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Abstract—We propose a reverse chemotaxis strategy to guide
bacterial individuals to quickly converge to potential areas
by using local fitness information efficiently. When bacterial
individuals tumble or swim to worthless areas (i.e., poor fitness),
the proposed strategy reverses and expands the current search
directions in hopes of finding other effective directions to escape
the current dilemma. We then use random noise generated by
a Gaussian distribution to perturb these reversed directions
to prevent bacterial individuals from oscillating in original
directions. Besides, we also propose a structural simplification
strategy to greatly simplify the optimization framework of the
standard bacterial foraging optimization (BFO) by integrating
the elimination-dispersal operation into the reproduction oper-
ation. In other words, there are two ways to replace unhealthy
bacterial individuals in our proposed strategy, one is copied by
healthy bacterial individuals and the other is generated by the
elimination-dispersal operation. We also use Gaussian mutations
to perturb these offspring individuals that exactly replicate their
parents to increase the diversity of the population. Finally, the
three-level nested BFO optimization framework can be reduced to
a single-level loop. To evaluate the performance of our proposal,
we run (the standard BFO + two proposed strategies) and the
standard BFO on 28 benchmark functions from CEC 2013 test
suite, and each function is run 30 times independently on three
different dimensions. The experimental results confirmed that
our proposed strategies can speed up the BFO search and jump
out of local areas effectively.

Index Terms—evolutionary computation, bacterial foraging
optimization, simplified BFO, reverse chemotaxis strategy, struc-
tural simplification strategy

I. INTRODUCTION

Optimization has always been one of the hottest topics, and
practitioners are committed to developing various techniques
to solve increasingly complex real-world problems. Since
Newton invented calculus and proposed the concept of the
extremum in the 17th century, various classical optimization
methods have been continuously proposed, such as the steepest
descent method [1], linear programming [2], [3], and nonlin-
ear programming [4], [5]. Unfortunately, these methods are
difficult to achieve satisfactory results on modern industrial
problems that usually have many characteristics, such as non-
differentiability, discontinuity, constraints, and large-scale.
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Some researchers borrowed the idea of natural selection and
survival of the fittest to develop population-based evolutionary
computation (EC) algorithms for solving such complicated
problems [6]. After decades of development, many powerful
EC algorithms have been proposed, e.g., genetic algorithm [7],
differential evolution [8], particle swarm optimization [9] and
others [10]-[12]. At the same time, many researchers focus on
introducing various novel search strategies into these standard
EC algorithms to further improve their performance [13]-[15].
The good news is that these EC algorithms and their variants
solve many real-world problems successfully, such as feature
selection [16], power minimization [17], fashion design [18],
and dry gear hobbing [19].

Bacterial foraging optimization (BFO) [20], as an important
branch of the EC community, has attracted wide attention since
it was proposed. Many practitioners developed lots of BFO’s
variants to solve different types of optimization problems,
such as multi-objective optimization [21], high-dimensional
optimization [22], and constrained optimization [23]. Besides,
Muioz et al. simplified the structure of the standard BFO and
further improved its performance [24]; Kim et al. hybridized
the genetic algorithm and the BFO to obtain a more powerful
performance by integrating the advantages of both algorithms
[25]. Although these modifications improve the performance
of the BFO to some extent, there is still room to perfect the
BFO by overcoming remaining shortcomings, such as, slow
convergence and high calculation cost. That is why this paper
came into being.

The first objective of this paper is to propose a reverse
chemotaxis strategy to guide bacterial individuals to quickly
find current potential directions by making full and efficient
use of local fitness information. The second objective is to
significantly simplify the overall optimization framework of
the standard BFO by integrating the elimination-dispersal
operation and the reproduction operation together. We finally
analyze the effectiveness of our proposal and give some open
topics for discussion.

Following this introduction Section, we briefly summarize
the optimization principles of the standard BFO in Section II.
The proposed two strategies are comprehensively described in
Section III, and a set of controlled experiments is designed to
evaluate the performance of our proposal in Section IV. We



Algorithm 1 The general optimization framework of the
standard BFO. N.4, N,., and N, are preset parameters for
controlling the step size of the iteration.

1: Initialize the population randomly.
2: for 7 =0;5 < Neg; 7 + + do
3 for k =0;k < Nye;k++ do
4 for | =0;l < N.;l++ do
5 Perform chemotaxis operations;
6: end for
7
8
9
0
1

Perform reproduction operations;
end for
Perform elimination and dispersal operations;
. end for
: Output the optimal solution found.

finally analyze the experimental results and conclude our work
in Sections V and VI, respectively.

II. BACTERIAL FORAGING OPTIMIZATION

Inspired by the social foraging behavior of E. coli bacteria,
the BFO repeatedly mimics the behavior of swallowing food
to find the global optimum. Similar to most EC algorithms,
a bacterial individual represents a candidate solution, and the
BFO randomly generates multiple bacterial individuals to form
an initial population. Then, all bacterial individuals make their
next foraging decisions to search for nutrition areas by sharing
information with others. After all bacterial individuals undergo
the above operations (i.e., chemotaxis operations) many times,
the propagation process of survival of the fittest and random
migration is triggered to update the current population. The
bacterial individuals who survive to the next generation start
their foraging behavior again, and the above operations are
performed repeatedly until a termination condition is satisfied.
Algorithm 1 gives the optimization framework of the standard
BFO that mainly consists of three nested operations: chemo-
taxis, reproduction, and elimination and dispersal.

Chemotaxis operation is the core operation of the BFO that
directly determines the BFO performance by simulating the
foraging behavior of E. coli bacteria. There are two movement
patterns in the original chemotaxis operation: tumble and
swim. Moving a unit step in a randomly selected direction
is defined as tumble. When bacterial individuals complete a
tumble and only their fitness is improved, they will continue
to move in the current direction until their fitness no longer
improves or reaches a predetermined maximum number of
movement steps. Otherwise, they will stop moving and stay in
their tumbled positions for the selection of the next generation.
This process is defined as swim. Bacterial individuals experi-
ence multiple aforementioned movement patterns to gradually
move towards their preferred nutrient gradient and avoid
entering harmful environments.

Reproduction operation simulates asexual binary fission of
E. coli bacteria to generate offspring individuals. Generally
speaking, bacteria can generate a large number of offspring
after a period of growth. If nutrition is sufficient, bacteria

can show exponential growth. Since the propagation process
of bacteria also follows the principle of “survival of the
fittest”, taking the cumulative value of the fitness of bacterial
individuals during the chemotaxis operation as the selection
criterion. The last half of the bacterial individuals are directly
abandoned according to the accumulated fitness value, and the
first half of the bacterial individuals split into two exactly same
offspring individuals to form a new population.

Elimination and dispersal operation is designed to increase
the diversity of the population by dispersing bacterial individ-
uals to any position in the search space with a low trigger
probability. This inspiration comes from the observation of
real bacteria, we note that the environment in which bacteria
live may change gradually or suddenly for various reasons. For
example, a significant local temperature rise may kill a group
of bacteria currently living in an area with a high concentration
of nutrient gradient. These phenomena thus are introduced into
the BFO framework to simulate mutations.

III. REVERSE CHEMOTAXIS STRATEGY AND STRUCTURAL
SIMPLIFICATION STRATEGY

The BFO has become a hot topic in the community of
meta-heuristic algorithms thanks to its many advantages, e.g.,
parallel search, strong robustness, and wide applicability.
However, it is undeniable that the BFO performance depends
heavily on numerous parameter settings that usually need to
be carefully tuned manually. Besides, compared with other
EC algorithms, the BFO has a relatively complex structure
and needs a lot of fitness evaluations to finally converge to
the global optimum. We thus proposed two effective strategies
to overcome these found defects while further improving the
BFO performance. The first strategy (i.e., reverse chemotaxis
strategy) uses local fitness information to quickly find potential
areas rather than the random search; the second strategy
(i.e., structural simplification strategy) combines reproduction
operation and elimination and dispersal operation together to
simplify the optimization structure and reduce the number of
required parameters significantly.

A. Reverse Chemotaxis Strategy

The original chemotaxis operation consists of two patterns:
tumble and swim, and the tumble directly determines the direc-
tion of the subsequent swim operations. Unfortunately, once
bacterial individuals converge to poor local areas, they can
only keep tumbling until they find a new potential direction,
and then start a new round of swim operations in that direction.
Although the original chemotaxis operation can ensure that
bacterial individuals constantly swim to better areas, it may
reduce the convergence speed greatly. Besides, it is difficult
for bacterial individuals to jump out of the trapped local areas.
The first strategy thus helps bacterial individuals to accelerate
convergence to potential areas and quickly jump out of local
areas rather than random tumbling repeatedly.

When we only consider a tiny local area, it can be regarded
as a smooth hyperplane. Based on this hypothesis, we can
infer that the reverse area of the worthless direction may have



a high possibility of potential, and bacterial individuals need to
spend a high cost, i.e., a large number of fitness evaluations,
to reach the area by random tumbling or swimming. As a
preliminary attempt, we simply use the opposite of the current
poor direction as the new direction for the next swim, and
the swimming step is doubled to help escape the current
predicament. Besides, we also use Gaussian mutations to
perturb every dimension of the new direction, which can avoid
oscillations in the original direction. Note that even if bacterial
individuals’ fitness is not improved, they do not stop but con-
tinue to swim in the new direction until the maximum number
of swims is reached, which can help bacterial individuals find
a better direction quickly.

Dirpew = —2.0 X Direyrrent + Gaussian(0,0) (1)

A

Fig. 1. The chemotactic effect of our proposed strategy. /A means that a
bacterial individual tumbles or swims to a poor area, and A is the opposite
direction of A and the swimming step is doubled. A is the next swimming
direction after A/experiences Gaussian mutation disturbance.

In short, we can use Eq. (1) to summarize the new proposed
chemotaxis strategy, where bacterial individuals can swim to
better areas without interruption, i.e., they do not need to
stop foraging behavior even when they move to poor areas.
Here, we set o equal to the swimming step in our following
experimental evaluations, and Fig. 1 demonstrates the reverse
effect of our proposed chemotaxis strategy.

B. Structural Simplification Strategy

Since the standard BFO uses three nested loops, it not only
increases the complexity of the BFO structure, but also makes
the minimum number of fitness evaluations required not to be
ignored. At the same time, we notice that the reproduction
operation can retain half of the potential bacterial individuals,
but reduces the diversity of the population dramatically. On
the contrary, although the elimination and dispersal operation
can increase the diversity by randomly spreading bacterial
individuals, it does not hesitate to abandon excellent bacterial
individuals that have been painstakingly found. We thus realize
that these two operations are complementary and could be
merged together to avoid their defects.

Algorithm 2 The general optimization framework of the
standard BFO combined with our proposed two strategies.
Note that all bacterial individuals are sorted according to their
health. PS: population size, P.4: eliminate probability. Steps
4-11 are the implementation details of our proposed structural
simplification strategy.

1: Initialize the population randomly.

2: while A termination condition is not satisfied do

3 Perform the proposed reverse chemotaxis operation;

4:  for i =(PS/2);i < PS;i+ + do

5 if rand(0,1) < P.4 then

6 Replace the ¢-th unhealthy using the original elim-
ination and dispersal operation;

else

Replace the i-th unhealthy with (i — (P.S/2))-th
bacterial individual using the original reproduction
operation;

9: Use Gaussian mutations to perturb the new i-th

bacterial individual.

10: end if

11:  end for

12: end while

13: Output the optimal solution found.

®° 3

The second strategy, i.e., structural simplification strategy,
focuses on achieving the balance between the elite selection
and the diversity of the population well by simplifying the
BFO’s optimization structure. Since the original reproduction
operation copy half of the healthy bacterial individuals directly
to cover unselected bacterial individuals, our proposal focuses
on reforming the sources of these unhealthy bacterial individ-
uals replaced.

As an attempt, we integrate the elimination and dispersal
operation into the reproduction operation as a new means to re-
place unhealthy bacterial individuals, i.e., randomly generated
bacterial individuals may replace unhealthy bacterial individ-
uals. Thus, there are two ways to update unhealthy bacterial
individuals; one is the original reproduction operation, and
the other is the original elimination and dispersal operation.
To avoid having exactly the same bacterial individuals and
further increasing the diversity of the population, we also
use Gaussian mutations to perturb new bacterial individuals
when they are copied from healthy bacterial individuals. In
general, this strategy can not only prevent potential bacterial
individuals from being replaced, but also increase the diversity
of the population greatly. Finally, Algorithm 2 gives the
combination framework of the standard BFO and our proposed
two strategies.

IV. EXPERIMENTAL EVALUATIONS

We use 28 benchmark functions from CEC 2013 test suites
[26] to evaluate the performance of our proposed strategies,
and Table II gives their variable ranges, optimum fitness, and
various characteristics, e.g., shifted, rotated, unimodal, and
multi-modal. We select the standard BFO as the baseline



algorithm and combine it with our proposed two strategies,
then independently run these two algorithms (i.e., (the BFO
+ two proposed strategies) and the BFO) on three different
dimensions (i.e., 2-D, 10-D, and 30-D) of each benchmark
function with 30 trial runs to avoid contingency. Table I shows
the parameter configuration of the BFO used in our evaluation
experiments.

TABLE III

THE STATISTICAL TEST RESULTS OF THE WILCOXON SIGNED-RANK TEST
FOR AVERAGE FITNESS OF 30 TRIAL RUNS BETWEEN (THE BFO + OUR
PROPOSED TWO STRATEGIES) AND THE BFO. A > B AND A > B MEAN
THAT A 1S SIGNIFICANT BETTER THAN B WITH SIGNIFICANT LEVELS OF
1% AND 5%, RESPECTIVELY. A &~ B MEANS THAT ALTHOUGH A 1S
BETTER THAN B, THERE IS NO SIGNIFICANT DIFFERENCE BETWEEN
THEM. SIMPLIFIEDBFO: (THE BFO + OUR PROPOSED TWO STRATEGIES).

2D 10D 30D
F; | BFO ~ SimpliicdBFO | BFO >> SimpliiedBFO | BFO > SimplifiedBFO
TABLE 1 s SimplifiedBFO > BFO | SimplifiedBFO ~ BFO | SimplifiedBFO >> BFO
THE PARAMETER SETTINGS OF THE STANDARD BFO ALGORITHM USED IN Iy | SimplifiedBFO > BFO | SimplifiedBFO > BFO | SimplifiedBFO > BFO
T, | SimplificdBFO > BFO | SimplifiedBFO ~ BFO | SimpliicdBFO ~ BFO
OUR EXPERIMENTS. F5 | SimpliicdBFO > BFO | BFO ~ SimplificdBFO | SimpliicdBFO ~ BFO
S— T | SimplifiedBFO > BFO | SimplifiedBFO ~ BFO | SimpliicdBFO > BFO
population size for 2-D, 10-D, and 30-D search 20 F7 | SimplificdBFO > BFO | SimplificdBFO > BFO | SimpliicdBFO > BFO
ss: step size 0.6 Fyz | SimplifiedBFO > BFO | SimplifiedBFO > BFO | SimplifiedBFO > BFO
Neg: number of elimination-dispersal steps 1 Fy SimplifiecdBFO > BFO | SimplifiedBFO > BFO | SimplifiecdBFO > BFO
- —— F1o | SimplificdBFO > BFO | BFO > SimpliiecdBFO | BFO > SimplificdBEO

Noo: 10 P P P
re: number of reprodu‘cu_on Steps 2 711 | SimplificdBFO > BFO | SimplificdBFO > BFO | SimplificdBFO > BFO
Nep: number of chemotaxis steps 10 Fi» | SimplificdBFO > BFO | SimplificdBFO > BFO | SimplificdBFO > BFO
N swim length 4 Fis | SimplificdBFO ~ BFO | SimplificdBFO > BFO | SimplificdBFO > BFO
Ped: eliminate probablhty 0.25 Fia SimplifiedBFO > BFO SimplifiedBFO ~ BFO | BFO > SimplifiedBFO
d. - denth of the attractant q Fy5 | SimplificdBFO > BFO | BFO ~ SimplificdBFO | BEO >> SimplificdBEO
atir: P I of th — 0 5 T1e | SimpliicdBFO > BFO | SimplifiedBFO > BFO | SimpliicdBFO > BFO
Wattr: W th of the attractant signa 0. Fi7 | SimplificdBFO > BFO | SimpliiedBFO > BFO | SimpliiedBFO > BFO
hrep: height of the repellant effect 0.1 Fig | SimplifiedBFO > BFO | SimplifiedBFO > BFO | SimplifiedBFO > BFO
Wrep: helght of the repellant effect 10.0 Fr9 | SimplifiedBFO > BFO | SimplifiedBFO > BFO | SimplifiedBFO > BFO
MAX “max. # of fitness evaluations for search XD Foo | BFO = SimplifiedBFO | SimplifiedBFO > BFO | SimplifiedBFO > BFO
NEC 5,000 T, | SimplifiedBFO > BFO | BFO ~ SimplificdBFO | SimpliiedBFO > BFO
Fh, | SimplifiedBFO > BFO | SimplifiedBFO ~ BFO | BFO ~ SimplifiedBFO
. . ) Fhs | SimplifiedBFO > BFO | SimplifiedBFO > BFO | BFO > SimplificdBFO
~ We use the number of fitness evaluations instead of genera Fpy | SimplificdBFO > BFO_| SimplificdBFO > BFO | _SimplificdBFO > BFO
tions to terminate evaluation experiments for fair comparisons, Fhs | SimplifiedBFO ~ BFO | SimplificdBFO > BFO | SimplificdBFO > BFO
- - . The | SimpliicdBFO ~ BFO | SimplifiedBFO > BFO | SimpliicdBFO > BEO
apd apply the .WIICOXOH signed-rank test at the.stop condition For | SimplificdBFO ~ BFO | SimplificdBFO > BFO | SimplificdBFO > BFO
(i.e., the maximum number of fitness evaluations) to check Fbg | SimplifiedBFO > BFO | SimplifiedBFO > BFO | SimplifiedBFO > BFO

significant differences between (the BFO + two proposed
strategies) and the BFO. The detailed results of the statistical
tests are summarized in Table III.

TABLE 11
BENCHMARK FUNCTIONS: UNI=UNIMODAL, MULTI=MULTIMODAL,
CoMP.=COMPOSITION

No. Types | Characteristics Optimum
fitness
Fy Sphere function —1400
Fy Rotated high conditioned elliptic function —1300
F3 Uni rotated Bent Cigar function —1200
Fy Rotated discus function —1100
Fs different powers function —1000
Fg Rotated Rosenbrock’s function —900
Fr Rotated Schaffers function —800
Fy Rotated Ackley’s function —700
Fy Rotated Weierstrass function —600
Fig Rotated Griewank’s function —500
Fiq Rastrigin’s function —400
Fio Multi Rotated Rastrigin’s function —300
Fi3 Non-continuous rotated Rastrigin’s function —200
Fi4 Schwefel’s function —100
Fis Rotated Schwefel’s function 100
Fig Rotated Katsuura function 200
Fi7 Lunacek BiRastrigin function 300
Fis Rotated Lunacek BiRastrigin function 400
Fig Expanded Griewank’s plus Rosenbrock’s function 500
Foo Expanded Scaffer’s Fg function 600
Foy Composition Function 1 (n=5,Rotated) 700
Fao Composition Function 2 (n=3,Unrotated) 800
Fb3 Composition Function 3 (n=3,Rotated) 900
Foy Comp. | Composition Function 4 (n=3,Rotated) 1000
Fas Composition Function 5 (n=3,Rotated) 1100
Fog Composition Function 6 (n=5,Rotated) 1200
For Composition Function 7 (n=5,Rotated) 1300
Fag Composition Function 8 (n=5,Rotated) 1400

V. DISCUSSIONS

We start the discussion from the perspective of the superi-
ority of our proposed two strategies. The original chemotaxis
operation uses the tumble pattern to find promising directions
and then uses the swim pattern to track these found directions,
which can ensure that bacterial individuals continue to con-
verge to better areas. Unfortunately, bacterial individuals need
a large number of resources (fitness evaluations) to get out of
trouble when they fall into local areas because a random search
strategy is employed to simulate the tumble pattern. We thus
propose a reverse chemotaxis strategy to guide the evolution of
bacterial individuals even if they swim to poor areas by making
full use of the information of the local fitness landscape. The
core idea of this strategy is to avoid searching for found poor
directions and to favor unexplored potential areas. We simply
use the opposite directions of poor directions and Gaussian
perturbation to realize our idea. There is no doubt that other
implementation methods are also acceptable. For example, we
can give different search probability to the surrounding areas
of bacterial individuals to suppress the exploration of poor
areas. In addition, the proposed strategy does not need to
introduce any new parameters, and the additional number of
fitness evaluations is also acceptable from the point of view
of performance improvement. We can say that the reverse
chemotaxis strategy is effective and easy to use.

The benefit of the other strategy (i.e., structural simplifica-
tion strategy) is to simplify the BFO structure greatly and



reduce the number of necessary parameters. Although the
elimination-dispersal and reproduction operations can bring
performance improvements, they also bring some new defects
mentioned above. Besides, all parameters from these two
operations need to be carefully tuned when the BFO is applied
to different optimization scenarios. Once the parameter con-
figuration is unreasonable, the performance will be severely
degraded or even hinder its practicability. Fortunately, we
observe that there is a complementary relationship between
these two operations by analyzing their working principles.
As a possible attempt, we integrate the elimination-dispersal
operation as part of the reproduction operation to provide
a new way to update the population. In other words, this
strategy can not only provide diverse bacterial individuals
in the next generation, but also prevent potential bacterial
individuals from being randomly replaced. In addition, the
proposed strategy makes the standard three-layer nested loop
degenerate into a single-layer loop, and some parameters (e.g.
Ned, Ny, and N.p,) can also be discarded. Finally, this strategy
also does not need to introduce any additional parameters and
fitness evaluations. We can say that the structural simplification
strategy is a low cost, high return strategy.

Secondly, we would like to discuss the scalability of our
proposed two strategies. Not limited to the standard BFO,
these two strategies can also be applied to other BFO’s vari-
ants. We do not need to modify their optimization framework
greatly and just replace the corresponding operations with
our proposed strategies. In addition, these two strategies are
also separable, which means we can use either instead of
both strategies to combine with the BFO. Actually, we also
encourage other ways to implement our proposed strategies.
For example, we can construct guiding vectors [27], [28] by
using local fitness information to avoid inefficient search and
accelerate the convergence; we can also use other mutations
e.g., lévy flights [29] and chaotic mutation [30], to replace
the random mutation in the original elimination-dispersal
operation. In short, our proposed two strategies have strong
applicability and scalability.

Next, we offer several potential topics for discussions.
Since every coin has two sides, our proposal can simplify
the optimization structure and improve the BFO performance,
but it also causes new problems. The biggest problem is that
although our proposal can accelerate the convergence speed in
the early stage obviously, the convergence precision in the later
stage needs to be further improved. In other words, how to en-
sure convergence precision in the later stage is a topic worthy
of further study. Here, we also give some possible approaches
that have not been experimentally proved. For example, we
can develop an adaptive strategy for tuning these parameters to
gradually emphasize the exploitation ability as the population
converges; we can also build multiple approximate fitness
models for optimization problems through different regression
methods, and then extract hidden information from them to
avoid searching in the area without potential and speed up the
search process. Anyway, our proposed two strategies still have
a lot of room for improvement.

Finally, we applied the Wilcoxon signed-rank test to check
the significant differences between (the BFO + two proposed
strategies) and the BFO. The results of the statistical test
confirmed that our proposal can improve the BFO performance
significantly, especially for complex problems both on low-
dimensional and high-dimensional. However, the acceleration
effect of our proposed strategies on high-dimensional uni-
modal problems is not obvious, and even worse on F'1. This
may be because our proposed strategies sacrifice convergence
speed in exchange for the diversity of the population, and
experimental results also support our opinions. It also en-
lightens us to emphasize the balance between different search
capabilities (i.e., exploration and exploitation) for different
optimization problems. For Fig, Fi4, and F5, our proposal
does not achieve the expected performance in high dimensions,
and the real reasons need further analysis in our future work.

VI. CONCLUSION

We proposed two novel strategies to further improve the
BFO performance while simplifying its optimization structure.
The first strategy (i.e., reverse chemotaxis strategy) uses local
fitness information to quickly guide bacterial individuals to
converge to better areas instead of random search; the second
strategy (i.e., structural simplification strategy) can achieve a
better balance between the elite selection and the diversity
by merging the original two operations. The experimental
results confirmed that our proposed strategies are effective
and promising, especially can accelerate the convergence of
complex problems.

In our future work, we will observe more survival mech-
anisms of real bacteria and introduce them into the BFO to
develop more powerful variants. Besides, we also try to use
historical information collected from the evolutionary search
to enhance the search efficiency of the BFO, and propose an
intelligent control strategy to maintain high performance by
tuning parameters in real-time.
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