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Abstract—Genetic programming (GP) is a powerful tool for
knowledge discovery and data mining. Over the past decades, GP
has been implemented in various parallel computing platforms to
reduce its search time. However, these parallel GPs have different
design principles and performance characteristics, which makes
it difficult for users to choose the proper parallel GP in practice.
To address this issue, this paper focuses on comparing and
analyzing the characteristics of parallel GPs implemented in
different computing platforms, in terms of running time, the
speedup ratio, and the scalability. Based on the empirical results,
the guidance of selecting different parallel GPs is concluded.

Index Terms—Genetic Programming, parallel platform, MPI,
GPU, Spark, Parallel Computing

I. INTRODUCTION

Genetic Programming (GP) is a powerful evolutionary
computation (EC) algorithm that can automatically design
computer programs to solve user-defined tasks. It uses genetic
operators such as crossover, mutation and selection, to evolve
a population of individuals. Each individual in GP can be
decoded to a parsing tree to represent a computer program
and solve the user-defined tasks. Nowadays, GP has undergone
a rapid development and a number of enhanced GP variants
have been proposed [1], [2], such as Cartesian Genetic Pro-
gramming (CGP) [3], Geometric Semantic GP (GSGP) [4],
and Gene Expression Programming [5]–[8].

However, GP requires a high computation time due to
its iterative nature, which limits its utilization in real-world
applications [9]–[11]. One of the effective methods to improve
the efficiency of GP is parallelization. Currently, there are
many parallel computing platforms for the GP parallelization
such as Message Passing Interface (MPI) [12], OpenMP [13],
and Spark [14]. Different parallel platforms have different
characteristics. For instance, MPI is a language-independent
communication protocol for multiple processes. Every process
in MPI owns an independent stack and a shared code segment.
The processes communicate with each other by message
transmission. Similar with MPI, OpenMP is another parallel
programming technique using shared memory. However, lim-
itation exists as a single host is necessary. And because of
this limitation, the programs of OpenMP are usually simpler
with a lower memory overhead than those of MPI. Unlike MPI
and OpenMP, Spark is a computing engine specially designed
for big data processing. It is suitable for iterative calculations

because of the introduction of the Resilient Distributed Dataset
(RDD) [15]. Spark offers two types of APIs (i.e., transform
APIs and action APIs) to operate the RDD. In addition
to the technologies mentioned above, there are many other
parallel computing technologies such as Graphics Processing
Unit (GPU) [16], MapReduce [17], Hadoop [18] and so on.
Though the mentioned studies of parallel computing platforms
can facilitate the researchers and industries to implement the
GP on different platforms, it is still confused for researchers
and industries to choose the proper parallel computing plat-
form because of the different performance characteristics of
different platforms. To facilitate real-world applications, a
comprehensive comparison between GPs on different parallel
computing platforms is made in this paper.

In this paper, we select three typical parallelization tech-
nologies, which are MPI, GPU, and Spark, to make the
comparison. Without loss of generality, a recently published
GP variant named Self-Learning Gene Expression Program-
ming (SL-GEP) is adopted as the based GP solver and it
is implemented on MPI, GPU, and Spark respectively for
comparison analysis. It is worth to mention that the SL-
GEP can be replaced by other GP variants because these
parallel computing platforms are algorithm-independent. The
contributions of our work are listed as follows.

1)A series of experiments are set up to comprehensively
compare the performance (i.e., running time and speedup ratio)
of the representative parallel GPs

2)Based on the empirical results, the performance charac-
teristics of different parallel GPs are concluded.

3)The guidance for designing parallel GPs is drawn out to
help users select parallel technologies in real world according
to the designed principles and the empirical results of parallel
GPs.

II. RELATED WORK

In recent years, parallel GP is one of the most effective
methods to reduce the computation time of GPs on large-scale
and complicated optimization problems. Existing parallel GPs
can be generally classified into the following classes based on
the parallel computing platform.

The first category is based on the MPI. The representative
work was contributed by M. Tomassini et al. [19] and Du
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et al. [20]. In [19], M. Tomassini et al. implemented GP on
MPI and designed a graphical user interface (GUI) to facilitate
the applications. In [20], Du et al. implemented a parallel
GEP algorithm based on MPI, and the experimental results
showed that the speedup ratio approached linear increasing. In
addition, there are some other related work on GP with MPI.
Salhi, Glaser et al. [21] combined GP with island model based
on MPI. Stoffel and Spector [22] studied the MPI version
of high-performance genetic programming system (HiGP) and
found out that the speedup ratio can be linear with the number
of processors.

The second category focuses on using GPU. This category
is likely to be established by Harding and Banzhaf [23],
who parallelized the GP using GPU. In addition, they also
proposed a data parallel approach for GP by using multiple
computers to mitigate the overhead of program compilation
and implemented it in Compute Unified Device Architecture
(CUDA) C code [24]. Besides, Robilliard et al. [25] also
implement the parallel GP on the G80 GPU, they designed
a parallel scheme which was able to instantiate several GP
programs on the GPU. Later, to further improve the efficiency
of the GPU implementation, Shao et al. [26] proposed a
parallel GEP (pGEP), which utilized the post-order visiting
array to decode the tree structure of GP individuals and used
the constant memory of GPU to store the chromosomes. These
two measures successfully further improve the efficiency of
the algorithm. Cano et al. [11] combined the GP with GPU to
solve association rule mining task and achieved good results.
In recent years, Chitty [27] tried to improve the performance
of parallel GP based on GPU by considering L1 cache and
shared memory. And he implemented a GPU-based GP with a
two-dimensional stack model to improve the performance of
parallel GP [28]. Huang et al [29] proposed a fast parallel
GP by utilizing both GPU and multiple core CPUs.

The third category focuses on using Cloud computing
techniques such as MapReduce and Hadoop. For example,
Du et al. [30] implemented MR-GEP based on MapReduce
to validate the effectiveness of the proposed MR-PEA model.
Xu et al. [31] proposed a MapReduce based parallelized GEP
to solve large-scale classification problems. Khan et al. [32]
investigated the robustness of parameter settings of Hadoop
in GEP implementations by running programs in two Hadoop
clusters. As a kind of Cloud computing techniques, Spark is
a new technology becoming more and more popular in recent
years. There are few studies on combining the GP with Spark
to the best of our knowledge.

Moreover, several other high-performance technologies or
platforms are studied for parallel GP such as Parallel Vir-
tual Machine (PVM) and OpenMP. For PVM, Fernndez et
al. [33] designed a parallel genetic programming based on
PVM to accelerate the GP algorithms. Besides, Wu et al. [34]
implemented the parallel niche gene expression programming
(PNGEP-MP) based on OpenMP and compared their work
with conventional GEP on mining and classification function.

In summary, most methods mentioned above are only s-
tudying the implementation of one technology for parallel

GP. Whereas, GP performs differently under different parallel
computing technologies or platforms. Therefore, we plan to
compare different parallel GPs and conclude the character-
istics of different parallel GPs in this paper to facilitate the
further research and industrial application. Among the existing
studies, we select two representative implementations and an
emerging technology as our comparing methods(i.e., MPI,
GPU, and Spark).

III. FRAMEWORK OF PARALLEL GPS

In this section, the key idea of different parallel GPs and
their implementation frameworks in our work are introduced.
First of all, the general procedure of SL-GEP and a general
parallel GP framework are given. Then, based on the SL-
GEP and general parallel GP framework, parallel SL-GEP on
different parallel computing platforms (i.e., MPI, GPU, and
Spark) are presented.

A. Framework of SL-GEP
SL-GEP is a recently published GP variant which have been

shown effective for solving various problems [7]. Generally,
the procedure of SL-GEP consists of the following operations:
initialization, crossover, mutation, and selection. By iteratively
performing the last three steps, SL-GEP gradually finds better
solution.

In SL-GEP, each chromosome can be decoded to a parsing
tree to represent a computer program. Initially, the chromo-
somes are generated randomly based on primitive settings
(i.e., terminals, functions, constants, and other user-defined
structures) to form the initial population. More details of the
chromosome representation of SL-GEP can be referred in the
original paper [7]. Each individual is expressed as a vector of
primitive symbol.

After initialization, SL-GEP applies a series of genetic
operators (i.e., crossover, mutation and selection), to evolve the
chromosomes and find the chromosomes with better fitness.

In crossover, two chromosomes are selected randomly as
the parent chromosomes from the current population and
swap a part of chromosomes to generate two new offspring
(i.e., children chromosomes). Before swapping, two crossover
points is randomly chosen from each chromosome. Then, the
two parents exchange their genes with each other based on the
crossover points.

In mutation, genes (i.e., the primitives) are randomly
changed to new a value with a certain probability. It is
worth to mention that both the crossover and mutation are
performed following the chromosome representation. The goal
of crossover and mutation operation is to bring the gene
diversity into the population so that the population can search
the solution space for better solutions.

The selection is performed to choose the better chromo-
somes between the parent individuals and the newly generated
children chromosomes based on their fitness values. After eval-
uating the fitness of newly generated individuals, the inferior
ones between the parents and children are eliminated, while
the better ones are selected out to form the new population
for the next generation.



B. The general Parallel Computing Framework

Generally, existing parallel GPs focus on using multiple
computing units (e.g., CPU threads or GPU threads) to perfor-
m fitness evaluation parallelly to reduce the computation time
because the fitness evaluation has a parallel nature and is often
the most time-consuming part of computation in GPs. The
abstracted framework of parallel GPs is shown in Fig. 1. After
the initialization of GP, the population is divided into several
groups. Each group is considered as a unit to be computed.
Then, a population reproduction loop containing the fitness
evaluation, is performed parallelly for every group. Besides,
the genetic operators (e.g., mutation, crossover, and selection)
are performed parallelly or sequentially in the reproduction
loop to evolve the population. When the termination condition
is met, the best individual of the population is selected as
the final solution to the given problem. Based on the general
parallel framework, we implement the SL-GEP on the three
parallel computing platforms (i.e., MPI, GPU, and Spark)
respectively.
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Fig. 1. The parallel framework of GP.

C. MPI-Based Implementation

Massage Passing Interface (MPI) is a communication pro-
tocol rather than a programming language [35]. In general,
MPI supports not only point-to-point communication but also
collective communication. Programs can be adapted into the
MPI framework in different programming languages such as
C, C++, and Fortran. In this paper, we use C/C++ to imple-
ment the MPI+SL-GEP, denoted as MPIGP. The framework
of MPIGP is shown in Fig. 2 and the introduction of the
implementation are as follows.

Firstly, the initialization procedure is performed to initialize
the processes in the communication domain of MPI and a
unique ID is assigned to every process. After the initialization,
the master process (e.g., process0) divides the GP population

and sends groups of individuals to the other processes uniform-
ly. The genetic operations and fitness evaluation are performed
parallelly in these processes. It is worth to mention that,
some genetic operations, such as crossover and selection, may
require the global information of the whole population (i.e.,
the parent chromosomes may come from different groups of
the different processes), so the population is put into the shared
memory of MPI so that every process can access the whole
population. The independent genetic operations and fitness
evaluation in each process are the same as those introduced
in Section III-A. Following the reproduction, the computing
results of processes (i.e., the new-born individuals and their
fitness value) are required to send back to the master process to
make a global update. Based on the computed results from the
other processes, the master process will make a new division
on the new population and repeat the reproduction. This
loop of parallel reproduction will repeat until the termination
condition is met. Finally the chromosome with the best fitness
value will be outputted as the final solution.
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Fig. 2. The parallel framework of MPIGP.

D. GPU-Based Implementation

Graphic Processing Unit (GPU) is a parallel processing
hardware that is used for graphics processing in the early years.
Nowadays, GPU has undergone a rapid development and it can
handle computation work of large-scale data efficiently. CUDA
is a computing framework designed for the implementation of
GPU programs, which is developed by NVIDIA corporation.
Nowadays, CUDA has successfully solved many problems
in academic researches and practical applications such as
medical image, computed fluid dynamics and so on [16].
Developers can easily use C, C++, and FORTRAN language
to write programs under the CUDA framework. We implement



SL-GEP on GPU platform with C language under CUDA
framework to form the GPU+SLGEP denoted as GPUGP. The
framework of GPUGP is shown in Fig. 3 and the details of
GPUGP are described as follows.

Firstly, GPUGP performs the initialization to initialize the
GP population and the GPU platform. The initialization of
GPU platform includes the GPU memory allocation and the
memory initialization. There are two important issues in de-
signing the memory allocation of GPU [36]. On the one hand,
the data computed by GPU is required to be organized as an
array structure to fully utilize the GPU computing resources.
Therefore, the tree structure for parsing trees of chromosomes
is decoded into the pre-order visiting array in GPU memory.
On the other hand, to reduce the times of memory access, the
fitness evaluation of each chromosome needs to be finished
by a single block. It is worth to introduce that the GPU has
a hierarchical computing structure consisting of stream multi-
processor (SM), block, and thread. By evaluating each chro-
mosome using a distinct block, the GPU only needs to read the
chromosomes from memory to cache once and finish fitness
evaluation efficiently. After the initialization, the GPU iterates
the reproduction of GP (i.e., crossover and mutation, fitness
evaluation, and selection) until the termination condition is
met. Similar with MPIGP, to allow blocks to perform genetic
operations, the population is stored in the global memory of
GPU which can be accessed by all blocks. In each iteration,
there is also a synchronization barrier to all blocks in GPU
so that the selection and the update of GP population can be
performed correctly. Finally, the chromosome with best fitness
value is outputted as the final solution.
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Fig. 3. The parallel framework of GPUGP.

E. Spark-Based Implementation

Spark is a popular and fast parallel computing engine.
Because Spark can access diverse data sources (e.g. HDFS
and HBase) and has higher efficiency than Hadoop in iterative
problems [37], Spark has been widely applied in big-data
problems currently. In Spark, one of the most important data

structures is the resilient distributed dataset (RDD). RDD
is a programable read-only multiset-of-data item for fault
tolerance and parallel computing. In this paper, we implement
the parallel SL-GEP on the Spark platform with Java language
and this parallel GP is denoted as SparkGP. The framework
of SparkGP is shown in Fig. 4.

At the beginning, besides the GP population initialization,
the Spark platform are initialized to allocate the memory of
Spark and launch the Spark computing units. Similar with
the decoding of pre-order visiting array in GPU, the GP
population is required to be encapsulated into RDD to facilitate
Spark to compute before performing the GP reproduction.
RDD is further divided into several partitions. The number
of partitions is equal to the number of computing units of
Spark (i.e., the executor). After that, the executors in Spark
start to perform the reproduction loop parallelly with the
shared program code. In each iteration of the GP reproduction,
the RDD holding the population will be transformed into a
new RDD (denoted as RDD’) holding the new population
by executors after genetic operations and fitness evaluation.
And these new population will be transformed into another
RDD in next iteration. However, because of the lazy evaluation
mechanism of Spark which limits the transform APIs to be
performed only when the action APIs are called, the parallel
computation of executors is truly performed only when the
SparkGP goes through all the program code and reaches the
action API. In SparkGP, the action API is regarded as a kind
trigger and it is performed after the selection and the update
of GP population. The reproduction loop of SparkGP will also
be terminated when it reaches a termination condition.
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TABLE I
THE BENCHMARK PROBLEMS IN GP AREA

Problem Objective Function Data Setting
F1 x5 + x4 + x3 + x2 + x U [−1, 1, 200]
F2 sin(x) + sin(x+ x2) U [−1, 1, 200]
F3 sin(x) + sin(y2) U [0, 1, 1000]

TABLE II
THE PARAMETER SETTING OF THE ALGORITHMS

Parameter Value
NP 50
h 10
h′ 3
K 2

EvaluationT imes 6000

IV. EXPERIMENTS AND COMPARISONS

A. Experimental Settings

The overall purpose of the experiments is to compare dif-
ferent parallel GPs and analyze their characteristics. Since the
experiments mainly focus on the non-functional metrics (i.e.,
the running time, the speedup ratio, and the scalability) instead
of the searching efficiency of different parallel GPs, only
three symbolic regression problems with different properties
are selected to simplify the experiment but without loss of
generality. Table I lists the three benchmark problems for
experimental study. In Table I, the second column shows the
objective functions, while the last column describes the sample
data from a uniform distribution in the form of U [u, v, r],
where r represents the sample number and u and v are
the upper and lower bounds of the sample. The function
set of SL-GEP is set as {+,−,×,÷, sin, cos, ex, ln(|x|)}.
Table II describes the parameter settings of all the compared
algorithms. The first three parameters h, h′ and K are three
important hyper-parameters in SL-GEP. h represents the length
of main program, h′ represents the head length of ADFs, and
K means the number of ADFs in each chromosome. Each
algorithm is run for 30 times independently on each problem,
and the average results are used for comparison analysis. For
all problems, the maximum fitness evaluations is set to be
6000. The running environment of MPIGP and SparkGP is
a computer with an Intel(R) Core (TM) i7-7820HQ CPU (4
cores and 8 threads) and 16GB memory and GPUGP is run
on a computer which is integrated with a graphics card of
NVIDIA GeForce GTX 1070.

B. Performance Metrics for Comparison

First, we investigate the running time of each parallel GP
on the test problems. Then, the parallel speedup ratios of the
three GPs are analyzed. The speedup ratio is calculated by

Speedup =
T1

Tn
(1)

where T1 is the average running time of the sequential SL-
GEP and Tn is the parallel executing time with n cores or
threads. It should be noticed that MPIGP and GPUGP are

implemented in C language, but SparkGP is implemented in
Java. Therefore, to guarantee the fairness of the comparison
and erase the interior differences between different languages,
the speedup ratios of the algorithms are calculated based on
the same executive environment (both T1 and Tn are results
obtained from C or Java). We also tested the performance of
these three algorithms by varying the data scale and population
size. In the experiment of data scale, the size of dataset is
set to 200, 1000, 5000, 10000, 20000 and 50000. And the
influence of population size is investigated by altering the size
of population to 50, 128, 256, 512 and 1024. In these two
experiments, the number of processes in MPIGP is set to 4,
the number of cores in SparkGP is set to 4 and there are 60
blocks with 256 threads in every block in GPUGP.

C. Experimental Results and Analysis

The results are presented in five seperated parts. The first
three parts show the properties of three parallel GPs. The last
two parts make comparisons between the three parallel GPs
using different population sizes and data scales.
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Fig. 5. The running time and speedup ratio on three parallel GPs: (a) the
running time of MPIGP; (b) the speedup ratio of MPIGP; (c) the running
time of GPUGP; (d) the speedup ratio of GPUGP; (e) the running time of
SparkGP; (f) the speedup ratio of SparkGP

1) Results of MPIGP: Fig. 5.(a) shows the relationship
between running time and the number of processes in MPIGP.
When the number of processes is 1, the experiment is per-
formed by the sequential algorithm. The running time of F3 is
higher than F1 and F2. This is mainly because the dataset size



of F3 is 1000, which is five times of the size of F1 and F2. It
can be observed that the performance deteriorates when there
are two or nine processes. The reasons for the deterioration
are different. When there are two processes, the program is
actually serial, because there is only one process performing
calculation, while the one is responsible for message delivery.
Therefore, the time consumption in this case is greater than
serial program with extra communication overhead. On the
other hand, when there are nine processes, the population will
be divided into eight equal parts. Since there are only eight
physical threads in the experimental computer, the 9th process
has to remain waiting until one of the other processes finish
its task.

Fig. 5.(b) shows the relationship between the number of
processes and the speedup ratio in MPIGP. The speedup ratio
increases as process increases. The situation is related with
Fig. 5.(a) which shows a deterioration of performance when
the numbers of processes are two and nine. It can be found
that when there are 8 processes, the speedup ratio reaches the
maximum, and the maximum of speedup ratio is more than
3. In ideal situation, the speedup ratio of parallel program
can reach 6 or 7 when the number of processes is 8. But
in MPI, the more processes there are, the greater overhead
of the inevitable communication expense is needed. When
the number of processes increases, the burden of allocating
individuals for the main processes (process0) becomes larger,
which slows down the whole evolutionary process of SL-GEP.

2) Results of GPUGP: Fig. 5.(c) illustrates the relationship
between running time and the number of threads in GPU.
The number of blocks is set to 60 in these cases. It can
be observed that in F1 and F2, the running time of GPUGP
remains declining and reaches the bottom when the number of
threads is 256 in every block. But when the number of threads
is more than 256, the performance on F1 and F2 deteriorates.
This is because the fitness of every individual is computed
by all threads in a single block in one fitness evalulation. If
the number of threads is larger than the input data, a part of
threads will keep waiting and be wasted. On the contrary, if
the number of threads is much less than data scale, each thread
is required to perform many fitness evaluation to process all
input data. Therefore, using 256 threads is better than the case
using 512 threads in F1 and F2. And because that the number
of threads is always less than the number of data, the running
time of F3 keep decreasing as the number of threads increases
from 1 to 512. Besides, based on some previous work [38], the
performance of algorithms roughly maintains the same level
with different number of blocks.

Fig. 5.(d) indicates how speedup ratio is influenced by the
number of threads. In this figure, the speedup ratio of F2
exceeds F1 in all these testing cases. This is because the
computational ability of one thread is fixed when the number
of threads remains static. And the only difference between F1
and F2 is the computational complexity. As for F1, it is not
a complicated problem, which makes each thread only need
to contribute part of its computational capability to solve the
problem. But when it comes to F2, each thread may exhaust

its capability to solve the problem. Therefore, compared with
F1, F2 can make full use of the GPU, so that the speedup ratio
of F2 exceeds that of F1.

3) Results of SparkGP: Fig. 5.(e) shows the relationship
between running time and the number of cores in Spark.
The results of SparkGP are different from MPIGP. It can be
observed that the running time increases with the increment of
cores, so that the serial program runs the fastest in these testing
cases. It’s abnormal that the parallel program is slower than
the serial program. One of the reasons for this situation is the
implementation mechanism. When SparkGP starts running, the
program will start up a Diver, which will initialize a variable
called SparkContext. SparkContext transforms population to
RDD and send it to executors in each generation. When the
fitness values are calculated and new individuals are sent
back, action APIs will be executed, which costs most of the
time. As the number of cores increases, this scheduler delay
will be higher and higher. That’s why the polyline shows an
increasing tendency. Another reason is time consumption of
the deserialization task. In Spark, SparkContext uses RDD
to send individuals to each executor through transform APIs.
The transform operators need to be executed in a serial
manner, demanding a lot of extra executive time. Thus, the task
deserialization also results in the unsatisfying performance of
SparkGP.

Fig. 6 shows the details of time consumption of a job where
the x-axis is the task index in a job. The reason why there are
only four tasks on x-coordinate is that SparkGP only runs in
4 cores. It is clear that the program spends most of the time
in scheduler work. The total time consumption is 13ms with
11ms cost by scheduler delay. The computing time only cost
1ms, accounting for one thirteenth of the total executive time.
Therefore, though the program is parallel, the overhead for
parallelization cost a lot. Thus, why the serial program runs
faster than parallel program in F1 and F2.

Fig. 6. The event timeline of 4-cores job.

Fig. 5.(f) shows the relationship between speedup ratio and
the number of cores. It can be observed that the speedup ratio
of F2 is higher than F1. The reason is that F2 includes +,
sin and ex, which is more complicated than F1 with only +



and ex. As a result, the computing time of F2 will be more
than F1 with the constant scheduler delay. Suppose that the
running time of sequential program is T1, the scheduler delay
is T , and the parallel number is n. The speedup ratio can be
expressed as:

Speedup =
T1

T + T1/n
=

1

T/T1 + 1/n
(2)

where both T and n of F1 is equal to F2 because of the same
number of used cores. Since the T1 of F2 is larger than F1,
there is a higher speedup ratio of F2 compared with F1.
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Fig. 7. The comparison results of three parallel GPs on various data scales
and population sizes: (a) the running time vs. data scale; (b) the speedup ratio
vs. data scale; (c) the running time vs. population size; (d) the speedup ratio
vs. population size

4) Impacts of data size: In this experiment, we test the
performance of these three parallel GPs on data with different
size. The results of this experiment are shown as follows.

Fig. 7.(a) shows the relationship between running time and
data scale of these parallel GPs. It can be observed that
when there is a small amount of data, MPIGP and GPUGP
outperform SparkGP. Especially when the size of dataset is
smaller than 10000, SparkGP is slower than GPUGP, and
MPIGP is the best one. As the data scale is larger than 10000,
MPIGP still dominates the comparison and SparkGP exceeds
GPUGP to become the second fastest parallel GP.

Fig. 7.(b) shows the relationship between speedup ratio and
data scale. The speedup ratio of MPIGP reaches the top when
the data scale is 10000. And the curve declines when the data
scale increases. But in GPUGP, the speedup ratio is steady
when the data scale ranges from 200 to 50000. Different from
MPIGP and GPUGP, the speedup ratio of SparkGP keeps
rising when the data scale is increasing. In the interval of 200
to 10000, MPIGP always performs the best. Whereas when

the data-size approaches to 20000 or more than 20000, the
speedup ratio of SparkGP exceeds MPIGP and becomes the
best one among these three technologies.

5) Impact of population size: In this experiment, we test
the performance of these three technologies with different
population size. The results of this experiment are shown as
follows.

Fig. 7.(c) shows the relationship of these three technolo-
gies between running time and population size. When the
population size is equal to 50 and 128, MPIGP performs the
best. When the population size is more than 256, GPUGP
becomes the best. The figure also shows that the running time
of MPIGP and sparkGP grow linearly with the population
size and SparkGP always performs the worst. As for MPI and
Spark, though the cost of communication will increase, it is
not large enough to eliminate the increasing trend of running
time. But as for GPU, as the population size increases, the
resource of every block will be made full use of, which makes
it outperform other technologies when the population size is
large enough.

Fig. 7.(d) shows the relationship between speedup ratio and
population size of these three technologies. It can be observed
that when the population size is equal to 50 and 128, the
speedup ratio of MPIGP is the highest. As the population size
reaches or exceeds 256, the speedup ratio of GPUGP becomes
the best and increases steadily. When the population size is
larger than 1024, the speedup ratio of SparkGP approaches
MPIGP and the trend of these two curves tends to be smooth.
The scheduling time of SparkGP will increases with the
increment of population size, while the growth of data scale
can play the performance of SparkGP. This is the reason why
the SparkGP performs well with the increasing data scale,
while performs worse with the increase of population size.

V. CONCLUSIONS

In this paper, we compare the performance of parallel GPs
developed on different computing platforms (i.e., MPI, GPU
and Spark). Three versions of parallel GPs are implemented
accordingly and tested on symbolic regression problems with
different features such as the dimension of problem and the
size of training data. Based on the comparison studies, we
obtained the following conclusions.

1) Parallel GPs with MPI generally can perform well on
data set with different scales. The number of processors in
the computer has a significant influence on performance of
the GPs. The search efficiency of parallel GPs with MPI
increases as the number of processors increases. However, the
programming complexity and communication overhead of GPs
with MPI are relatively high.

2) GPU contains a large number of computing units.
Thus, parallel GPs with GPU is quite suitable for evolving a
large number of fitness evaluations, especially the applications
which need a large population size to maintain the population
diversity. Besides, the parameter settings in GPU have signifi-
cant influence on the performance of the algorithm. Therefore,
parallel GPs with GPU should be carefully implemented and



tuned based on the physical computing environment and the
application problem.

3) Parallel GPs implemented in Spark performs poorly in
small scale problems. However, when the training dataset
becomes large, GPs with Spark can perform much better. The
speedup ratio of GPs with Spark in large dataset can even be
superior to that of MPI. Besides, the program complexity of
GPs with Spark is much simpler than those using GPU and
MPI.
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