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Abstract—In practical multi/many-objective optimization
problems, a decision maker is often only interested in a handful of
solutions of interest (SOI) instead of the entire Pareto Front (PF).
It is therefore of significant research interest to design algorithms
that can automatically detect SOIs and search around them
instead of attempting to find the entire PF. However, this is
challenging for a number of reasons. First and foremost, the
interpretation of the underlying measures in terms of quantifying
trade-off information for SOIs is not straightforward. Scalability
is also an issue for most of such existing measures. Addition-
ally, for many-objective algorithms that rely on decomposition,
adaptation of reference directions and appropriate means to
scale the objectives to maintain solution density around SOIs
is not trivial. Lastly, constraints and decision-space are often
overlooked in the existing studies but are important for practical
applications. In this work, we present a simple approach to
identify SOIs, using normalized net gain over nadir point and
angle of influence. We illustrate the utility of the measure
for offline and online identification of SOIs using a range of
unconstrained and constrained benchmarks and practical design
problems spanning up to 5 objectives. We also show further
analysis in decision-space for an application problem to aid
decision-making in practical scenarios.

Index Terms—Decision-making, Solutions of interest, Many-
objective optimization

I. INTRODUCTION AND BACKGROUND

In real-world design problems, it is common to encounter
situations where multiple conflicting objectives need to be
simultaneously optimized. This could involve, for example,
minimizing weight, displacement and stress in a structural de-
sign [1], maximizing power and fuel efficiency for automobile
design [2], minimization of drag and maximization of lift for
airfoil design [3], etc.Such problems are referred to as multi-
objective optimization problems (MOP). The optimum of such
problems consists of not one, but a set of designs known as
Pareto-optimal Set (PS). The image of PS in the objective
space is called Pareto-optimal Front (PF), and represents
the best possible trade-off among the objectives. The MOPs
with more than three objectives are further categorized as
‘many’-objective optimization problems (MaOP), since they
pose additional challenges to conventional non-domination
based ranking, visualization and selection of solutions from
the PF [4]. Given that multiple (potentially unlimited) Pareto-
optimal solutions exist, and not all can be implemented in
the a real-world design, identification of one (or a few)
solutions of interest is an inherent part of multi-objective
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design process [5]. Incorporation of such preferences can be
done a priori, a posteriori, or interactively [6].

An a priori approach involves imposing a preference struc-
ture before the optimization is conducted. However, since the
nature of PF is unknown, such preferences are hard to specify
in the beginning and may result in undesirable outcomes. A
simple example is the scalarization of MOP into a single-
objective problem using weighted sum. Contrary to intuition,
an equal weighting of the objectives will not result in a
solution in the middle of the PF, if the PF is non-convex or if
the objectives span different orders of magnitude.

In an a posteriori approach, a good representation of the
PF is first sought through an appropriate algorithm (typically
an evolutionary multi-objective (EMO) algorithm). Thereafter,
the required SOIs are identified through application of expert
knowledge, visual or quantitative criteria. This approach is
also known as offfine identification. Though this method is
more comprehensive, the computation effort required to obtain
the approximation of full PF is substantial, which might
make it nonviable for practical problems where each design
evaluation is resource intensive. Moreover, for MaOPs, the
designs required to cover the PF with sufficient density grows
with the number of objectives. It is also widely reported that
the performance of Pareto-ranking based EMO algorithms in
obtaining a good PF approximation does not scale well with
the number of objectives [4].

A potential solution to overcome the above issue is to
conduct the search in an interactive manner [7]-[10] so as
to come up with a few solutions directly, without spending
substantial computational effort in obtaining the remainder of
the PF. For interactive optimization, a decision-maker could be
presented with certain intermediate solutions and asked to rank
them. This ranking can then be incorporated in the subsequent
search to bias it towards more preferred solutions.

In case the decision-makers have sufficient know-how about
the problem based on prior experience, their preference spec-
ifications can drive the search towards the regions of interest.
However, this may often be too optimistic a scenario to
assume. Without prior knowledge, in presence of large number
of alternatives and multiple conflicting criteria, it becomes
a formidable task to even define which solutions should be
the preferred ones. To aid informed decision-making in such
scenarios, an important research direction is to come up



with quantifiable measures that can suggest a few preferred
solutions from a given set of non-dominated solutions without
inputs from the decision-makers. Such measures can also be
incorporated in the environmental selection of the evolutionary
algorithms to design online SOI identification [5], [6].

The SOIs have been characterized using various measures
in the previous studies. Among some of the earlier works [11],
the “knee” solution was suggested as the one that has the max-
imal convex bulge (longest perpendicular distance from the
hyperplane). This concept was further utilized in [12] which
used mobile reference points to intensify search in regions
of knees for MOPs and their spacing was controlled with a
user defined parameter. The measure was also incorporated
in other non-domination based stochastic algorithms [13] and
a decomposition-based framework in [14]. In [6], the focus
towards knee solutions was attained using an angle measure
and an expected marginal utility (EMU). In [15], a modified
angle based ranking and a trade-off approach was used to
identify knees in bi-criteria problems.

While the angle and trade-off approach are specific to
bi-objective problems, the challenges in scaling the other
measures such as EMU were observed in [5], [16]. Mainly,
when the number of objectives is large, most of the solutions
obtain a zero value of EMU, making them indistinguishable.
A modified version with recursive calculation of EMU was
further proposed for complete ordering of the solutions, and
demonstrated on a range of multi/many-objective problems in
[5], [16].

In [17], a method for posteriori knee selection was proposed
by observing the density of the projected solutions on the
hyperplane passing through extremities of the PF. In this
method, the obtained knees can also be from non-convex
region, whereas some of the other methods (e.g. [6], [11]) do
not consider such solutions preferable. The reason behind this
is that in convex regions, a small improvement in one objective
comes at a large sacrifice in at least one other (hence moving
away from convex knee is not preferred). In [18], a two-stage
approach was adopted, where an initial estimate of the PF
was first obtained using a conventional MOEA, followed by a
focused search around certain identified knee regions using a
weighted sum approach. The approach was demonstrated on
bi-objective problems. Another offline selection technique was
proposed in [19], which calculated the minimum Manhattan
distance (MMD) of the given solutions from the ideal point
in the normalized objective space. This was later extended
to online knee identification (Fvoknee”) in [19] and demon-
strated on two and three-objective unconstrained problems. It
is important to take note that Fvoknee” employs MMD as a
measure and recursively subdivides the objective space. Such
a scheme is likely to face challenges with increasing number
of objectives since it involves creating divisions along each
objective. Furthermore, only corners and knee solutions being
used as parents might affect the search adversely in terms of
convergence as the parents are likely to be distant from each
other.

The online knee solution identification has also been used

to improve the search for overall PF in some of the recent
studies. For example, the solutions with higher hypervolume
contributions were tagged as knee points and ranked higher
in [20]. The same approach was extended to particle swarm
optimization and generalized differential evolution in [21]. In
[22], the knee points were considered as best points within
weighted sub-populations. There have also been reports on
use of knees to guide dynamic optimization [23].

In order to encourage further research on identification of
solutions of interest, a set of new benchmark problems with
knee-regions have also been proposed in [24]. The problems
are unconstrained and scalable with respect to objectives and
the knee characteristics can be controlled. Performance of
some existing algorithms from [13], [18] were compared.
Approaches for specifically visualizing the test problems with
knees have also been proposed in [25].

In this study, we aim to further the studies on this topic,
and in particular investigate some of the aspects that have not
been considered in the above discussed literature.

o We discuss a simple and scalable approach to identify
SOIs that can be easily interpreted by the decision-
makers. While the first SOI is the solution with maximum
normalized net gain over the nadir vector (similar to
MMD from ideal vector), subsequent ones are identified
using angle of influence as opposed to objective space
partitioning and close knee discard mechanism employed
in EvoKnee'.

o We implement the above approach within an evolutionary
algorithm in order to intensify the search around the SOIs.
That is, instead of only providing the knee solutions, we
attempt to provide a range of solutions in the vicinity of
the SOIs to consider.

o Unlike current studies that only consider the objective
space in terms of decision-making, we also discuss the
obtained solutions in terms of their variable space prop-
erties to assist in selection.

e The previous studies have considered only unconstrained
problems in online knee identification. Since practical
problems often have constraints, we investigate the per-
formance of the proposed method on constrained many-
objective problems, in addition to the commonly studied
unconstrained examples.

The proposed approach is discussed in Section II, followed
by results and analysis on mathematical benchmarks and
practical problems in Section III. The summary and concluding
remarks are then presented in Section IV.

II. PROPOSED APPROACH
In this section, we present a scheme to identify SOIs from
a set of non-dominated solutions, first offline and then online.
A. Offline identification of SOIs

The first step is to normalize the given non-dominated
solutions between O and 1, so that the method does have an
inherent bias towards any particular objective due to the scale
of the values. In order to do so, the ideal point Z I and the



nadir point Z N are identified, which consist of the minimum
and maximum values of each objective, respectively. Thus,
any objective value f; gets translated to fnj; j}’“:;n, where
fimin and f; ma, are the minimum and maximum values of
the *" objective. In a minimization sense, the ideal point
translates to the co-ordinates {0, 0, . .. 0}, while the nadir point
translates to the co-ordinates of {1,1,...1} in the normalized
objective space.

For any solution, its normalized net gain in the performance
of the objectives over nadir point’s objective vector is cal-
culated using L; norm in the objective space. This can be
calculated as L = > 1 — f;;4 = 1,2... M, where M is the
number of objectives. In order to illustrate the process, we take
an existing benchmark, bi-objective problem DEB2DK4 [6]
as an example. Let us assume that we are given a set of NV
non-dominated solutions (198 in this case) on the PF of the
problem and the decision-maker is interested in identifying 4
SOIs from the set. The normalized net gain can be calculated
as L = (1 — f1) + (1 — f2) for each given point and the
resulting values are presented using colormap in Fig. 1.

The top solution with the highest normalized net gain
is marked as solution A in red. This point (with highest
L) in most cases is likely to be unique in the objective
space '. Note that this point will be the same as identified
by an existing measure MMD [19] which calculates minimum
Manhattan distance from the ideal point. If the number of
SOI (nSOI) required is exactly one, then this point will be
the highest ranked solution in the set and is provided as the
output. However, if nSOI > 1, then further differentiation is
required in order to rank the solutions for identifying other
potential knee solutions. We propose doing so using an angle
of influence ®, the calculation of which is outlined below.

A reference vector is constructed from the nadir point to
every given point under consideration. Let’s say R4 is the
reference vector corresponding to solution A. The angle of
influence ® for a solution is defined as the smallest angle
between its own reference vector and the weight vector of
a solution with a higher value of L. Since solution A has
the highest L value among all available solutions, ® 4 will
be the highest as labeled in Fig. 1. For solution B which
has the second highest L value, its angle of influence ®p
is the enclosed angle between the reference vectors R4 and
Rpg. From the above definitions, it can be seen that L4 > Lp
implies that Lap = (1— f1(A)+1—f2(A))—(1— fr(B)+1—
fa(B)) > 0,ie. Lap = f1(B) = f1(A) + f2(B) — f2(A) > 0.
This quantity L 45 can be seen as the net gain that the solution
A has over solution B. It follows from the interpretability
perspective that if the solution A (with highest L) is chosen
as an SOI, no other solution in the given set will have a net
positive gain in the normalized objective values with respect
to A, and its angle of influence will be highest among all the

'A few exceptions can be envisioned for some peculiar geometries, for
example a linear simplex perpendicular to the line joining ideal and nadir
points; or discontinuous patches with symmetric farthest points from the nadir.
In such cases, any (or all) such points can be considered as SOIs under the
current definition.

solutions. When only one solution is required as an SOI, and
all objectives are equally important to the decision-maker, then
A would be an obvious choice by this trade-off criteria (both L
and @ are highest for it). Since the decision-maker is interested
in 4 SOIs, there is still a need to identify three additional SOIs.
They are selected based on a descending values of angle of
influence. All 4 selected SOIs are presented in Fig. 2, where
the size of the marker indicates the order of SOls, i.e., largest
marker size corresponds to solution A. The pseudo-code of
SOI identification process is presented in Algorithm 1. Since
the proposed approach uses normalized net gain and angle
of influence for SOI identification, for ease of reference, we
abbreviate it as NNGA in the subsequent text.
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Fig. 1. [Illustration of calculating the measures L and ®. The colorbar
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Fig. 2. The 4 SOIs selected using the proposed NNGA approach

B. Online identification of SOIs

During the online search, the SOIs identified using NNGA
from the non-dominated (Rank 1) solutions are considered
to be the anchor points, towards which rest of the solu-
tions need to be driven in order to intensify the density in
their vicinity. Therefore, during the environmental selection
process, the remaining solutions (other than the SOIs) of
the population are ranked simply based on their proximity
to their closest SOIs. The proximity measure is based on



Algorithm 1 Proposed NNGA approach for identifying SOIs

Input: Given set of N non-dominated solutions N DF' (objective values of
all unique non-dominated solutions (N DX) for an M objective problem),
nSOI (number of SOI required)
Output: SOIf (Final nSOI solutions selected)

1: Identify ideal point Z! and nadir point ZN of NDF.
: Normalize N DF' using the ideal & nadir points to obtain Fi,.
:fori=1to N do
Calculate L; = Z;Lil 1— fi
Calculate R; = —(1 — fiis1— fia...1— fi amr)/L; {Reference
vectors }
6: end for
7: for i =1to N do
8: for j =1to N do

9: Calculate 0;; = cos™! % {Angles b/w reference vectors}

10: Calculate L;; = L; — L; %Difference between L values}

11:  end for

12z O =Sort 6;5,j = 1...N in ascending order

13: Let .S be the sequence of solution ids in the above sorted order

14: Identify ®; = O;(;_1), where j = argmin LiSj < 0 {Angle of
influence}

15: end for

16: Sort ®; in descending order and select top nSOI solutions as SOl

normalized Euclidean distance in the objective space between
the solution and its closest SOI. This process yields a complete
order among the set of given solutions for any prescribed
number of SOIs. For example, complete ordering a set of
198 and 1611 non-dominated solutions of problems DOD2K
and DEB3DK (taken from [6]), respectively, is presented for
various numbers of SOIs in Fig. 3.

It is clear from Fig. 3 that the approach is able to correctly
identify the prescribed number of SOIs from the given set
of tradeoff solutions. In addition to identifying them, the
approach also generates a total order among the set of non-
dominated solutions, where the SOIs themselves and solutions
close to them are preferred more over others.

Although in the examples presented above we have gener-
ated a total order among the non-dominated set of solutions for
various numbers of SOls, it is possible to extend the approach
further to order any given set of solutions (a mix of feasible
and infeasible solutions, a set of all feasible solutions or a
set of all infeasible solutions). In the event the population
contains less than nSOI feasible solutions, the order among
the solutions is based on a feasibility-first scheme. In the
event the number of feasible solutions are more than nSOI,
the solutions in the first non-dominated front are ordered as
discussed above followed by proximity based ordering of all
remaining feasible solutions. In the event all the solutions are
infeasible, the solutions are ordered based on an increasing
order of sum of constraint violations.

Since we now have a means to generate a total order among
the solutions, this can be readily integrated in a conventional
multi-objective evolutionary algorithm for online search. For
demonstrating the process, we use the framework of the widely
used non-dominated sorting genetic algorithm II (NSGA-
II) [26], and replace the non-dominated sorting+crowding
distance based ordering of the feasible solutions with the

above discussed NNGA ranking?. Use of such an ordering
scheme is particularly attractive as it eliminates the need for
active reference vector adaptation for search intensification
that is commonly used by decomposition based knee search
strategies. In order to effectively utilize the information about
the objective space already explored, we also make use of
the complete archive of solutions at every generation to select
members of the population for the next. For consistency and a
fair comparison, we use archive based environmental selection
in original NSGA-II as well.

III. NUMERICAL EXPERIMENTS

In this section, the performance of the NNGA for on-
line knee identification is objectively assessed using three
unconstrained multi-objective knee benchmarks (DEB2DK4,
DEC3DK1, DEB3DK4) [6], a constrained 5-objective water
resource management [27] problem and a constrained wind
turbine design optimization problem involving 5 objectives
and 22 constraints [28]. We compare and contrast the solutions
obtained using the traditional ranking (without knee focused
search) versus NNGA. Moreover, we show further analysis in
variable space for a 4-objective building energy management
problem [16] that could be of further relevance in terms of
practical decision-making.

A. Visual comparison for 2/3-objective unconstrained exam-
ples

We first solve the 2-objective DEB2DK4 problem (number
of variables=30, with the %k and s set to 4 and 0 respectively)
with an aim to identify 4 SOIs. Thereafter, we solve the tri-
objective DEB3DK problem with an aim to identify 1 and
4 SOIs. The k and s parameters are set to [1,0] and [2,0]
for DEB3DK which corresponds to nSOI=1 and nSOI = 4
respectively. All the above problems have been solved using
a population of 100 solutions with a total computing budget
limited to 10, 000 function evaluations. The probability of sim-
ulated binary crossover (SBX) and probability of polynomial
mutation (PM) was set to 1 and 0.1 respectively for all the
problems studied in this paper. The distribution indices of SBX
and PM were set to 20.

In order to visually observe the behavior of the underlying
search strategies, we first collect all solutions delivered by
the NNGA and NSGA-II from a single run. Thereafter, we
generate the non-dominated set of solutions from the combined
set of solutions and compute the ideal and nadir coordinates.
With this ideal and nadir, the complete archive of solutions
obtained by the proposed algorithm and NSGA-II is scaled
and the results are presented in Figs. 4(a) through to Fig. 4(f).

In DEB2DK4 problem with 4 knees, one can observe that
the proposed algorithm conducts an intensified search around
all 4 of them. Similar behavior is also demonstrated by the
proposed algorithm for DEB3DK problem with 1 and 4 knees.
On the other hand, NSGA-II delivers scattered set of solutions,
where density varies across the PF approximation but is not
particularly high around SOlIs.

2Note: For simplicity, we refer to both offline and online versions as NNGA
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Fig. 3. Results for DO2DK and DEB3DK problems. The selected SOIs are indicated using the large blue dots, whereas the colormap shows the order of

solutions with a lower value indicating a more preferable solution.

B. Performance on constrained 5-objective examples

Having visually demonstrated the performance of the
NNGA on the above knee benchmarks, we move on to inves-
tigate its performance on two constrained optimization prob-
lems, namely the water resource management problem [27]
and wind turbine optimization problem [28]. For both prob-
lems we attempt to solve for nSOI = 1 purely because the
quality of the solution and behavior of the search strategy can
be unambiguously assessed. A number of metrics have been
proposed in [24] to objectively assess the performance of
knee based search strategies, such as KGD, KIGD and KD de-
rived from generational distance/inverted generational distance
counterparts. We adopt a variant of KIGD that measures the
density of solutions over a range of distances in both objective
and variable space (discussed further in the next subsection).
For the water resource problem, a population of 210 solutions
were evolved over 100 generations. For nSOI = 1, the
results of both the algorithms (i.e. the archives) were combined
and non-dominated sorting was used to identify the overall
set of non-dominated solutions. These solutions were then
normalized using the coordinates of the ideal and the nadir
to yield a combined set of normalized non-dominated set of
solutions. The first SOI, i.e. the solution with the highest L
measure in combined set was one which was delivered by the
proposed algorithm. Since the proposed algorithm was tasked
to search for a single SOI, it is expected that there would
be significant number of solutions searched/generated around
this SOI. The histogram of L measures of all non-dominated
solutions delivered by the proposed algorithm and NSGA-II
are presented in Fig. 5(a) and Fig. 5(b). It is clear that a large

number of solutions were generated by the proposed algorithm
around the SOI as opposed to far fewer solutions generated
by NSGA-IL

While the water resource optimization problem is still a
relatively simple problem with well described mathematical
equations of the objectives and constraints, the next problem
involves use of numerical simulations to estimate the objec-
tives and constraints. The problem involves optimization of
a wind turbine design, and the detailed formulation can be
found in [28]. A population of 330 solutions were evolved
with an evaluation budget of 10,000. The histogram of L
measures of all non-dominated solutions delivered by the
proposed algorithm and NSGA-II are presented in Fig. 6(a)
and Fig. 6(b), respectively. It is clear that a large number of
solutions were generated by the proposed algorithm around the
SOI (a total of 1128 non-dominated solutions) while NSGA-II
had solutions with varying L measure spanning the tradeoff
surface (a total of 1755 non-dominated solutions).

C. Further observations in the variable space

So far we have focused on the performance of the proposed
algorithm and illustrated its ability to deliver solutions in and
around SOIs with higher intensity. While most of the works
including the one presented above only considered objective
space in selecting SOIs, in a practical scenario, a decision-
maker may also be interested in observing the decision space
of the corresponding solutions. In order to present some
relevant solutions to the decision-maker in this regard, two
different scenarios are presented.

1) The first is where the decision-maker is interested in see-

ing multiple solutions which give similar performance
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Fig. 4. Results of NNGA (left) and NSGA-II (right) for the test problems.

as the SOIs in the objective space and are close to the
SOIs in the decision-space as well. This will allow for
variations and options in a particular design. We refer
to this output as Type 1 solutions.

2) The second is where the decision-maker is interested
in seeing multiple solutions which give similar perfor-
mance in the objective space but are far apart in the
decision-space. The idea is to examine a diverse set of
designs very different from each other that are able to
deliver similar performance. We refer to this output as
Type 2 solutions.

In order to provide Type 1 and Type 2 solutions, we con-
sider different thresholds on the neighborhood in normalized
objective and variable spaces. Consider a given threshold th
and a given SOIL. We identify the set of all solutions S, in the

objective space which are within ¢t/ normalized distance from
the given SOI in the objective space. Next, we identify the set
of solutions S, that are within th normalized distance from
the given SOI in the decision space. Lastly, we identify the
set of solutions S, that are more than th normalized distance
from the given SOI in the decision space. Type 1 solutions can
then be obtained by the set intersection S,N.S;1, whereas Type
2 solutions can be obtained by the set intersection S, N Sy2.
This can be repeated for different distance thresholds to expand
the neighborhood definition, and a distribution of the number
of Type 1 and Type 2 solutions obtained for each case can be
plotted.

We illustrate this using the database of solutions from the 4-
objective building energy management problem studied earlier
in [16]. From the available set of 100 solutions, 2 SOIs
are identified using NNGA. Then, the number of Type 1
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and Type 2 solutions for different values of th (normalized
neighborhood radius) is plotted, as shown in Fig. 7. For
example, the first SOI has no Type 1 solutions for the th
value as large as 0.6, which signifies that no similar designs
can be found in the neighborhood. On closer examination
of objective values, it also happens to be that the solution
is isolated from the rest of the solutions in the objective
space. The second SOI on the other hand has a good choice
of designs around its decision space which also give similar
performance in objective space. Alternate options are available
for even with the lowest ¢h value of 0.1 and increases as
th is increased further. With Type 2 solutions, a high value
of th = 0.5 is needed to obtain solutions that can achieve
similar performance as the first SOI. In contrast, for the second
SOI, once again it is possible to get diverse solutions that can
obtain close performance, starting from the smallest value of
th = 0.1. Thus, practically it may be attractive to pick the
second SOI, especially in case there are uncertainties in the
design process in which case there are many more options
around it to chose from; and similar design performance is
achievable using similar as well as different other designs.
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building energy management problem data

IV. SUMMARY AND CONCLUSIONS

In this paper we have introduced an approach that can
automatically identify and search for and around a handful of
SOIs that are easy for a decision-maker to comprehend. At the
core of the algorithm lies a selection mechanism that orders
the set of solutions such that the SOIs and their neighbors
are preferred more over others. From a set of non-dominated
solutions, one with the maximum normalized net gain over



nadir is selected as the first SOI. Subsequent SOIs are selected
based on a descending order of their angle of influence. The
feasible solutions in subsequent fronts are selected based on
their proximity to the closest SOIs in terms of Euclidean
distance in objective space. The behavior of the selection
scheme and its ability to order various trade-off set of solutions
for different numbers of SOIs was presented visually using
standard multi-objective benchmarks with knees (DEB2DK4,
DEC3DK1, DEB3DK4).

Since most practical problems involve constraints, we fur-
ther observed the performance of the proposed algorithm for
such classes of problems. To this end, we solved two 5-
objective constrained problems. The first one, water resource
management problem, involves empirical equations formu-
lated in the literature; whereas the second one is a recently
introduced wind turbine design optimization problem with
simulation-based evaluations. Both the instances were solved
for nSOI = 1 to objectively assess the ability of the algorithm
to deliver a high density of solutions near the SOI.

Since the approach delivers a relatively high number of so-
lutions around the SOls, it is possible to mine this information
to uncover the characteristics of the SOIs for better informed
decision making. This is demonstrated using a building energy
management problem. Ideally there is a need to consider
both objective and variable space density during the course
of search which have practical implications on robustness,
uniqueness and of potential family of solutions. Towards this
end, incorporation of variable space information for online
SOI identification will be explored by the authors in the future
extension of this work.
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