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Abstract—This paper presents an adaptive Gaussian 
probability distribution based quantum-behaved particle swarm 
optimization algorithm for solving engineering design 
optimization problems with multiple constraints. Through 
adjusting the bondage domain centered on learning inclination 
points adaptively by using mutation operator with adaptive 
Gaussian  probability distribution, the proposed algorithm can 
enhance the local search ability without lose much global search 
capacity. In order to verify performance of the proposed 
algorithm, two well-studied engineering design problems are 
described and evaluated with several runs. Our results shows that 
our algorithm handle these two problems efficiency in terms of 
precision and robustness compared to the algorithms presented in 
the literature.  

Keywords—engineering design problems, bondage domain, 
learning inclination points, adaptive Gaussian probability 
distribution 

I. INTRODUCTION  
Recently, many researchers use swarm intelligence 

algorithms, a new class of metaheuristics, to solve EDPs. PSO 
has become the focus in optimization community and has been 
extensively studied over the past twenty years. PSO begins with 
a population of candidate solutions, also called particles group, 
and then it improves each candidate solution iteratively until the 
termination condition is reached. Since particles aggregate to 
their local best position or the global best position, sometimes 
the algorithm falls into the local optima and in some situations 
premature convergence and stagnation occur [21-23]. At the 
same time, the performance of PSO also depends on the 
algorithm parameters [24].  

Generally, particle swarm optimization models can be 
divided into two types, namely are global optimization models 
and local optimization models, according to whether the 
particles exchange the information with the whole population 
[25]. Kennedy proved that the global model has a faster 
convergence speed, while it is easier to trap it into local optima 
[17]. For the purpose of mitigating the influence of those defects, 
researchers have proposed various improvements with some 
adjustments or some modifications. These can be divided into 
four categories: particle swarm initialization [26], neighborhood 

topology [29], parameter selection [27-28], and blending 
strategies [30].  

In order to solve EDPs, He and Wang first introduce an 
effective co-evolutionary particle swarm optimization (PSO) 
algorithm to solve EDPs [1], and then many improved PSO 
algorithm are proposed and had implemented in EDPs[4][6]. 
Khamsawang et al. propose a hybrid PSO-DE algorithm to 
enhance the local search ability of PSO, and performs well on 
economic dispatch problem [2]. Garg and Harish also propose a 
hybrid PSO-DE algorithm for solving constrained algorithms 
[3]. Quantum-behaved particle swarm optimization (QPSO) 
algorithm is one of most robustness variants PSO algorithm [7]. 
Coelho considered the slow convergence speed of QPSO and 
proposed the gaussian quantum-behaved particle swarm 
optimization (G-QPSO) algorithm so as to enhance the local 
search ability of QPSO[5]. In G-QPSO algorithm, random 
numbers are generated using Gaussian distribution sequences 
with zero mean and unit variance for the stochastic coefficients 
of QPSO, which may avoid particles to move away from the 
current point and escape from local minima.  

Despite G-QPSO algorithm obtained good results on EDPs 
compared to QPSO, but it sacrifice its global search 
performance to accelerate convergence for better results. 
Therefore, we propose an adaptive Gaussian probability 
distribution based quantum-behaved particle swarm 
optimization (AG-QPSO) algorithm to enhance its local search 
ability for solving EDPs. In AG-QPSO, the bondage domain 
centered on learning inclination points (LIPs) is shrinking 
adaptively by adjusting the Gaussian probability distribution to 
generate Gaussian sequence rather than random sequence 
generated by uniform distribution, which can enhance the local 
search ability without lose much global search capacity. 

The rest of the paper is organized as follows: The features of 
AG-QPSO algorithm and the procedure of constrains handling 
based on penalty are described in Section II. In Section III, two 
well-studied engineering design problems are described in detail. 
Section IV presents the results of the optimization by AG-QPSO 
and the existing algorithms that deal with EDPs. Finally, Section 
V outlines the conclusion of paper. 
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II. AG-QPSO ALGORITHM 
Engineering design problems (EDPs) are constrained 

optimization problems (COPs) that can be described as: 

𝑚𝑖𝑛𝑓(𝑋)	𝑠. 𝑡. ,
𝑔.(𝑋) 	≤ 	0
ℎ2(𝑋) 	= 	0

𝑋𝑀𝐼𝑁7 	≤ 	𝑋7 	≤ 	𝑋𝑀𝐴𝑋7	
 (1) 

where 𝑗	 = 	1, 2,⋯ , 𝐽	 , 	𝑘	 = 	𝐽 + 1, 𝐽 + 2,⋯ ,𝐷 , and 𝑖	 =
	1, 2,⋯ , 𝐷 , 𝐷  is the dimension of COPs. 𝑋7 =
B𝑋7,C, 𝑋7,D,⋯ , 𝑋7,EF represents a candidate solution, 𝑔.(𝑋) and 
ℎ2(𝑋) is 𝑗𝑡ℎ inequality constraint and 𝑘𝑡ℎ equality constraint 
respectively. Generally, equality constraint ℎ2(𝑋)	 can be 
transfer to two inequality constraints which can be described as 
|ℎ2(𝑥)| 	≤ 	ε, 𝜀 is a threshold belongs to [10LM, 10LN]. The goal 
of solving COPs is to search for the global best solution in the 
feasible region that satisfy the constraints. 

QPSO is inspired by quantum mechanics theories and 
trajectory analysis of the canonical PSO undertaken by Clerc 
[17]. It is a probabilistic algorithm with the update equation of 
the particle’s position very different from the canonical PSO. In 
QPSO, the update formula of each particle is: 

𝑋7,PQC
. = 𝑝7,P

. ± 𝛼P ⋅ V𝐶P
. − 𝑋7,P

. V ⋅ 𝑙𝑛B1/𝑢7,P
. F (2) 

where 𝑋7,PQC
.  represents the 𝑗𝑡ℎ component of particle 𝑖 at time 

𝑡 + 1. 𝑝  called learning inclination points (LIPs) or attractor 
point of each particle in [7].  𝛼 is the parameter to control the 
convergence speed of QPSO, the smaller the parameter, the 
faster the convergence speed. V𝐶P

. − 𝑋7,P
. V determine the bondage 

domain centered on LIPs, which is shrinking in the search 
process.	𝑢7,P

.  is the stochastic coefficients generated using the 
uniform probability distribution functions in the range [0, 1]. 

 

 
Fig. 1. The bondage domain (Trust Region) centered on LIPs (Attractor Point) 
are shinrking in the search process using QPSO 

During the search process, QPSO algorithm enable particles 
to reach any position in the search space with a certain 
probability, and the length L ensure the position of most particles 
can generate in the area of the bondage domain also called trust 
region with a high probability as show in Fig.1. Note that the 
length L is declined during the search process. Therefore, the 
algorithm has a strong global search ability, but it also weakens 
the local search ability of the algorithm especially in solving 
EDPs. The reason is that the range of global or local optima in 
the end of the search is small, particles is easier to skip the global 

or local optima due to the large range of random values. 
Therefore, Gaussian probability distribution is introduced to 
control the bondage domain centered on LIPs. At the same time, 
it should be noted that the variance of Gaussian probability 
distribution is declined in order to shrink the bondage domain to 
enhance its local search ability during the search process. The 
update formula of adaptive gaussian quantum-behaved particle 
swarm optimization (AG-QPSO) is: 

\
𝑋7,PQC
. = 𝑝7,P

. + 0.5 ⋅ 𝐿P
. ⋅ 𝑙𝑛B𝑁(0, 𝜎P)F, 𝑖𝑓	𝑘 > 0.5	

𝑋7,PQC
. = 𝑝7,P

. − 0.5 ⋅ 𝐿P
. ⋅ 𝑙𝑛B𝑁(0, 𝜎P)F, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3) 

⎩
⎪
⎨

⎪
⎧ 𝐿P

. = 2 ⋅ 𝛼P ⋅ V𝐶P
. − 𝑋7,P

. V,

	𝐶P
. =i𝑃7,P

.
k

C

𝑝7,P
. = 𝜑7,P

. 𝑃7,P
. + B1 − 𝜑7,P

. F𝐺P
.

 (4) 

where 𝑘 and 𝜑C are random values generated using the uniform 
probability distribution functions in the range [0, 1].   

𝜎P = 𝜎C − (𝜎C − 𝜎n) ∙ 𝑡/𝑇 (5) 

𝛼P = 𝛼C − (𝛼C − 𝛼n) ∙ (𝑇 − 𝑡)/𝑇 (6) 

The parameter 𝜎  and 𝛼  is declined linear in the search 
process.  𝑇 is the maximum number of fitness evaluation. 𝐶 is 
the current mean personal best position calculated by (6). 

The difficulty in solving constrained optimization problems 
using swarm intelligence algorithms such as particle swarm 
optimization is to effectively deal with constraint conditions. 
Generally speaking, these processing methods can be divided 
into four types [18]: 

1) Retain the solutions that meet the constraints, that is, only 
retain the solutions in the feasible region every iteration. 

2) Repair the solutions that do not meet the constraint 
conditions. 

3) Penalty function method. The penalty function method is 
the most commonly used method to deal with such problems, 
and is generally divided into static penalty functions and 
dynamic penalty functions. 

4) Hybrid algorithm. Combining evolutionary algorithms 
together to solve constrained optimization problems. 

Essentially, the first method retains eligible particles every 
iteration is an exhaustive method, which has high time 
complexity and wastes computing resources. The second 
method and third method have strong local search capabilities. 
However, many parameters are added using hybrid strategy to 
repairing individuals who do not meet the conditions. It is 
difficult to adjust the parameters and the applicability of hybrid 
algorithms are not well. Therefore, this paper uses the penalty 
function method to deal with the constrains.  

Generally, the penalty function method can be described as: 

𝑉 = ,
𝑓(𝑋)																																										𝑖𝑓𝑔7(𝑋) 	≤ 	0

𝑓(𝑋) + 𝑟 ∙ 𝑞i 𝑔7(𝑋)
7sC

t
					𝑖𝑓𝑔7(𝑋) 	> 	0 (7) 



where 𝑟 is a positive rational number to control penalties,	𝑞 
is the number that candidate solution 	𝑋  don’t satisfy the 
constrains. 𝑓(𝑋) is the objection function, the evaluation value 
equals to fitness value 𝑓(𝑋)  if 𝑋  satisfies all the constraints 
𝑔(𝑋). Otherwise, the evaluation value equals to fitness value 
plus penalty value.  

The flowchart of AG-QPSO algorithm to deal with EDPs is 
shown in Fig.2. 

 

 
Fig. 2. The Flow chart of AG-QPSO based on penalty function method  

III. EDPS EXAMPLES 
In this section, two EDPs are introduced briefly, namely,  the 

pressure vessel design problem and the tension string design 
problem. 

A. Pressure vessel design problem 

 
Fig. 3. Pressure vessel design problem 

The goal of pressure vessel design problem is to minimize 
the sum of material cost, fabrication cost, and welding cost as 
shown in Fig.3.  

The object function of this problem is determined by four 
decision variables, namely the thickness of the pressure vessel 
𝑇u, the thickness of the head 𝑇v, the radius of the container 𝑅, 
and the length of the container without the head 𝐿.  

Therefore, the optimization problem of the pressure vessel 
design problems 𝑌 = [𝑇u, 𝑇v, 𝑅，𝑆] = [𝑋C, 𝑋D, 𝑋N, 𝑋z] can be 
described as: 

𝑀𝑖𝑛𝑓(𝑋) = 0.6224𝑋C𝑋N𝑋z + 1.7781𝑋D𝑋ND
+ 3.1661𝑋CD𝑋z + 19.84𝑋CD𝑋N (8) 

subject to 

𝑔C(𝑋) = −𝑋C + 0.0193𝑋N ≤ 0 (9) 

𝑔D(𝑋) = −𝑋D + 0.0954𝑋N ≤ 0 (10) 

𝑔N(𝑋) = −𝜋𝑋ND𝑋z −
4
3𝜋𝑋N

N + 1296000 ≤ 0 
(11) 

𝑔z(𝑋) = 𝑋z − 240 ≤ 0 (12) 

The range of these four decision variables are: 

�
1 × 0.0625 ≤ 𝑋C, 𝑋D ≤ 99 × 0.0625

10 ≤ 𝑋N,𝑋z20
 (13) 

B. Tension string design problem 

 
Fig. 4. Tension string design problem 

The goal of the tension string design problem is to minimize 
the weight of the string, as shown in Fig.4. 𝑋C , 𝑋D  and 𝑋N 
represents the diameter of tension string, the width of tension 
string and the number of tension string respectively. The object 
function of tension string design problem is: 

𝑚𝑖𝑛𝑓(𝑋) = (𝑋N + 2)𝑋D𝑋CD (14) 

Subject to 

𝑔C(𝑋) = 1 −
𝑋DN𝑋N

71785𝑋Cz
≤ 0 

(15) 

𝑔D(𝑋) =
4𝑋DD − 𝑋C𝑋D

12566(𝑋D𝑋CN − 𝑋Cz)
+

1
5108𝑋CD

− 1

≤ 0 

(16) 

𝑔N(𝑋) = 1 −
140.45𝑋C
𝑋DD𝑋N

≤ 0 
(17) 

𝑔z(𝑋) =
𝑋C + 𝑋D
1.5 − 1 ≤ 0 (18) 
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0.05 ≤ 𝑋C ≤ 2
0.25 ≤ 𝑋D ≤ 1.3
2 ≤ 𝑋N ≤ 15

 
(19) 

IV. EXPERIMENT RESULTS AND ANALYSIS 
In order to verify the performance of AG-QPSO, all the 

results are obtain by conducting 50 runs independently. The 
experiment was run in a single thread in a python 2.7 
environment. The configuration of CPU of the computer we 
used in the experiment is1.8GHz intel core i5, and RAM is 4G 
1600 MHz DDR3. 

A. Parameters setting 
The population of the particle swarm is 80, the maximum 

iteration 𝑇  is 1000, the initial and end variance of gaussian 
distribution 𝛼C  and 𝛼n  is 5 and 0.001 respectively. The initial 
and end value of expand-shrink parameter 𝜎C and 𝜎n is 1.0 and 
0.5. The positive rational number 𝑟 is 5000 in our experiment. 
 

 

TABLE 3 COMPARISON BETWEEN AG-QPSO AND EXISTING ALGORITHMS 

Variable Sandgren [8] Zhang [9] Cao [10] Deb [11] Coello [12] G-QPSO [5] AG-QPSO 

X1 1.125 1.125 1 0.9375 0.8125 0.8125 0.841934 

X2 0.625 0.625 0.625 0.5 0.4375 0.4375 0.416171 

X3 48.3807 58.29 51.1958 48.329 40.3239 42.0984 43.62348 

X4 11.7449 43.693 90.7821 112.679 200 176.6372 158.6130 

g1 -0.1913 -0.025 -0.0119 -0.00475 -0.0034324 -8.7999E-07 -1.0482E-06 

g2 -0.1634 -0.0689 -0.1366 -0.038941 -0.052847 -3.5881E-02 -3.9889E-06 

g3 -75.875 6.5496 -13584.5631 -3652.876838 -27.105845 -0.2179 -0.3381269 

g4 -128.619 -196.307 -149.2179 -127.321 -40 -63.3628 -81.3869307 

f(X) 8048.619 7197.7 7108.616 6370.7035 6288.7445 6059.7208 5885.33277 

TABLE 6 COMPARISON BETWEEN AG-QPSO AND EXISTING ALGORITHMS IN TENSION STRING DESIGN PROBLEMS 

Variable Arora [13] Belengundu [14] Coello [12] Ray [15] Ray [16] G-QPSO [5] AG-QPSO 
X1 0.053396 0.050000 0.050417 0.050417 0.0521602 0.051515 0.05 
X2 0.315900 0.3159000 0.321532 0.321532 0.3681587 0.352529 0.348913 
X3 9.185400 14.250000 13.979915 13.979915 10.648442 11.538862 10.56234 
g1 0.000019 -1.2672E-03 -3.33E-03 -1.925E-03 -7.4527E-09 -4.8341E-05 -2.37389E-06 
g2 -0.000018 -0.1490 -0.1357 -0.1556 -0.1314 -3.5774E-05 -2.04849E-06 
g3 -4.123842 -3.9383 -4.0263 -3.8994 -4.0758 -4.0455 -6.08278E+02 
g4 -0.698283 -0.7561 -0.7312 -0.7520 -0.7198 -0.73064 -1.1992758 
f(X) 0.012730 -0.01273027 0.01270 0.0130602 0.01266 0.012665 0.01095788 

 

B. Results on pressure vessel design problem 
TABLE 1 COMPARISON OF AG-QPSO, PSO, QPSO AND GQPSO ALGORITHMS 

ON PRESSURE VESSEL PROBLEM 

Algorithm Worst Best Mean Median    Std. 
PSO 14076.32 6693.72 8756.68 8424.48 1492.56 
QPSO 8017.28 6059.72 6839.93 6818.23 479.26 
G-QPSO 7544.49 6059.72 6440.37 6257.59 448.47 
AG-QPSO 6003.52 5885.33 5890.93 5885.53 350.26 

 

TABLE 2 THE BEST SOLUTION OF PRESSURE VESSEL PROBLEM USING AG-
QPSO 

Variable Parameter AG-QPSO 
X1 Ts 0.84 
X2 Th 0.41 
X3 R 43.62 

X4 L 158.61 
g1 Eq.(9) -1.04E-06 
g2 Eq.(10) -3.98E-06 
g3 Eq.(11) -0.33 
g4 Eq.(12) -81.38 
f(X) Eq.(8) 5885.33 

 

We first have compared AG-QPSO algorithm with PSO, 
QPSO [7], G-QPSO [5] on pressure vessel design problems. It 
is clearly that AG-QPSO not only obtain best mean value, but it 
is more robust according the Std. value, as show in Table 1. 
Simulation results had shown that for the first EDPs, the QPSO, 
G-QPSO and the proposed AG-QPSO algorithms perform 
satisfactorily. The results in Table 1shows that the classical PSO 
was outperformed by QPSO, G-QPSO and AG-QPSO 
approaches for the first example. Table 1 with best results in 
bold font. The best solutions found by AG-QPSO approaches 
present smaller standard deviation and mean values than the 



results obtained by PSO, QPSO and G-QPSO. The best mean 
from the 50 runs performed 5885.33. Table 2 shows the best 
solution that AG-QPSO had found on pressure vessel problem, 
and the value of constraints obtained under the best solution. 

Subsequently, we compared the proposed algorithm with 
some existing algorithms, including Sandgren [8], who used a 
branch-and-bound approach, Kannan and Krame [9], who used 
an augmented Lagrangian Multiplier approach, Deb [10], using 
Genetic Adaptive Search, Cao and Wu [11], who employed an 
approach of improved evolutionary programming, Cao and Wu 
[12], who used cellular automata based on a genetic algorithm, 
Lin, Wang, and Hwang [13], who proposed a hybrid differential 
evolution method, Hu, Eberhart, and Shi [19], using particle 
swarm optimization, and Schmidt and Thierauf [20], who 
applied a threshold accepting algorithm with differential 
evolution to solve the pressure vessel problem. 

In conclusion, we can see that the best solution we find 
satisfy all the constraints. In addition, the value of constraints is 
very small, which proved that AG-QPSO has a strong capacity 
of local search ability. 

C. Results on tension string design problem 
Tension string design problem was solved previously by 

Belengundu [13], using eight optimization approaches. Arora 
[14], Coello [12], Ray and Saini [15] and Ray and Liew [16] also 
solved this problem using other optimization methods. 

The results of PSO, QPSO, G-QPSO and AG-QPSO 
approaches are presented in Table 4. Table 4 with best results in 
bold font. As can be seen,  the best mean and median values from 
the 50 runs performed was using AG-QPSO with f(X) = 0.01095.  

Therefore, we still find that AG-QPSO not only has obtained 
better result compare to the canonical PSO, the classical QPSO 
and gaussian QPSO from Table 4, but also performs better than 
existing algorithms that design for tension string design problem 
from Table 6.  
TABLE 4 COMPARISON OF AG-QPSO, PSO, QPSO AND GQPSO ALGORITHMS 

IN TENSION STRING DESIGN PROBLEM 

Algorithm Worst Best Mean Median    Std. 
PSO 0.071 0.012 0.020 0.013 0.012 
QPSO 0.018 0.013 0.013 0.014 0.001 
G-QPSO 0.016 0.013 0.013 0.013 0.0013 
AG-QPSO 0.011 0.011 0.011 0.011 7.6E-17 

TABLE 5 THE BEST SOLUTION OBTAINED BY AG-QPSO IN TENSION STRING 
DESIGN PROBLEM 

Variable Parameter AG-QPSO 

X1 d 0.050 

X2 D 0.348 

X3 N 10.562 

g1 Eq.(15) -2.37E-06 

g2 Eq.(16) -2.04E-06 

g3 Eq.(17) -6.08E+02 

g4 Eq.(18) -1.199 

f(X) Eq.(14) 0.011 

D. Time complexity analysis 
TABLE 7 TIME COMPLEXITY ANALYSIS OF AG-QPSO 

Algorithm 
Time complexity 

Initialization Evaluation Position 
Update  Overall 

PSO O(MD) O(MD) O(MD) O(MD) 

QPSO O(MD) O(MD) O(MD) O(MD) 

GQPSO O(MD) O(MD) O(MD) O(MD) 
Hybrid 
Algorithms O(MD) O(MD) O(MD) O(MD) 

AG-QPSO O(MD) O(MD) O(MD) O(MD 

 

It should be noted that the best solution obtained by AG-
QPSO satisfies all the constrains. In Table 7, 𝑀 represents the 
population the particle swarm and 𝐷  is the dimension of the 
optimization problem. In this paper, the analysis of evaluating 
the time complexity of the optimization algorithm is divided into 
four aspects, namely the time complexity of the initialization,  
evaluation, particle position update, and the overall time 
complexity. It is obvious that the time complexity of AG-QPSO 
algorithm is the same as PSO, QPSO algorithm, and GQPSO 
algorithm. 

V. CONCLUSION  
Through controlling the bondage domain centering on LIPs 

in QPSO,  we propose AG-QPSO to solve EDPs. As the 
bondage domain shrinks, AG-QPSO can stably migrate from a 
strong global search capability at the beginning of the search to 
a strong local search capability at the end. We found that the 
performance of the AG-QPSO algorithm was better than other 
existing algorithms, according to the results obtained on the 
pressure vessel design and the tension string design problem. In 
addition, controlling the Gaussian distribution to generate 
Gaussian sequence instead of random sequence with uniform 
distribution in QPSO had proved is a powerful strategy to 
enhance the ability of QPSO in preventing premature 
convergence to local optima. 

The aim of future works will focus on other real world 
optimization problems, such as electronic power system and 
control system. Furthermore, other relevant studies can be 
realized: such as: (i) use better LIPs to attractor particles (ii) 
design a better length L to enhance the search performance of 
QPSO. 
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