ηc = 20
• Crossover probability: 1.0

• Mutation operator: Polynomial mutation with ηm = 20
• Mutation probability: 0.5

We use IGDX [20] to compare different methods. IGDX

is a variant of Inverted Generational Distance (IGD). IGD

comprehensively quantifies both convergence and diversity

of an approximate solution set in the objective space, while

IGDX quantifies that in the decision space. That is, IGDX

measures the distance between the approximate solution set

and a reference solution set, which is typically uniformly

distributed on the true PS. The smaller value of IGDX, the

better performance of the approximate solution set. For every

test problem in this study, since the diversities in the objective

and decision spaces are consistent, a small IGDX value usually

indicates a small IGDX value. Thus we only use IGDX in the

experiments. The size of reference solution set is over 1,000

for each test problem in this study.

C. Results and Discussions

1) Results of EMMA1: In Table II, we show the mean

values and standard deviations of IGDX and the corresponding

performance scores [21] of EMMA1 with the four normal-

ization methods on DMP1-6. For each test problem, the

performance score of a method is the number of the other

methods which perform significantly worse than it according

to IGDX. Here, the Wilcoxon’s rank sum test is employed to

determine whether a method shows a statistically significant

difference from another, and the null hypothesis is rejected at

a significant level of 0.05.

We can see from Table II that, surprisingly, the results

of EMMA1 with the four normalization methods do not

show any significant difference on any test problems. One

possible reason is that the performance of EMMA1 is not

stable due to the special crowding distance, which makes the

standard deviations of IGDX quite large. Then, the effect of

normalization on the IGDX values is not obvious. Actually,

there are large differences in the mean IGDX values among

the four methods (e.g., see the results on DMP4-6 in Table II).

2) Results of EMMA2: In the same manner as in Table II,

we show the results of EMMA2 in Table III. From the perfor-

mance scores in Table III, we can see that the performance of

EMMA2 is sensitive to the choice of a normalization method.

To visually investigate the behavior of EMMA2, in Figs. 2-5,

we show the solutions obtained by EMMA2 with a different

normalization method in a single run on DMP1-3, and DMP6,

respectively. For each normalization method, we select the

single run with the closest IGDX value to to the mean IGDX

value in Table III. Since the obtained solutions of DMP4

and DMP5 are difficult to clearly visualize, in Table IV, we

show the number of runs where EMMA2 found at least one

solution in every equivalent Pareto optimal region on DMP4

and DMP5.

Based on Tables III-IV and Figs. 2-5, we have the following

observations.

DMP1: For DMP1, EMMA2-N4 is slightly better than the

others. However, the differences of the IGDX mean values

among these methods are not large. The effect of normalization

is not obvious on this test problem.

DMP2: EMMA2-N4 performs the best on DMP2, fol-

lowed by EMMA2-N3. EMMA2-N1 and EMMA2-N2 per-

form poorly due to inappropriate normalization. In EMMA2-

N1, the crowding distances in the decision space are usually

much smaller than those in the objective space. In EMMA2-

N2, the current population often provides misleading informa-

tion for normalizing the decision values.

DMP3: DMP3 is modified from DMP2, where the feasible

range of x1 is much larger than that of x2 in DMP3. Due to

this characteristic, the performance scores of EMMA2-N1 and

EMMA2-N4 on DMP3 become worse than those on DMP2.

Although both EMMA2-N4 and EMMA2-N3 have the highest

performance scores, the mean IGDX value of EMMA2-N4 is

larger than that of EMMA2-N3. EMMA2-N1 is significantly

worse than the others.

DMP4: For DMP4, EMMA2-N4 significantly outperforms

the others. We can see from Table IV that, in most runs,

EMMA2-N1, EMMA2-N2, and EMMA2-N3 cannot find any

solution in some equivalent Pareto optimal regions. This is

because all the first three normalization methods make the

crowding distances in the decision space much smaller than

those in the objective space, since the range of solutions in the

decision space is much larger than that in the objective space.

DMP5: EMMA2-N4 is also the best on DMP5. All the first

three normalization methods cannot work properly, especially

the third one. Since the PS range of x1 is much larger than

that of x2, normalizing the decision values of a solution based

on the non-dominated solutions is quite misleading. As a

result, EMMA2-N3 is more likely to lose solutions in some

equivalent Pareto optimal regions (see Table IV), and thus

obtained the largest mean value of IGDX.

DMP6: EMMA2-N4 achieved the highest performance

score on DMP6, followed by EMMA2-N1, EMMA2-N2, and

EMMA2-N3. The third normalization method encounters great

difficulty since the PS range of x2 is zero in DMP6. We can

see from Fig. 5 that most solutions obtained by EMMA2-

N1, EMMA2-N2, and EMMA2-N4 focus on the two line

segments. However, solutions obtained by EMMA2-N3 widely

spread away from the two line segments.

3) Comparison between EMMA1 and EMMA2: In Table V,

we show the performance scores of all the eight methods on

DMP1 to DMP6. We can see from Table V that EMMA2 is

generally better than EMMA1 on these test problems except

for DMP4. Although EMMA2-N4 apparently outperforms

EMMA1 on DMP4, EMMA2 with the first three normalization

methods are significantly worse than EMMA1. This indicates

that the performance of EMMA2 may dramatically deteriorate

when it uses incorrect normalization. This shows that EMMA2

is very sensitive to the choice of a normalization method on

some test problems.



TABLE II
RESULTS OF EMMA1

Mean Deviation Score Mean Deviation Score Mean Deviation Score Mean Deviation Score

DMP1 7.496E-02 3.125E-03 0 7.484E-02 2.783E-03 0 7.571E-02 3.535E-03 0 7.505E-02 3.061E-03 0

DMP2 3.436E-03 3.500E-03 0 2.882E-03 2.477E-04 0 2.959E-03 2.749E-04 0 2.914E-03 2.301E-04 0

DMP3 2.827E-03 2.601E-04 0 2.913E-03 4.009E-04 0 2.827E-03 3.096E-04 0 2.806E-03 2.916E-04 0

DMP4 5.083E-02 1.432E-01 0 1.451E-01 2.663E-01 0 5.098E-02 1.788E-01 0 6.251E-02 1.579E-01 0

DMP5 2.179E-02 4.408E-02 0 3.103E-02 5.852E-02 0 2.773E-02 4.932E-02 0 2.179E-02 4.387E-02 0

DMP6 1.365E-02 7.114E-02 0 1.322E-02 7.121E-02 0 2.698E-03 3.340E-03 0 1.329E-02 7.092E-02 0

EMMA1-N1 EMMA1-N2 EMMA1-N3 EMMA1-N4
IGDX

TABLE III
RESULTS OF EMMA2

Mean Deviation Score Mean Deviation Score Mean Deviation Score Mean Deviation Score

DMP1 5.471E-02 1.511E-03 0 5.475E-02 1.515E-03 0 5.461E-02 1.415E-03 0 5.401E-02 1.395E-03 1

DMP2 1.997E-03 8.976E-05 0 1.970E-03 8.781E-05 0 1.893E-03 5.193E-05 2 1.847E-03 5.311E-05 3

DMP3 1.969E-03 1.215E-04 0 1.912E-03 6.991E-05 1 1.855E-03 4.893E-05 2 1.857E-03 5.944E-05 2

DMP4 2.513E-01 2.380E-01 0 2.748E-01 2.592E-01 0 2.750E-01 2.804E-01 0 2.551E-02 1.494E-01 3

DMP5 8.416E-03 2.683E-02 0 8.431E-03 2.686E-02 0 1.767E-02 4.107E-02 0 7.935E-03 2.687E-02 3

DMP6 9.287E-04 7.199E-05 2 9.616E-04 6.691E-05 1 1.924E-03 1.104E-04 0 8.857E-04 5.069E-05 3

IGDX
EMMA2-N1 EMMA2-N2 EMMA2-N3 EMMA2-N4
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Fig. 2. The solutions obtained by EMMA2 with different normalization methods in a given single run on DMP1.

TABLE IV
THE NUMBER OF RUNS WHERE EMMA2 FIND AT LEAST ONE SOLUTION

IN EVERY EQUIVALENT PARETO OPTIMAL REGION ON DMP4 AND DMP5.

 

Number of runs EMMA2-N1 EMMA2-N2 EMMA2-N3 EMMA2-N4

DMP4 16 12 15 39

DMP5 38 38 34 39

Based on the observations in Subsections IV-C1, IV-C2, and

IV-C3, we can draw the following conclusions.

• Whereas EMMA2 is generally more sensitive to the

choice of a normalization method, in general it per-

forms better than EMMA1. The only difference between

EMMA1 and EMMA2 is the density evaluation method

in the environmental selection. That is, SCD′ is better in

maintaining the diversity of solutions than SCD, and the

effect of normalization is more obvious with SCD′.
• The fourth normalization method is the best in gen-

eral. Different from the other three methods which only
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Fig. 3. The solutions obtained by EMMA2 with different normalization methods in a given single run on DMP2.
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Fig. 4. The solutions obtained by EMMA2 with different normalization methods in a given single run on DMP3.

TABLE V
COMPARISON BETWEEN EMMA1 AND EMMA2 USING PERFORMANCE SCORES.

Score EMMA1-N1 EMMA1-N2 EMMA1-N3 EMMA1-N4 EMMA2-N1 EMMA2-N2 EMMA2-N3 EMMA2-N4

DMP1 0 0 0 0 4 4 4 5

DMP2 0 0 0 0 4 4 6 7

DMP3 0 0 0 0 4 5 6 6

DMP4 3 3 3 3 0 0 0 7

DMP5 0 0 0 0 4 4 4 7

DMP6 0 0 0 0 6 5 1 7

normalize the objective and decision values, the fourth

method further normalizes the objective and decision

space density values. The mean distance between each

solution and its closet solution is able to provide proper

information for normalization in most situations.

• The effect of normalization is problem-dependent. One

normalization method works well on some test prob-

lems but fails on the others. For example, even though

EMMA2-N4 is generally the best, it is slightly worse

than EMMA2-N3 on DMP3. EMMA2-N3 also performs

well on DMP2. However, it is the worst on DMP6. Thus,

none of the four normalization methods can significantly

outperform the others on all test problems.

V. CONCLUSION

In this study, we investigated the effect of four normalization

methods on two EMMAs, i.e., EMMA1 and EMMA2. The first

three methods normalize the objective and decision values in

different ways. The fourth method normalizes the objective

and decision space density values. EMMA1 and EMMA2

use the special crowding distance and its variant in the

environmental selection, respectively.
Our experimental results on six distance minimization prob-

lems show that the effect of normalization is algorithm-

dependent. EMMA1 is insensitive to normalization, whereas
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Fig. 5. The solutions obtained by EMMA2 with different normalization methods in a given single run on DMP6.

the performance of EMMA2 is affected by normalization a

lot. Our experimental results also show that the effect of

normalization is problem-dependent. If the PS range of one

decision variable is very different from that of another, the

first two normalization methods may be good choices. If the

PS range is very smaller than the range of feasible region, the

third normalization method may be adequate. However, those

normalization methods may a negative effect on the other test

problems. Generally, the fourth method performs the best on

most test problems.

One future work is to investigate the effect of normalization

on more EMMAs on more MMOPs (such as those in [11],

[13], [22]). Another is to design a strategy based on the

metafeatures of MMOPs to select a good combination of

EMMAs and normalization methods.
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