
A Practical Tuner based on Opposite Information
Nicolás Rojas-Morales

Departamento de Informática
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Abstract—Most of the algorithms designed for problem solving
have many parameters which values determine their perfor-
mance. Tuning methods or calibrators are algorithms whose goal
is to automate the process of selecting the parameter values of
heuristic based algorithms to efficiently solve complex search
problems. However, many algorithms are still tuned by-hand
either because of the execution time required or the number of
scenarios to define before a calibrator is executed. In this work,
we propose a practical tuning method that uses a local search
procedure that allows obtaining good calibrations in a reduced
amount of time, compared to other well-known calibrators. Our
tuner has an opposite-inspired learning component used to focus
on the most promising areas of the parameter values search space
and gathers useful parameter information that is provided to the
user. We compare our proposal with two well-known tuners to
calibrate two classical optimization problems. We also evaluate
the relevance of the opposite-inspired learning component during
the search process. A convergence and statistical analysis are
presented to confirm that our approach is a good option especially
when the user does not have enough time for tuning.

Index Terms—Tuning algorithms, Evoca, ParamILS, NK-
landscapes, Ant Knapsack

I. INTRODUCTION

The Parameter Setting Problem (PSP) is the optimization
problem that considers the definition of parameter values for
a target algorithm [1]. Parameter values can be classified into
two categories: (1) numerical (real or integer values) or (2)
categorical (a procedure or a function). Usually, the PSP is a
hard to solve problem considering the following reasons [2],
[3]: (1) it involves to perform several independent executions
of the target algorithm, (2) parameters are interrelated between
them and their behavior is difficult to predict and understand.
(3) for a particular parameter calibration, the performance of
the target algorithm can substantially change between problem
instances and problems and (4) considering all the possible
parameter values and the set of problem instances, the size of
the parameter search space is usually huge. Tuning methods
are techniques used to obtain suitable parameter values for
metaheuristic algorithms. Some tuning methods are SPO [4],
REVAC [5], ParamILS [6], Evoca [7], irace [8]. In practice,
considering that a tuning process can be a very time consuming
task [9], many metaheuristic algorithms are still tuned by
hand and their performance could be even better using these
methods.

This work proposes a new tuning method that uses opposite
information named CLOIS: Calibrating based on Local and

Opposite Inspired Search. It was designed considering the
following main goal: obtain good parameter calibrations for a
target algorithm, considering a “reasonable” amount of effort
in terms of the number of evaluations of the target algorithm
and the configuration of the tuning algorithm. Inspired in
opposition-inspired learning strategies [10], CLOIS contains
a component for learning about unpromising parameter values
to temporary avoid some regions of the search space. We
hypothesize that using CLOIS, a competitive performance of a
target algorithm can be obtained, compared to more sophisti-
cated existing tuning tools. It is important to mention that our
objective is not to propose the best existing tuning method.
However, we are interested in designing an approach for
tuning processes where their execution cannot be performed
considering plenty of time and their objective is not to reach
the “optimal” parameter calibration. Section III present the
details of CLOIS.

The contributions of this work are:
• A new method for tuning numerical and categorical

parameters of metaheuristic algorithms, that use opposite
information and provides useful information to algorithm
designers

• The assessment of the our proposal in two different
testing scenarios.

To evaluate our approach we consider two different target
algorithms: a well-known genetic algorithm proposed for
solving the NK landscapes [11] and the well-known Ant
Knapsack, proposed for solving the Multidimensional Knap-
sack Problem [12]. The idea is to study how CLOIS can be
used for tuning different metaheuristic algorithms, each one
with a different number of parameters. The tuning processes
are explained in Section IV. To compare the performance
of CLOIS, we considered two well-known tuning methods:
Evolutionary Calibrator (Evoca) [7] and Parameter Iterated
Local Search (ParamILS) [6]. A discussion with the main
differences between our approach and these tuning methods
is presented in Section V. Conclusions and some possible
paths for future research are presented in Section VI. In the
following section we introduce the Parameter Setting Problem.

II. PARAMETER SETTING PROBLEM

This section introduces some preliminary definitions that
will be used in the rest of the article. Let us consider a
metaheuristic algorithm M that will be tuned by a tuning
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method T . The target algorithm M has N parameters and
the assignation of a value vj for each parameter pj is defined
as a parameter calibration cc = [p1, . . . pN ].

Moreover, let us define the parameter setting problem P
as a four-tuple P = (M,Φ, budgetmax, C) where Φ is the
selected set of problem instances that will be considered to
tuneM, budgetmax are the available resources for the tuning
process and C is the parameter search space that consider
all the possible parameter calibrations. P is a hard-to-solve
optimization problem and its objective is to find a parameter
calibration c∗ that produces an optimal performance of M.
An expected gain GP (cc) produced by a candidate parameter
calibration cc ∈ C can be defined, measuring its performance
in terms of the quality of the obtained solutions by M, its
execution time or the number of evaluations performed.

Considering an evaluation function f that measures the
performance of M, the expected gain of using cc can be:

GP (cc) = fφ∈Φ(cc, φ) (1)

where φ is a problem instance in Φ.

III. OUR APPROACH

Parameter tuning is the process of searching parameter
values that produce an interesting performance of a target
algorithm. This process is executed as an offline procedure
and in most cases, is a highly time consuming task. Usually,
the execution of a tuning method involves the application of
specific knowledge about these algorithms to configure some
aspects of the tuning process (e.g. domain of the parameters,
input data, hyper-parameters). This work proposes a new
tuning algorithm named CLOIS, designed to perform a tuning
process considering a reasonable amount of resources, in terms
of: (1) the number of evaluations of the target algorithm M
and (2) the invested time in configuring the tuning method.
Its simplicity produces that using our approach not requires to
manage (a lot of) specific knowledge about tuning methods. Is
important to mention that we are not motivated in obtaining the
optimal performance ofM for all the problem instances in Φ.
We propose a tuning method that allows a target algorithmM
to have an acceptable performance, considering that in some
real-world situations, designers and final users need to obtain
good solutions fast.

The existing interrelation between parameters and the
substantial performance changes through the problems in
Φ difficult the process of obtaining an optimal parameter
calibration. Inspired in existing opposition-inspired learning
strategies [10], [13], we decided to learn about when the
performance of M is worsened, caused by some particular
parameter values. As most tuning methods are focused on
learning and searching for the best suitable parameter values,
we define as opposite information when a worsening in
the performance of M is performed. Moreover, in most
tuning algorithms, information about the deterioration of the
performance of a target algorithm is also available during the
tuning process. For this, we decided to include a component
in CLOIS with the idea of learning about parameter values

Algorithm 1 CLOIS
Input: budgetmax, r, knb, r, TLsize
Output: A parameter calibration cret and Statistics about

elements in TL
1: while budgetmax not consumed do
2: cc ← RandomlyGenerateCalibration()
3: Evaluate(cc, r)
4: while flagstag do
5: cm, vj ← Perturb(cc, TL)
6: Evaluate(cm, r)
7: if G(cm) ≤ G(cc) then
8: cc ← cm
9: visneigh ← 0

10: else
11: makeTabu(TL, vj , TLsize)
12: visneigh + +
13: end if
14: flagstag ← CheckStagnation(knb,visnb)
15: end while
16: cret ← StoreBest(cc)
17: end while
18: return cret, Stats

that are related to a poor performance of M. Inspired in the
Tabu Search algorithm [14], [15], we included a modified
tabu list (TL) in CLOIS. The objective is to temporary avoid
the evaluation of some parameter calibrations related to these
parameter values. Let us consider a candidate calibration cj
that produces a performance GP (cj) in M. Also, we named
c′j as the candidate calibration produced when a value vj
in cj is replaced by vk. If this modification produces that
GP (c′j) < GP (cj), vk will be included in the tabu list (TL).
The tabu list has a First In, First Out (FIFO) configuration and
its size is a parameter of the algorithm (TLsize). We expect
that the inclusion of a tabu list increase the exploration in
CLOIS, avoiding areas of the parameter search space that can
be related to a bad performance of M and as a consequence,
to reduce the effort applied during the tuning process.

During the design process of CLOIS, we studied different
strategies applied when designers tune by hand their
approaches. In general, we observed that starting from any
parameter calibration, an iterative process is performed:
perturb, evaluate and compare calibrations. We decided to
represent this process in the design of CLOIS performing
its tuning process based in a hill climbing first improvement
procedure. We choose this procedure for two main reasons:
(1) in most cases, it doesn’t visit the whole neighborhood for
each candidate parameter calibration and, (2) it doesn’t imply
the definition of the value of hyper-parameters. The idea is
to exploit promising calibrations from different areas of the
search space, guided by the tabu list.

Algorithm 1 presents the structure of our approach. CLOIS
starts with a randomly generated parameter calibration cc



(line 2). Then, cc is evaluated considering the execution of
M with r different random seeds and instances from Φ. To
produce a new parameter calibration cm, a perturbation to cc
is performed (line 8). Here, a randomly selected value vj is
assigned to a randomly selected parameter in M. If a gain is
obtained, the search process continues with cm. However, if a
decrement in the performance ofM is obtained, vj is included
in the tabu list (line 11). We included a component to force
the exploration during the search process of CLOIS. Usually,
in some stages of the search process, metaheuristic algorithms
suffer from stagnation. In CLOIS, this can be observed when it
has converged to an interesting zone of the search space and it
starts visiting most of the neighbors of a parameter calibration.
To tackle this situation, a number of knb neighbors without
an improvement are allowed to be visited (lines 9, 12 and
14). When the amount of resources budgetmax is consumed,
CLOIS returns the best obtained calibration cret (line 16).
CLOIS provides additional information about which parameter
values were related to a decrement in the performance of M.
The information reports some statistics of which parameter
was more involved to the tabu list and also, which values were
included. The idea is to help the designer or the final user to
understand the behavior of the parameters of its approach.

Finally, about the configuration settings in CLOIS, it is
necessary to inform if each parameter is a continuous or an
integer number. In order to reduce the decisions of the final
user, the precision for continuous numerical parameters is set
by default in 0.1. However, a higher precision can also used
and defined in the execution of CLOIS.

IV. EXPERIMENTS

This section presents the results obtained for two different
tuning scenarios: a Genetic Algorithm named GA-NK [11]
with three parameters and an Ant Colony Optimization named
Ant Knapsack [12] with five parameters to be tuned. First,
we evaluated the effect of using opposite information in
CLOIS. To compare the performance of CLOIS, we also
considered two well-known tuning methods: ParamILS [6]
and Evoca [7].1 The hardware platform adopted for all these
experiments was a Power Edge R630 server with 2 Intel(R)
Xeon(R) CPU E5-2680 v3 @ 2.50GHz, 128 GB of RAM
under Ubuntu x64 16.10 distribution. The code of CLOIS is
available in https://github.com/nicolasemilio/CLOIS.

A. Tuning GA-NK

GA-NK [11] is a genetic algorithm proposed for solving
NK-landscapes. The algorithm evolves a population of
ps binary string individuals, starting from a randomly
initialized population. Two transformation operators are
used during its search process: a bit-flip mutation operator
and an uniform crossover operator. The application of
these operators is controlled by a mutation rate (mr) and a
crossover rate (cr), respectively. To select individuals that will

1ParamILS code is available in http://www.cs.ubc.ca/labs/beta/Projects/
ParamILS/ and Evoca in http://ecco.informaticae.org/

TABLE I
INITIAL PARAMETERS PER TUNING METHOD FOR TUNING GA-NK

Tuning method Parameters Values

ParamILS Random solutions in first phase (R) 10
Random solutions at each iteration (s) 3
Maximum number of executions (max execs) 2000
Probability of restarting the search (prestart) 0.01

Evoca Number of random seeds to evaluate (r) 10
Maximum size of population (MaxM ) 20

CLOIS Tabu list size (TLsize) 9
Number of neighbors visited (knb) 5
Number of random seeds to evaluate (r) 3

TABLE II
TUNING SETTINGS FOR EACH APPROACH TUNING GA-NK

Tuning method Parameter Values Precision

ParamILS
cr {0.0,0.1,. . . ,0.9,1.0} -
mr {0.0,0.1,. . . ,0.9,1.0} -
ps {2,3,. . . ,29,30} -

Evoca
cr [0.1,1.0] 0.1
mr [0.1,1.0] 0.1
ps [2,30] -

CLOIS
cr [0.1,1.0]

by defaultmr [0.1,1.0]
ps [2,30]

be transformed, a binary tournament selection method is used.

1) Tuning settings: As was used in [11], we considered
15 problem categories, with the value of k ranging from
k = 2 to k = 6. For each category, we considered 1000
problem instances. For the tuning processes, the training set
contains one randomly chosen instance per category, using
a total of 15 problem instances. We tuned three parameters
of GA-NK: the population size (ps), the crossover rate (cr)
and mutation rate (mr). To measure the performance of the
target algorithm, we considered the number of evaluations
performed by GA-NK until the optimal solution is obtained.
A maximum number of evaluations was fixed in 1E6. We
considered that when the consumed evaluations are lower
than 1E6, the problem instance is solved.

Table I shows the initial parameter values used by each
tuning method. We considered 5 independent executions of
each tuning method, each one with a budgetmax of 1000
evaluations of GA-NK. Table II presents the tuning settings for
each tuning method. In the case of ParamILS, it is necessary
to provide each possible discrete value that the algorithm will
evaluate, for each parameter value. In the case of Evoca, it is
necessary to provide the domain of each parameter value and
also, the precision considered for each continuous numerical
parameter. About CLOIS, its only necessary to provide the
domain of each parameter value. With these tuning settings,
the parameter search space contains 2.9E3 possible parameter
calibrations.

2) Evaluation of using opposite information: First, we
present an evaluation of the use of opposite information during



TABLE III
CALIBRATIONS OBTAINED BY EACH TUNING METHOD

Tuning method Seed cr mr ps

ParamILS

S1 0.8 0.3 2
S2 0.3 0.6 2
S3 0.2 0.6 4
S4 1.0 0.6 2
S5 0.9 0.5 2

Evoca

S1 1.0 0.8 4
S2 0.7 0.5 2
S3 0.8 0.9 2
S4 0.4 0.4 2
S5 0.5 0.8 2

CLOIS

S1 0.5 0.6 2
S2 0.4 0.4 2
S3 0.7 0.8 2
S4 0.2 0.6 2
S5 0.8 0.4 3
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Fig. 1. Convergence of C-TL and C+TL tuning GA-NK

the search process in CLOIS. For this, we compared a version
of the algorithm without the tabu list (C-TL) and CLOIS
with the OIL component (C+TL). Table IV shows the results
of GA-NK using the best parameter calibration provided by
each algorithm. As the target algorithm solves all the problem
instances using both calibrations, for each category, the table
shows the average number of evaluations used by GA-NK to
solve each problem instance. A value in bold denotes when an
approach outperforms the other one. Results show that using
the opposite information (GA-C+TL), CLOIS obtain a better
quality parameter calibration.

Figure 1 shows a convergence plot where the x-axis shows
the number of evaluations performed in the tuning processes
and the y-axis shows the number of evaluations that GA-NK
used to solve a problem instance. The plot shows that the
use of opposite information modifies the search process of
CLOIS, visiting different zones of the parameter search space.
In the rest of the article we only consider our approach using
the tabu list.

3) Tuning processes: Table III presents the parameter
calibrations obtained by each tuning method. ParamILS
obtains parameter calibrations that have similar values for
the mutation rate and the population size. On the other

TABLE IV
EVALUATION OF THE INCLUSION OF OPPOSITE INFORMATION

Categories GA-C-TL GA-C+TL

nk 2 20 42.14 19.81
nk 2 38 296.67 110.26
nk 2 52 1377.92 378.36
nk 3 20 84.36 38.24
nk 3 34 445.31 187.74
nk 3 48 2507.54 827.23
nk 4 20 150.46 67.77
nk 4 30 564.35 241.43
nk 4 40 2191.00 876.81
nk 5 20 259.78 116.08
nk 5 28 892.30 396.44
nk 5 38 3656.22 1806.87
nk 6 20 438.69 211.91
nk 6 26 1258.77 531.31
nk 6 32 3171.18 1509.94

TABLE V
AVERAGE NUMBER OF EVALUATIONS PERFORMED BY GA-NK

Calibration Run GA-PILS GA-E GA-C

S1 401.22 488.01 624.79
S2 1180.83 561.24 616.45
S3 611.10 1200.23 573.01
S4 582.97 1005.25 488.04
S5 625.95 690.89 707.93

Average 680.41 789.12 602.04

hand, Evoca and CLOIS obtained parameter calibrations with
similar values for the population size and mostly different
values for the other two parameters. The average execution
time of each tuning method, considering the 5 independent
executions, is 12.98 seconds for ParamILS, 17.04 seconds for
Evoca and 9.9 seconds for CLOIS.

4) Results: To test the each parameter calibrations,
we considered the set of 15000 problem instances and
one independent execution of GA-NK per instance. Table V
shows the performance of GA-NK considering each parameter
calibration obtained by ParamILS (PILS), Evoca (E) and
CLOIS (C). Here, the table shows the average number
of evaluations used by GA-NK to solve all the problem
instances. Results show that the parameter calibrations
obtained by CLOIS are competitive to the ones obtained by
the other two tuning algorithms. About the execution time,
the fewer the number of evaluations, the lower the execution
time of the algorithm. However, the execution time is similar
between the three algorithms and in most cases is less than
one second (per independent execution).

5) Statistical tests: We performed two statistical tests to
compare three approaches: GA-NK using one calibration ob-
tained by ParamILS (GA-PILS), using one calibration obtained
by Evoca (GA-E) and using one calibration by CLOIS (GA-C).
First, we applied the pair-wise Wilcoxon non-parametric test
to compare each pair of approaches. Then, in order to compare



TABLE VI
WILCOXON TESTS RESULT

Comparison Positive Ranks Negative Ranks Ties p-value

GA-PILS - GA-C 7734 6670 596 0.00
GA-E - GA-C 11145 3770 85 0.00
GA-PILS - GA-E 4070 10846 84 0.00

TABLE VII
FRIEDMAN TEST RESULTS

Tuning method Mean Rank

GA-PILS 1.81
GA-E 2.47
GA-C 1.72

the three algorithms together, we applied the Friedman non-
parametric test. The tests were performed considering the used
evaluations to solve each problem instance and considering all
the independent executions of the three approaches.

Table VI shows the results of applying the Wilcoxon
test with the Bonferroni correction. As the objective is to
minimize the number of evaluations for solving each problem
instance, in the first two comparisons, the positive ranks show
the number of cases when GA-C outperforms the other two
approaches. In both comparisons, the parameter calibration
provided by CLOIS allowed GA-NK to perform a lower
number of evaluations. About the comparison between GA-
PILS and GA-E, results showed that GA-PILS outperformed
GA-E in more cases. Table VII presents the results of the
Friedman non-parametric test. Here, the lower the mean rank
value the better the performance of the algorithm. Results
showed that GA-C obtained the best rank, followed by
GA-PILS and by GA-E. All these computations were done
using the statistical software package PSPP .

6) Additional information about parameters of GA-NK:
CLOIS provides additional information about which parameter
values were included in the tabu list. Figure 2 shows a bar plot
that presents the number of times that each parameter was
involved with the tabu list. Here, crossover rate values were
related in more cases with a decrement of GA-NK during its
tuning process. Figure 3 presents an histogram of the number
of times each value was added to the tabu list. The value 0.4
was the most included value, followed by 0.3, 0.5 and 0.8
values. However, some of these values are part of the best
parameter calibrations obtained by CLOIS. As there is not a
clear behavior in the relationship between some values of cr
and the performance of GA-NK, this information can be a hint
to use a parameter control method to define the value of cr.

B. Tuning AK

Ant Knapsack (AK) is a MAX −MIN Ant System
(MMAS) [16] algorithm for solving the Multidimensional
Knapsack Problem. AK constructs feasible solutions using
heuristic knowledge and pheromone information. The heuristic

Fig. 2. Number of times a value for each parameter was included to the Tabu
List
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Fig. 3. Frequency of inclusion to the tabu list per crossover rate value

knowledge is focused in maximizing the profit produced by
a candidate object, considering how resources are used in all
the dimensions. Pheromone information is deposited in pairs
of objects that are related to promising candidate solutions.
Ant Knapsack has six parameters: α (the importance of the
pheromone), β (the importance of the heuristic knowledge), ρ
(pheromone evaporation rate), τmin (minimum allowed value
of pheromone), τmax (maximum allowed value of pheromone)
and nbAnts (number of artificial ants).

TABLE VIII
TUNING SETTINGS FOR EACH APPROACH TUNING ANT KNAPSACK

Tuning method Parameter Values Precision

ParamILS

α {0.1,0.2. . . ,9.9,10.0} -
β {0.1,0.2. . . ,9.9,10.0} -
ρ {0.1,. . . ,0.9,1.0} -
τmax {0.1,0.2. . . ,9.9,10.0} -
nbAnts {2,3,. . . ,49,50} -

Evoca α [0.1,10.0] 0.1
β [0.1,10.0] 0.1
ρ [0.1,1.0] 0.1
τmax [0.1,10.0] 0.1
nbAnts [2,50] -

CLOIS

α [0.1,10.0]

by default
β [0.1,10.0]
ρ [0.1,1.0]
τmax [0.1,10.0]
nbAnts [2,50]
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Fig. 4. Convergence of C-TL and C+TL tuning AK

1) Tuning settings: For these tuning processes, we consid-
ered four randomly selected large-scale instances from the OR-
Lib (OR10x500-0.25 8, OR30x500-0.25 3, OR5x500-0.25 7
and gk01). We tuned five parameters of Ant Knapsack: α,
β, ρ, τmax and nbAnts. The parameter τmin was fixed to
0.01 in all the tuning processes. Initial parameter values are
almost equally defined as in Table I (for Evoca, r is now 3
and MaxM is now 10). The quality measure used in all the
tuning processes was the percentage gap distance between the
Best Known (BK) solution per instance and a solution found
Sfound:2 gap = 100 · (BK − SFound)/BK. We considered
5 independent executions of each tuning method, each one
with a budgetmax of 1000 evaluations of Ant Knapsack. One
parameter calibration evaluation considers 1000 evaluations in
Ant Knapsack. Table VIII presents the configuration settings
defined per parameter to be tuned. In this case, the number of
parameter calibrations in the search space is 4.9E8. The tuning
scenario considers a parameter search space considerably
bigger than the GA-NK scenario. This happens for two main
reasons: two more parameters are being tuned and also, the
number of possible values per parameter is higher.

2) Evaluation of using opposite information: Again, we
first evaluate the effect of using opposite information in CLOIS
considering the same seed. Figure 4 shows the convergence of
the two tuning processes. Particularly, after 300 evaluations of
AK, the tuning processes start to differentiate as a consequence
of using the tabu list. Table IX shows the evaluation of the
obtained parameter calibrations. Underline values show when
an approach outperforms the other in terms of the average
percentage gap (considering the 20 independent executions).
Values in bold denote when one algorithm outperforms the
other in terms of the percentage gap of the best quality solution
reached. Results show that the use of opposite information
allowed CLOIS to reach a better parameter configuration.

3) Tuning processes: Table X presents the best parameter
calibration obtained by each tuning method. To obtain these
calibrations, the execution time of ParamILS was 32883
seconds, Evoca was 33927 seconds and CLOIS was 32556

2Best Known solutions are available in
http://www.eecs.qmul.ac.uk/∼jdrake/bestresults.html

TABLE IX
EVALUATION OF THE INCLUSION OF OPPOSITE INFORMATION

Instance Average Best

AK-C-T AK-C+T AK-C-T AK-C+T

OR10x500-0.75 4 0.270 0.166 0.164 0.090
OR30x500-0.50 3 0.741 0.721 0.446 0.286
OR30x500-0.75 3 0.350 0.392 0.287 0.246
OR5x500-0.50 6 0.425 0.257 0.322 0.137
OR5x500-0.50 7 0.519 0.390 0.372 0.239
OR5x500-0.75 1 0.260 0.139 0.196 0.086
gk02 1.395 1.222 0.909 0.758
gk03 1.356 1.320 1.078 0.866

TABLE X
BEST PARAMETER CALIBRATION OBTAINED BY EACH TUNING METHOD

Tuning method α β ρ τmax nbAnts

ParamILS 2.2 7.2 0.3 9.5 34
Evoca 2.1 6.1 0.1 3.1 24
CLOIS 2.3 6.1 0.2 8.5 41

seconds. We also analyzed the convergence of each tuning
process. ParamILS obtained its best parameter calibration after
300 evaluations of AK. Then, any better candidates were
obtained. In the case of Evoca, the best parameter calibration
was obtained after 888 evaluations. About CLOIS, our tuning
method obtained its better configuration after 504 evaluations
of the target algorithm.

4) Results: To test the parameter calibrations reported in
table X, we considered 8 large-scale problem instances from
the ORLib. For each problem instance, 20 independent execu-
tions were considered, each one with 1000 evaluations. In the
following, we will name Ant Knapsack using the calibration
obtained by ParamILS as AK-PILS, using the calibration of
Evoca as AK-E and using the calibration of CLOIS as AK-C.

Table XI presents the percentage gap of the best quality
solution obtained by the three approaches. Values in bold de-
note when an approach outperforms the other two techniques.
Results show that the best calibration obtained by CLOIS is
competitive, outperforming the other approaches in 5 out of
8 cases. Considering the 8 instances, as the three algorithms
didn’t obtain optimal solutions, they consumed all the provided
evaluations and the execution times were similar. Table XII

TABLE XI
THE PERCENTAGE GAP OF THE BEST QUALITY SOLUTION OBTAINED BY

THE THREE APPROACHES

Instance AK-PILS AK-E AK-C

OR10x500-0.75 4 0.126 0.160 0.090
OR30x500-0.50 3 0.467 0.502 0.286
OR30x500-0.75 3 0.151 0.257 0.246
OR5x500-0.50 6 0.803 0.244 0.137
OR5x500-0.50 7 0.967 0.276 0.239
OR5x500-0.75 1 2.039 0.107 0.086
gk02 0.657 0.808 0.758
gk03 0.707 0.990 0.866



TABLE XII
THE AVERAGE PERCENTAGE GAP OF THE THREE APPROACHES

CONSIDERING 20 INDEPENDENT EXECUTIONS

Instance AK-PILS AK-E AK-C

OR10x500-0.75 4 0.197 0.254 0.166
OR30x500-0.50 3 0.668 0.873 0.721
OR30x500-0.75 3 0.328 0.444 0.392
OR5x500-0.50 6 1.481 0.357 0.257
OR5x500-0.50 7 1.618 0.459 0.390
OR5x500-0.75 1 2.214 0.202 0.139
gk02 1.169 1.234 1.222
gk03 1.321 1.355 1.320

TABLE XIII
WILCOXON TESTS RESULT

Comparison Positive Ranks Negative Ranks Ties p-value

AK-PILS - AK-C 107 52 1 0.00
AK-E - AK-C 117 43 0 0.00
AK-PILS - AK-E 89 70 1 0.00

presents the average percentage gap obtained by the three
approaches, considering the 20 independent executions. Again,
results show that the parameter calibration obtained by CLOIS
allowed Ant Knapsack to reach a competitive performance,
outperforming the other two approaches in 5 out of 8 cases.

5) Statistical tests: As in Section IV-A5, we performed
two statistical tests: the pair-wise Wilcoxon and the Friedman
non-parametric tests. Table XIII shows the results of applying
the Wilcoxon test with the Bonferroni correction. First, the
results show that the three approaches are statistically dif-
ferent. As the objective is to minimize the percentage gap,
the number of positive ranks show when AK-C outperforms
AK-PILS and AK-E in the first two comparisons. In the last
comparison, results show that AK-E outperformed AK-PILS
in more cases. Table XIV presents the results of the Friedman
test. Results confirm that the parameter calibration obtained
by CLOIS allowed AK to obtain the better performance. All
these computations were done using the statistical software
package PSPP .

6) Additional information about parameters of AK: As
we mentioned, CLOIS reports information about the use of
opposite information. Figure 5 shows the number of times
that each parameter was involved in a decrement of the
performance of Ant Knapsack during its tuning process. Here,
we observe that values of parameters β and τmax were the
most included in the tabu list. Figure 6 shows histograms for
values of β and τmax that were tabu. In the case of β, values

TABLE XIV
FRIEDMAN TEST RESULTS

Tuning method Mean Rank

AK-PILS 2.23
AK-E 2.17
AK-C 1.60

Fig. 5. Number of times a value for each parameter was included to the Tabu
List

(a) Values of β

(b) Values of τmax

Fig. 6. Histograms of the frequency of inclusion in the tabu list per value

near to 8.0 and near to 2.0 were included the most to the tabu
list. About τmax, values between 0.1 and 1.5 were the most
involved with a deterioration of the performance of AK.

V. DISCUSSION

Parameter tuning methods can be classified in hand-made
tuning, tuning by analogy, tuning by statistical analysis and
tuning by search-based approaches [1]. Hand-made tuning is
the process performed by a designer where the target algorithm
is iteratively evaluated using a defined set of parameter cal-
ibrations for a selected set of problem instances. In the case
of tuning by analogy, the parameter values of an algorithm
are defined considering existing approaches in the literature.
Tuning by statistical analysis uses statistical methods to detect
which parameter values can be related to a good performance
of the target algorithm. Tuning by a search-based approach are
techniques designed considering a search strategy. Based in a
taxonomy presented in [9], we present the main characteristics
of CLOIS, ParamILS and Evoca in Table XV.

VI. CONCLUSIONS AND FUTURE WORK

This work presents CLOIS, a new tuning algorithm inspired
in the tuning-by-hand methods and in the existing opposition-



TABLE XV
COMPARISON OF THE THREE TUNING ALGORITHMS

Criterion ParamILS Evoca CLOIS

Search-based Iterated Local Search Evolutionary Algorithm Hill Climbing and OIL strategy

Parameter space definition Discretized X
Non-discretized X X

Output Best calibration X X
Set of calibrations X

Conditional parameters Yes Yes No
Hyper-parameters 4 2 3
Parameter Precision required No Yes No
Stop criterion Maximum computational budget

inspired learning strategies. Our approach is focused in obtain-
ing promising parameter calibrations with a simple design.
CLOIS includes a component in order to learn from the
“opposite”, when a decrement in the performance of the target
algorithm is produced. For this, a tabu list temporary stores pa-
rameter values that were involved in a poor performance of the
target algorithm. A first improvement hill climbing procedure
guides the tuning process to visit regions that contain suitable
parameter values. In order to tackle possible stagnation during
the search process, a fixed number of neighbors without an
improvement are allowed to be visited.

To evaluate our tuning algorithm we consider two different
scenarios: GA-NK and Ant Knapsack. Also, we compared
CLOIS with two well-known tuning methods: ParamILS and
Evoca. Results show that the calibrations provided by the three
tuning methods allowed GA-NK to solve all the instances.
Statistical analysis confirm that the parameter values obtained
by CLOIS allowed GA-NK to reach a good and a competitive
performance. In the second scenario, results showed that
the parameter calibration provided by CLOIS allowed Ant
Knapsack to reach good quality solutions. Moreover, results
in Wilcoxon and Friedman tests confirm that the calibration
provided by CLOIS is competitive to the ones provided by
Evoca and ParamILS. In both scenarios, we evaluated the
effect of using opposite information in CLOIS. Results show
that the inclusion of the tabu list allowed CLOIS to reach
good parameter calibrations. Finally, we observed that in both
tuning scenarios, the execution time of CLOIS is quite lower
than Evoca and ParamILS. For future work, we are interested
in further analyze the effect of the hyperparameters of CLOIS
(e.g. TLsize, knb).
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