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Abstract—The Pareto sets of many real-world multi-objective
optimization problems in engineering and computer fields are
high-dimensional but sparse. Such multi-objective optimization
problems are called large-scale sparse multi-objective optimiza-
tion problems. A sparse evolutionary algorithm has also been
raised and verified effective on benchmark problems. However,
in practical applications, it needs a large number of expensive
function evaluations. Although surrogate-assisted evolutionary
algorithms are common solutions to deal with expensive opti-
mization problems within limited computation resources and es-
pecially Kriging-assisted evolutionary algorithms are widely used,
they cannot cope with large-scale expensive sparse multi-objective
optimization problems due to the inaccurate surrogate models on
high-dimensional problems. Therefore, we first propose a feature
selection operator based on non-dominated sorting to choose the
non-zero decision variables in the Pareto set. Then, the dimension
of the original problem is reduced and a Kriging-assisted multi-
objective evolutionary algorithm is employed to solve the re-
formulated problem. Finally, the selected zero decision variables
are added to the obtained optimal solutions as the result of
the original problem. The experimental results on benchmark
problems show that our proposed algorithm outperforms the
existing algorithms.

Index Terms—Sparse multi-objective optimization problems,
surrogate-assisted multi-objective evolutionary algorithms, fea-
ture selection, Kriging model.

I. INTRODUCTION

Since the objectives of multi-objective optimization prob-
lems (MOPs) are conflicted [1], it is impossible to find a
single optimal solution for all the objectives, instead a set
of Pareto optimal solutions is obtained which makes a trade-
off between different objectives. These solutions constitute the
Pareto front and corresponding decision set is called Pareto set.
In many real-world problems, their Pareto sets may be sparse,
which means many of the decision variables in Pareto set are
zero. Such problems are known as sparse MOPs [2]. Sparse
Pareto sets exist widely in real-world MOPs. Taking the weight
matrix for a neural network [3] as an example, many neurons
are not connected and in the weight matrix their corresponding
elements are zero.

This work was supported in part by the National Natural Science Foundation
of China (No. 61976165).

Evolutionary algorithms (EAs) have been verified effective
on MOPs [4] [5], because they naturally provide a set of can-
didate solutions. Many existing multi-objective evolutionary
algorithms (MOEAs), like MOEA/D [6] and NSGA-III [7],
have a good performance on benchmark problems. However,
the execution of MOEAs on real-world MOPs needs a large
number of function evaluations, which are often expensive.
For instance, a CFD simulation [8] requires at least several
minutes. One common possible solution is to adopt cheap
surrogate models to approximate the expensive function eval-
uations in EAs. Surrogate-assisted evolutionary algorithms
(SAEAs) perform well with limited number of expensive
function evaluations [9], [10]. For example, MOEA/D-EGO
[11] and K-RVEA [12] are two effective surrogate-assisted
MOEAs, where the Kriging models with the uncertainty infor-
mation are popular choices for SAEAs. In addition, surrogate
models are adaptively updated by selecting points to be re-
evaluated during the optimization process of SAEAs, which is
known as the model management strategy [13]. The choices of
surrogate model and model management are two key factors
to effectiveness of SAEAs.

A main challenge to Kriging-assisted EAs is that their
models dramatically consume training time as the problem
dimension increases. For large-scale sparse expensive MOPs,
high-dimensional decision variables degenerate the efficiency
of Kriging-assisted EAs. Therefore, dimension reduction is
necessary before using Kriging-assisted EAs on large-scale
problems. In this work, we adopt K-RVEA [12] as the main
optimizer for expensive sparse MOPs. To overcome the dimen-
sion curse, a feature selection operator is proposed to choose
the non-zero decision variables in Pareto sets of sparse MOPs.
Therefore, We term our proposed algorithm K-RVEA(FS).

The reminder of the paper is organized as follows. Section II
briefly introduces existing dimension reduction techniques and
K-RVEA. The proposed algorithm K-RVEA(FS) is described
in Section III. We compare the proposed algorithm with three
existing MOEAs in Section IV. Finally, the conclusions and
future work are presented in Section V.
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TABLE I
FEATURE SELECTION TECHNIQUES

Advantage Disadvantage Example

Filter methods
Generality
less computation complexity
without training model

Less acurate than wrapper Relief
Variance thresholder

Wrapper methods
Better accuracy
simple to use
interacts with classifier

More computation source
risky for over-fitting MSE-based method

Embedding methods Mixed with model selection
less complexity than wrapper Classifier dependent selection L1-normalize

Decision tree

II. PRELIMINARIES

A. Dimension Reduction Algorithms

With the increasing dimensions, the construction of the
surrogate models becomes complex and time-consuming. In
other words, the source of time and hardware needed may
be unaffordable and the methods are suffering from the curse
of dimensionality [14]. Principal component analysis (PCA)
[15] and latent dirichlet allocation (LDA) [16] are two widely
used dimension reduction methods based on variable analysis.
However, both techniques are hard to be used for addressing
the high dimensions of sparse MOPs due to the lost of
original dimensions. Feature selection, as a kind of dimension
reduction algorithms, can be adopted to select a subset of
decision variables from the whole high-dimensional decision
space. Existing methods of feature selection can be divided
into three categories roughly: filter, wrapper and embedding
methods [17].

• Filter methods select a subset of features without con-
sidering subsequent algorithms. There are some famous
filter methods including Relief [18] and FOCUS [19],
which process the whole data and assess the correlations
between features and labels.

• Wrapper methods [20] wrap the selection process via a
learning algorithm. Wrapper methods constantly add or
delete the features in the selected subset and assess the
performance of the subset based on a specific algorithm.
Then, wrapper methods select an outperforming subset
based on a performance metric. Due to the constant
updating of the subset, wrapper methods consume more
computation resources than filter and embedding methods
but they usually have a good accuracy.

• Embedding methods [21] aim to find a trade-off between
computation budget and accuracy. Embedding methods
select features by the model selection, which rank fea-
tures by the weights. In the construction of the model,
the relevant features are selected at the same time.

The main advantages and disadvantages of mentioned meth-
ods have been represented in Table I. In addition to those
feature selection methods, a number of methods are combining
some knowledge in their specific areas, like calculating the
similarity between different features [22] and clustering the
features to reduce the size of set based on a specific metric
[23].

However, most mentioned feature selection methods need a
large dataset and times of training on models. For expensive
MOPs, the above two conditions mean a large number of ex-
pensive function evaluations and massive computation sources
in model training, which is often unacceptable for real-world
problems. During updating the surrogate model in SAEAs,
only a small number of data can be added, which cannot
significantly assist the dimension reduction in the decision
space. Therefore, to deal with expensive large-scale MOPs,
effective feature selection methods are needed.

B. Kriging Model

The Kriging model, also known as Gaussian process model,
is the surrogate model used in K-RVEA [12]. The reason why
the Kriging model is popular is that it could both provides
predicted values and their uncertainty information. For an
input x , the Kriging model predicts its output value with
two parts:

y(x) = µ(x) + z(x), (1)

where µ(x) is a polynomial approximation model and z(x) is
assumed as a Gaussian process whose mean value is zero and
variance is σ2. To build the model, we need to sample some
points. For two inputs xi and xj , the covariance between two
random processes ε

(
xi
)

and ε
(
xj
)

are defined by

cov
[
ε
(
xi
)
, ε
(
xj
)]

= σ2R
([
R
(
xi, xj

)])
. (2)

Thus, the correlation matrix of NI data points can be written
as follows:

R =

 R
(
x1, x2

)
· · · R

(
x1, xNI

)
...

. . .
...

R
(
xNI , x1

)
· · · R

(
xNI , xNI

)
.

 (3)

The correlation function adopted in K-RVEA is

R
(
xi, xj

)
= exp

(
−

n∑
k=1

θk

∣∣∣xik − xjk∣∣∣2
)
, (4)

where θk is a correlation parameter. Once we construct our
model using the sample points, the prediction for a new input
x̄ from the Kriging model can be written as:

ȳ = β + rT (x̄)R−1(y − Fβ), (5)

where F is a column vector of NI components and rT (x̄) is
the correlation vector between x̄ and sample points. To fit the



model, θk is obtained by maximizing the following likelihood
function:

arg max
θk

(
−
(
ns ln

(
σ̂2
)

+ ln |R|
)
/2
)
. (6)

The uncertainty information has made the Kriging model
outperform other surrogate models in some aspects. However,
the computational cost of Kriging model is high due to its high
computation complexity [12]. For a large-scale optimization
problem, this weakness may lead to poor performance.

C. Kriging-Assisted Reference Vector Guided Evolutionary
Algorithm

Reference vector guided evolutionary algorithm (RVEA)
[24] adopts a number of reference vectors to divide the objec-
tive space to several small parts and these reference vectors
guide the evolutionary search in the population. With guidance
of reference vectors, the population evolves to the Pareto front.
K-RVEA [12] is an RVEA variant using the Kriging model
to replace a number of expensive function evaluations. As
shown in Fig. 1, K-RVEA borrows the evolutionary search
of RVEA and samples new data points to update the Kriging
model during the optimization process.
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Fig. 1. Flowchart of K-RVEA

1) Generation of Reference Vectors: At the beginning of K-
RVEA, uniformly distributed reference vectors are generated
based on reference points, which are sampled on a hyperplane
using the simplex-lattice design method [25].{

pi =
(
p1i , p

2
i , . . . , p

M
i

)
s.t.
∑M
j=1 p

j
i = 1,

(7)

where i = 1, 2, ..., N , N is the number of uniformly dis-
tributed points and M is the number of objectives. pji can
be
{

0
H ,

1
H , . . .

H
H

}
and H is an integer we adopted in the

method. By calculating the permutation above, we can get

some uniformly distributed vectors. Then, we change the
original reference factors into

vi =
pi
‖pi‖

. (8)

Thus, reference vectors will be mapped from a hyperplane to
a hypersphere and all those reference vectors are unit vectors.
The objective space is divided into some subspace by those
unit reference vectors.

2) Evolutionary Search: Before reference vectors are ap-
plied into process of evolution, every objective value is
changed into

ˆ
f ji = f ji − f

∗
i , (9)

where f ji is the value of j-th individual on i-th objective and
f∗i is the minimum objective value of the i-th objective. After
the translation, all the objective values are positive. The cosine
value of the angle between individual and every reference
vector is calculated. We denote the minimum angle and the
corresponding cosine value between individual i and reference
vectors by θi and ai. By the assignment, the whole population
is also divided into subpopulations. In each subpopulation,
only one individual is selected based on both convergence
and diversity. In both K-RVEA and RVEA, convergence is
measured by the distance between the translated objective
vector and the origin point and diversity is measured by ai.
Hence, when K-RVEA selects an individual in the subpopula-
tion, the goal is to choose the more representative individual
balancing both convergence and diversity. Angle penalized
distance (APD) metric is adopted as follows:

di = (1 + P (θi)) · ‖f i‖, (10)

where |f i‖ is the distance between the translated objective
vector of individual i and the origin point. Penalty function
P (θi) is defined as:

P (θi) = k ·
(

t

tmax

)α
· θi
γn
, (11)

where γn is the smallest angle between any two adjacent
reference vectors. Parameter α is prefixed and other important
parameters are the rate of the number of current genera-
tion t and the maximum number of generation tmax. The
performance of MOEAs on the diversity and convergence
varies in different stages. The APD metric adaptively balances
convergence and diversity by a penalty function in different
stages of the algorithm. In the early stage, convergence is
considered more to push the population to the Pareto front
and while in the late stage the main goal is to distribute the
population uniformly in the Pareto front.

3) Adaption of Reference Vectors: With the searching pro-
cess, the population is close to the Pareto front. To further
improve the diversity, both K-RVEA and RVEA update their
reference vectors based on the shape of the obtained Pareto
front by the following adaption,

vt+1,i =
v0,i ◦

(
zmax
t − zmin

t

)∥∥v0,i ◦ (zmax
t − zmin

t

)∥∥ , (12)



Generate randomly 
matrix dec(D*D) and 

identity matrix mask(D*D)

Non-dominated 
sorting(NDS) on 

individual 1~D

Ind(D*D) = dec*mask

Calculate objective 
values of individual 1~D 
using original function 

evaluation

Number of 
experiments 

< N1

N

Y

Set each individual i’s 
smallest rank number 

in N1 NDS as dimension 
i’s score 

Select dimensions with 
smallest D/5 score

Generate randomly matrix 
dec(D/5*D/5) and identity 

matrix mask(D/5*D/5)

Ind(D/5*D/5) = dec*mask

Calculate objective 
values of individual 
1~D/5 using original 
function evaluation

Non-dominated 
sorting(NDS) on 
individual 1~D/5

Number of 
experiments 

< N2

NY
Set each individual i’s 
smallest rank number 

in N2 NDS as 
dimension i’s score 

Select dimensions with 
smallest K score

Mask (D*D)

1 0 … 0 0

0 1 … 0 0

… … … … …

0 0 … 1 0

0 0 … 0 1

0.2 0.3 … 0.8 0.2

0.1 0.2 … 0.9 0.2

… … … … …

0.8 0.4 … 0.8 0.4

0.4 0.5 … 0.1 0.2

0.2 0 … 0 0

0 0.2 … 0 0

… … … … …

0 0 … 0.8 0

0 0 … 0 0.2

Dec(D*D)

Ind (D*D)

Individual 1

Individual 2

…

Individual D-1

Individual D

Fig. 2. Feature selection using non-dominated sorting.

where zmax
t and zmin

t are maximum and minimum objective
values at the current generation. By updating the reference
vectors with the population, a set of objective vectors with
a uniform distribution could be obtained when the ranges of
different objective functions are different.

4) Updating Kriging Model: During the evolutionary
search in K-RVEA, all objective values of individuals are
predicted by the Kriging model. The Kriging model in K-
RVEA is set at a fixed frequency of updating one time every
20 generations. A key part of model management is to select
solutions to be re-evaluated using original expensive function
evaluation. Due to the limited computation source, the number
of individuals to be re-evaluated is a fixed number (often
less than 1000). In K-RVEA, in order to sample the proper
individuals and assist the search for the Pareto set, a strategy of
dynamically sampling points is used for balancing convergence
and diversity. Two kinds of reference vectors are adopted
in the strategy: fixed reference vectors Vf which are evenly
distributed in objective space and adaptive vectors Va.

To assess the performance of population on the convergence
and diversity, we compare the number of empty vectors in
Vf . A fixed reference vector is called empty if no individuals
are assigned to it.

∣∣∣V iaf ∣∣∣
tu−1

stands for the number of empty
vectors in fixed reference vectors at the last model updating
and

∣∣∣V iaf ∣∣∣
tu

stands for the number of empty vectors in
fixed reference vectors at the current model updating. Then,
we decide which indicator to be prioritized by calculating∣∣∣V iaf ∣∣∣

tu
−
∣∣∣V iaf ∣∣∣

tu−1
− δ, if it is positive, diversity should

be focused on and we will select individuals based on the
uncertainty information provided by the Kriging model, oth-
erwise, the convergence will be focused on. As we can see

from RVEA [24], APD is the metric to assess convergence
and diversity at the same time, which provides the information
for the selection of new sampled points. In short, whether the
re-evaluated solutions is chosen using the uncertainty or the
APD value depends on the stage of the optimization process.

III. PROPOSED ALGORITHM

To solve an expensive sparse MOP, we first apply a feature
selection operator to the decision space in the original MOP
and select the non-zero dimensions to reformulate the prob-
lem. Then, we perform K-RVEA [12] to search the optimal
solutions of the re-formulated problem. Finally, the zero di-
mensions will be added to these obtained optimal solutions
to build the solutions to the original MOP as shown in Fig.
II-C3.

Our feature selection operation is inspired by SparseEA [2]
to select the non-zero dimensions in the Pareto set. Firstly,
we randomly generate the real number matrix dec in the size
of D ∗ D and a unit matrix mask in the size of D ∗ D,
where D denotes the number of decision variables. The goal of
adopting the mask is to assess the importance of each decision
variable. One non-zero dimension in each individual ensures
the independency. Then, the data matrix ind is obtained by:

(ind1, ind2, . . .) = (dec1×mask1,dec2×mask2, . . .) .
(13)

From Equation (13), ind is set to be zero except the i-th
element in the i-th individual. The population is sorted by
non-dominated sorting. Non-dominated sorting assigns ranks
to individuals based on the Pareto dominating relation [26].
Using one existing non-dominated sort algorithm [27], we
sort the whole population and assign ranks to each individual
indi. The individual with small rank dominates the individual
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Fig. 3. General process of the proposed algorithm for large-scale expensive sparse MOPs.

with large rank. The rank of each individual measures its
performance and the contribution of corresponding decision
variable to the objective value. Non-zero decision variables
occur in individuals with small ranks, which means they are
more likely to be in the non-zero decision variables in the
Pareto set. Each individual’s rank is regarded as the score
for the decision variable and a small score means the high
possibility of being the non-zero decision variables.

To improve the robustness of the feature selection method,
we repeat this possibility assessment with different ind for
several times and use the best score of every dimension in
different sortings as its final score.

The process of feature selection will be accurate if we
make enough function evaluations and non-dominated sort-
ings. However, to get a trade-off between efficiency and
budget, we divide the selection of non-zero dimensions into
two steps as shown in Fig. II-C2. In the first step, we gen-
erate randomly N1 different ind and calculate their objective
values using expensive function evaluation, then we make non-
dominated sortings on them respectively and set the smallest
rank number of each indi obtained in N1 sorts as the score
of dimension i. Considering the robustness of the operator,
we select dimensions with smallest D/5 score for subsequent
selection. Then based on the D/5 dimensions, we perform
N2 times of non-dominated sorts on N2 different ind. The
score of dimension i is set as the smallest rank number indi
obtained in N2 sorts. At last, we select dimensions with
smallest K score as the non-zero dimensions. The whole
process of non-dominated sorting based feature selection needs
(N1 ∗D +N2 ∗D/5) functions evaluations.

As shown in Fig. II-C3, once non-zero dimensions are
selected out, the positions of non-zero dimensions and zero

dimensions in original dimensions are recorded as P1 and P2.
We modify dimensions of problem to K and then perform
K-RVEA on the re-formulated problem. After the execution
of K-RVEA, optimal solutions with K dimensions could
be obtained. To form the solutions for original problems,
individuals with D dimensions are generated and we copy
the results of solutions with K dimensions in position of P1
and add 0 in positions of P2 respectively.

IV. EXPERIMENTAL RESULTS

A. Experiment Settings and Benchmarks

To test the performance of the proposed algorithm K-
RVEA(FS), we choose the SMOP test suite with 100 decision
variables [2] whose objective functions are shown below in
our experiment.

Minimize f1(x) = h1(x) (1 + gns(x) + gs(x))
f2(x) = h2(x) (1 + gns(x) + gs(x))
· · · ·
fM (x) = hM (x) (1 + gns(x) + gs(x))

(14)

where h is the shape function which influence the shape
of Pareto front, the function g controls fitness landscape, θ
is the sparsity parameter. Small θ means the high sparsity
of problem. Also, the known number of non-zero decision
variables K is defined as follows:

K = dθ(D −M + 1)e, (15)

where D is the number of decision variables and M is the
number of objectives.

To conduct the proposed algorithm in our experiment on
SMOP, N1 and N2, times of non-dominated sortings on
ind in two steps, are set as 4 and 5. The whole process of



TABLE II
ACCURACY OF FEATURE SELECTION USING NCA, RRELIEFF, AND THE PROPOSED NON-DOMINATED SORTING-BASED FEATURE SELECTION.

NCA(dec) NCA(ind) RRelieF(dec) RRelieF(ind) Non-dominated Sorting FS(ind)

SMOP1 11.23% 13.23% 16.36% 10.86% 98.18%
SMOP2 24.52% 34.53% 18.83% 13.63% 97.57%
SMOP3 22.72% 50.24% 21.74% 55.06% 99.69%
SMOP4 19.23% 18.44% 15.21% 23.63% 99.39%
SMOP5 19.56% 22.81% 16.36% 18.29% 29.09%
SMOP6 20.39% 19.54% 19.39% 19.45% 30.92%
SMOP7 18.53% 43.92% 18.43% 17.09% 99.39%
SMOP8 19.42% 20.16% 17.76% 14.54% 99.09%

TABLE III
STATISTICAL RESULTS OF THE IGD (AVERAGE AND STANDARD DEVIATION IN BRACKETS) OBTAINED BY COMPARED ALGORITHMS WITH 800 FUNCTION

EVALUATIONS ON SMOP1-8. THE BEST RESULTS ARE HIGHLIGHTED

NSGAII SparseEA K-RVEA K-RVEA(FS)

SMOP1 1.0266(0.0426)+ 0.1195(0.0133)+ 1.2867(0.2142)+ 0.0293(0.0043)
SMOP2 1.8761(0.0412)+ 0.1974(0.0142)+ 2.0899(0.0812)+ 0.0663(0.0075)
SMOP3 2.2815(0.0384)+ 0.1348(0.0303)+ 2.5004(0.0574)+ 0.0285(0.0017)
SMOP4 0.9339(0.0193)+ 0.0582(0.0132)+ 0.8242(0.0231)+ 0.0033(0.0004)
SMOP5 0.7264(0.0221)+ 0.0854(0.0172)+ 0.6946(0.0421)+ 0.0250(0.0026)
SMOP6 0.3212(0.0225)+ 0.0717(0.0082)+ 0.2591(0.0317)+ 0.0232(0.0028)
SMOP7 1.8552(0.0751)+ 0.2610(0.0317)+ 2.4262(0.2362)+ 0.0928(0.0079)
SMOP8 3.3539(0.0286)+ 0.5247(0.0148)+ 3.6724(0.0662)+ 0.1902(0.0472)

+ means K-RVEA(FS) shows a statistically better performence.
− means K-RVEA(FS) shows a statistically worse performence.

≈ means K-RVEA(FS) doesn’t show a statistically diffrent performence.

non-dominated sorting based feature selection needs 5D(500)
functions evaluations. For Kriging-assisted algorithms, K-
RVEA and K-RVEA(FS), the initial training dataset is set as
100 individual with their real function evaluations. In evolu-
tion, 5 re-evaluated individuals are selected in each generation,
and the Kriging models update in every 20 generations. All the
compared algorithms stop by 800 real function evaluations.

B. Effects of Feature Selection Techniques

In this subsection, we compare our proposed feature se-
lection operation with classical feature selection methods,
NCA and RReliefF, on the 100-dimensional SMOP test suite
(θ = 0.1), where the non-zero dimensions are known in [2]
and can be the ground truth for the performance assessment. In
the comparative experiment, we use two kinds of 5D sampled
datasets from the SMOP test suite: one is obtained by dec in
Equation (13) and the other is obtained by ind in Equation
(13). NCA and RReliefF can be applied to both datasets, but
the proposed non-dominated sorting based feature selection
can be only applied to the ind dataset. We calculate the the
accuracy of the selected non-zero decision variables to evaluate
the performance of the compared methods.

The accuracy of three algorithms on two datasets has been
presented in Table IV. We can see that our proposed feature
selection operation finds the non-zero dimensions in the Pareto
set accurately, while compared algorithms cannot find the
target dimension mostly. In most problems, non-dominated
feature selection could find all the non-zero dimensions.

As mentioned above, a large number of feature selection
algorithms require a large amount of data. If it is a small set
of data with only 5D sampled points, it is difficult to perform
well. The accuracy of most existing feature selection methods
is guaranteed by the sufficient data. Also, the proposed feature
selection method cannot guarantee that the exactly correct
result and this is the reason why we applied the feature
selection operation to the 5D dataset rather than the D dataset.
Therefore, the proposed feature selection operation is effective
for the dimension reduction of expensive sparse MOPs.

C. Comparative Experiments

In this subsection, we discuss the behavior of K-RVEA(FS)
by comparing with three different algorithms: NSGA-II [28],
SparseEA [2], and K-RVEA [12] on SMOP1-8 with 100
decision variables.

• NSGA-II is a popular Pareto-based MOEA using non-
dominated sort and crowding distance. We choose
NSGA-II as a compared algorithm as a baseline.

• SparseEA is a new and effective MOEA for sparse
MOPs [2], because it reduces the search space by finding
important decision variables. We choose SparseEA as a
compared algorithm as a representative MOEA for sparse
MOPs.

• K-RVEA is a representative surrogate-assisted MOEA for
expensive MOPs.

All the compared algorithms run 20 independent times and
stop by 800 expensive function evaluations. We use inverse
generation distance (IGD) [29] that assesses both convergence
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Fig. 4. Obtained Pareto fronts of NSGA-II, SparseEA, K-RVEA, and K-RVEA(FS) with the median IGD value on SMOP1-8.

TABLE IV
STATISTICAL RESULTS OF TIME(S) (AVERAGE AND STANDARD

DEVIATION IN BRACKETS) SPENT BY K-RVEA AND K-RVEA(FS) ON
SMOP1-8. THE BEST RESULTS ARE HIGHLIGHTED.

K-RVEA K-RVEA(FS)

SMOP1 5.8074e+2(2.16e+1)+ 1.6257e+1(3.66e-1)
SMOP2 5.7166e+2(1.62e+1)+ 1.5892e+1(2.91e-1)
SMOP3 5.6747e+2(1.63e+1)+ 1.5334e+1(2.85e-1)
SMOP4 5.7236e+2(7.64e+0)+ 1.6021e+1(1.94e-1)
SMOP5 5.6843e+2(1.01e+1)+ 1.5837e+1(2.18e-1)
SMOP6 5.7109e+2(1.38e+1)+ 1.6445e+1(1.43e-1)
SMOP7 5.6881e+2(1.26e+1)+ 1.4527e+1(3.15e-1)
SMOP8 5.7014e+2(9.16e+0)+ 1.5853e+1(2.17e-1)

+ means K-RVEA(FS) shows a statistically better performence.
− means K-RVEA(FS) shows a statistically worse performence.

≈ means K-RVEA(FS) doesn’t show a statistically diffrent performence.

and diversity to evaluate the performance of compared algo-
rithms. The results are shown in Table IV, where a Wilcoxon
rank sum test at a significance level of 0.05 [30] is applied to
the results and K-RVEA(FS) is set as the control algorithm.
Also Fig. 4 shows the obtained Pareto fronts of NSGA-
II, SparseEA, K-RVEA, and K-RVEA(FS) with median IGD
values on eight problems.

From Fig. 4 and Table IV, we can see that K-RVEA(FS)
obtains the best Pareto fronts and IGD values on SMOP1-
8. First of all, using the proposed feature selection opera-
tion, the dimensions of the SMOPs are reduced correctly.
In the optimization process of sparse MOPs, the searching
resources of MOEAs without feature selection are consumed
by the searching for zero dimensions. In other words, high-
dimensional decision space can be reduced with the heuristic
information.

From the poor performance of K-RVEA, we could see
that the Kriging model is hard to deal with high-dimensional

problems due to the approximation error. The proposed feature
selection operation selects non-zero dimensions and search in
such a small subspace will be efficient. Prior knowledge of
non-zero dimensions will also help the dimension recovery and
we could obtain the proper solutions to the original problems.

Compared with SparseEA which also utilizes the heuristic
information, we successfully reduced the number of required
function evaluations by introducing a surrogate model. When
we deal with the expensive function evaluations, the cost of
SparseEA, which requires a large number of function evalua-
tions, will become high and even unaffordable. Therefore, by
effectively using a surrogate model, K-RVEA(FS) can obtain
a better performing results with less computing resources than
SparseEA.

Further, we compare the execution time of K-RVEA and
K-RVEA(FS) in Table IV-C. K-RVEA(FS) uses significantly
shorter time than K-RVEA. It is clear that the proposed feature
selection operation can save time for both model building and
evolutionary search.

Therefore, we can obtain three observations: 1) the proposed
algorithm can effectively select non-zero dimensions; 2) using
surrogate model can save the number of expensive function
evaluations, which makes it applicable to many real-world
sparse MOPs; 3) the proposed algorithm can obtain results
with satisfactory convergence and diversity within the limited
computing resources.

V. CONCLUSIONS

To address large-scale expensive sparse MOPs, we propose
a Kriging-assisted MOEA with a non-dominated sorting based
feature selection. By using the proposed feature selection
operator, we select out the non-zero dimensions in the Pareto
set. Based on the selected decision variables, we perform
K-RVEA on the reformulated problem. After we obtain the



optimal solutions to the reformulated problem, we add the
zero dimensions to obtained solutions as the solutions to the
original problem. The proposed algorithm has been tested
on eight benchmark problems with limited expensive func-
tion evaluations. Comparing with other existing representative
MOEAs, the proposed algorithm obtains the best result based
on the IGD metric.

For large-scale expensive sparse multi-objective optimiza-
tion problems, dimension reduction plays a key role for the
optimization process. Feature selection is performed before
evolutionary search and the non-zero dimensions are fixed
in our method. However, the feature selection method may
not be reliable. Therefore, dynamic feature selection [31]
or dimension-reduction methods can be adopted to improve
accuracy of selection for non-zero dimensions. In addition, for
the real sparse problems, the domain knowledge could provide
the information for the feature selection and model manage-
ment to improve the performance of algorithms, especially the
modification of model management on different optimization
problems is worthy of attention.
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