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Abstract—Particle swarm optimization (PSO) in recent years
has been widely applied to solve various real world problems.
However, for ill conditioned problems with largely different
sensitivity to the objective function, classical PSO cannot search
for optimal solution efficiently due to the best position-guided
strategy that wastes lots of source searching undesirable ar-
eas. Therefore, this paper proposes a novel velocity reinforced
mechanism (VR) for solving ill-conditional problems. Two imple-
mentations of the mechanism, velocity reinforced particle swarm
optimization and velocity reinforced search, are introduced in
this paper. VR updates its velocity by learning and correcting
best velocity directly, instead of using classical best position-
guided updating rules. In this way, it increases the possibility that
finds better directions for ill-conditional problems. Experiments
indicate that the novel approaches improve the final results and
efficiency.
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I. INTRODUCTION

The ill conditional property of an optimization problem,
generally concerns that the sensitivity of function value chang-
ing with respect to different variables or search directions is
distinct [1]. Formally, the degree of ill conditional property is
specially defined as the condition number of convex quadratic
function’s Hessian matrix. Given f(x) = %xTHx, the condition
number of H is equal to the ratio between the maximum
and minimum eigenvalue of H, where Hessian matrix H is
symmetric positive definite [1], [2]. Therefore, an ill condi-
tional problem means a convex function with extremely high
condition number on Hessian matrix. In addition, we generally
call any function where small solution displacement instills
large function value changing as ill conditional function. For
instance, given function f = 0.001x; + 10000x;, the same
displacement of 1 can trigger function value change of 0.001
working on x; dimension, but f changing of 10000 on x;
dimension. The sensitivity distinction can be 107 times! The
sensitivity distinction forces the optimizer to carefully control
the step sizes over different dimensions or search directions.
The ill conditional problems are a class of common problems
in scientific research and technological development, and the
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large sensitivity distinction causes the optimization difficulty
[31-[51.

In recent years, particle swarm optimization (PSO) [6] has
been used as a powerful practical optimization tool for real
world problems due to concision and convenience. Inspired
by foraging of birds, each particle in classical PSO updates
its own search direction by learning the global historical best
position and its own historical best position and iteratively
searching global optima of the problems. Currently Because
of the easily understandable mechanism and relatively simple
implementation, quantities of improvements of PSO have
emerged and widely applied in various fields [7]-[10].

Some studies indicate that PSO in classical form, however,
cannot search for best solution on ill conditional problems
efficiently [3]. On the one hand, when the search agent is
around the best region, the intrinsic conditional property that
the sensitivity of function values on different dimensions or di-
rections varies a lot makes it naturally difficult to find the right
search direction efficiently. On the other hand, the classical
strategies of PSO [10] (and most of the improved strategies, to
the best of our knowledge) adopt best position-guided velocity
updating rules. The identical distribution of random variables
results in approximately linear updating rules, in other word,
linear invariance [3]. The difference between linear invariance
and rotation invariance is that, the former prefers to search in
a long narrow valley and seems like a line search. Especially
in high dimensional space, the linear invariance could result in
that the algorithm converges in a subspace formed by part of
dimensions while other dimensions remaining unchanged in
the process [3]. The degeneration on search diversity induce
relatively low possibility finding promising search directions
on such kind of ill-conditioned problems, wasting lots of
source repeatedly searching undesirable areas. Therefore, the
population of classical PSO usually stagnates in the area far
from the global optimum, leading to premature convergence
or slow convergence.

The question that arises here is whether we can increase
diversity on search directions to break the limitation of linear
updating and improve the performance of classical PSO on
ill-conditioned problems?



To address this issue, we propose a novel velocity reinforced
mechanism (VR), which updates its velocity by learning best
velocities directly instead of using the best position-guided
linear updating rules and increases the possibility that finds
better directions when solving ill-conditioned problems. The
mechanism is integrated into PSO, namely velocity reinforced
particle swarm optimization (VRPSO) and the mechanism can
be further designed as a new independent algorithm, namely
velocity reinforced search (VRS). Inspired by reinforcement
learning, the agent searches multiple potential good directions
simultaneously. The direction with high fitness value or largest
improvement in fitness value is implicitly rewarded by positive
signal, which means in the next iteration this direction (and
its surroundings) has higher probability being exploited. Cor-
respondingly, the agent will not move if it cannot find better
direction. In this way, when solving ill-conditioned problems,
each direction is consistently tuned to potential global best
direction and individual best direction, approaching actual best
direction and global best position fast. In addition, the novel
local optimizers combining global strategy can also improve
the performance of PSO on multimodal problems in the future.

The remainder of this paper is organized as follows. Section
II provides a review of the particle swarm optimization and its
improvements. Section III describes the proposed VR. Section
IV discusses and analyzes the experimental results. Section V
concludes the study.

II. RELATED WORKS

PSO [10], [11] is a global optimization method based on the
foraging of birds. In this method, each particle updates its own
search direction by learning the global historical best position
and its own historical best position and iteratively searching
global optima of the problems. The velocity updating rules
and sampling rules are shown in Eqgs. 1 and 2.
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where ¢ is the iteration number. thbest is the historical global
best position and xﬁpbest is historical individual best position
of the ith particle. v} and Vf.“ are the current velocity and
updated velocity vectors of the ith particle. x; and x/™! are
the current position and updated sampling position vectors
of the ith particle. @ denotes the inertia weight,which gives
better control of exploration and exploitation. ¢; and ¢, are
acceleration constants. u,up ~ %/(0,1) are D-dimensional
independent uniform random vectors and D is the dimension
of optimization proble m.

These PSO improvement technologies discussed in this
paper simply change the structure, which is not helpful to
solve the ill posed problems [12], so we have the methods
and work proposed.

Numerous studies focus on improving classical PSO in
terms of velocity updating rules and population topology.
Ratnaweera et al. [13] proposed a novel strategy of PSO,
which dynamically changes acceleration coefficients during

the search. Zhan et al. [14] designed a self-adaptive PSO algo-
rithm that all the control factors can be automatically tuned to
improve search efficiency. Kennedy and Mendes [15] designed
different population topology to improve performance of PSO.
Later Mendes et al. [16] further proposed the fully informed
particle swarm FIPS to comprehensively collect population
knowledge. Lin et al. [17] proposed a dynamic tournament
topology strategy for PSO. Liang and Suganthan [18] proposed
a novel dynamic mutil-population structure to utilize more
information facilitating optimization. ElI-Abd and Kamel [19]
integrated population-based incremental learning into PSO
and improve the efficiency by shrinking the interval bounds.
Other researchers attempted to combine different optimization
mechanisms to PSO. Higashi and Iba [20] adopted Gaussian
mutation to improve the diversity of classical PSO. Other
improved versions of PSO are for some specific problems
or features. Samma et al. [21] also proposed a reinforcement
learning-based PSO but concerns more about when and how
to conduct local search, which is totally different from our
method. Bonyadi and Michalewicz [22] proposed a new gen-
eral form of velocity updating rule for PSO that contains a
user-definable function to enhance rotational invariance prop-
erty. In recent years, Jadoun et al. [23] proposed a cotrection
algorithm which can transform infeasible particles into feasible
ones according to a new truncated sinusoidal function. Gupta
et al. [24]controlled the operators of the PSO dynamically by
modifying the cognitive and social behaviors of the swarm.
Jadoun et al. [25] suggested three acceleration coefficients to
better exploration with less computational.

A. Motivation

Despite the great success in the development of PSOs, all
of these variants update velocity through the best position.
In these algorithms, the search directions are learned from
a random combination of pbest and gbest positions, which
indirectly results in a case that the combined “position” can
get stuck somewhere undesirable, which is a common scenario
in ill condition problems that own narrow optimal valleys [26].

In this paper, the velocity reforced mechanism is proposed
to improve the performance of the PSO on ill-conditional
problems by learning best velocities directly. Inspired by rein-
forcement learning, the agent searches multiple potential good
directions simultaneously and updates each possible direction
by global best direction and individual best direction. In this
way, VR enables consistently tuning the search directions and
approaching global optimum on ill-conditional problems.

III. VELOCITY REINFORCED MECHANISM

In this section, we describe the mechanism and innovation
of the velocity reinforced particle swarm optimization and
compare PSO with VRPSO. Inspired by VRPSO, we further
implement a velocity reinforced search method.

A. Comparison of PSO and VR

Classical PSO is guided by best position of population.
pbest is the best position found by the particle itself and gbest
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Fig. 1. A sketch plot of the velocity reinforced mechanism. In PSO, the set
of vy, is on the learning direction from the current position x to the historical
best position Xpegr and the learning term Vi, is relative to direction vector,
where ¢ is a acceleration constant and u is a vector of uniform random
numbers drawn from [0, 1]. In contrast, the VRPSO follows the angular
learning mechanism instead of the parallelogram law or linear calculation.
Viearn fandomly selects one of the symmetric vectors of the current velocity
v w.r.t historical best velocity Vpe as its direction vector. The VRS further
utilizes the comprehensive information of the vectors surrounded by the Ve,
where the set of @ control the weights of all the possible velocities and z is
a acceleration factor.

is the historical global best position of the swarm. In other
words, the learning term is linearly dependent with all the
possible selected vectors if the random components are taken
as scalars, which means the potential rich information is not
utilized in a reasonable way (Fig. 1). However, the search
behavior is different if the learning objectives are defined as
best velocities.

By contrast, the search agent of VR corrects its velocities
by learning the symmetric vector of the current vector with
respect to the best velocity. The “symmetry” in this paper is
defined as that the angle between the learning term and the
current velocity is equal to the angle between the best velocity
and the current velocity. In addition, the angle between the
learning term and the current velocity can be uniformly
randomly chosen. The angle between the new velocity and
best velocity can also be chosen in a Gaussian random way.
In this way, the agent refers to considerable information to aid
the algorithm with a more valuable move by which the agent
can find the optimum with a higher possibility.

B. Algorithm of VRPSO

In the VRPSO, the agent is the particle with best fitness
historically. The agent sniffs multiple directions at the same

Algorithm 1: Algorithm of VRPSO

Input: The number of directions m, the step size control
factor o and Gaussian perturbation threshold P.
Output: The best solution.
1 Initialize v, x, xfmt, Vhest, best fitness fests

2 t=0;

3 while rermination condition has not met do

4 Evaluate fitness values f for the sample points x on all
the directions;

5 Update the best position x{ . and all the best velocities

Vpest according to the fitness values and the
improvement in the fitness values;

6 for i=1 to m do

7 Calculate the symmetric vector vg according to Eq.
3;

8 Calculate the geometric mean v; according to Eq. 7;

9 Update the velocity v/ according to Eq. 8;

10 if the agent got stuck then

11 Perturb the velocity;

12 else

13 Scale up the velocity;

14 end

15 Restrict the velocity inside the search boundary;

16 Update the position x} according to Eq. 9;

17 Restrict the position inside the search boundary;

18 end

19 t++;

20 end

21 Return the best position Xpegt.

time and remembers historical best of each direction Vppes
and historical global best of all directions Vgpes. At the next
iteration, the agent will update each direction according to
Vpbest and Vgpesr. Vs is defined as the symmetric vector of
current velocity v with respect t0 Vgpest OF Vpbese (all denoted
as Vpegt in Fig. 1). We assume that the potential best direction
is either between Vppest and Vgpest, OF between Vppest and vs.
Then the velocity at the next iteration will be between the
current velocity and the potential best direction. This strategy
only considers the individual with best fitness, whereas the
individual with the largest improvement in fitness value is
also worthy being learned. To avoid unrestrained increase of
velocity, we adopt Gaussian distribution and the velocity at the
next iteration will also be possible between negative current
direction and the potential best direction. After calculation of
each next velocity, the agent will sniff along all the directions.
To increase diversity of possible directions and avoid prema-
ture convergence, we use a linear Gaussian sampling strategy
in each specific direction.

Instead of classical PSO updating particle velocity by best
position, VRPSO learns search direction from best directions.
Let vpeg denotes one of the best velocities, which include
global best velocity with best fitness, personal best velocity
with best fitness, global best velocity with largest improve-
ment, and personal best velocity with largest improvement.
The calculation of the symmetric vector vs requires a little
trick. v can be defined as

Vs = V+ V¥, 3)



where v denotes a current velocity and v* is in thest, the
orthogonal complement of Ve Then let v = Avg. vq can
be solved by matrix decomposition (in this paper we use
quadrature rectangle decomposition). Given an appropriate A,
we can easily obtain the vi. To solve A, we can use the
equation derived from the definition of symmetry and the
cosine law. We have

Vs * Vbest V' Vbest

= 4
Vsl Ivoestll VIl Vestll”
or
(V + )’Vq) * Vbest _ V- Vpest (5)
| (v+Avg)| voest] VI I Vbestl”

where A is the only unknown variable in the equation. There-
fore, we can build a quadratic equation with one unknown.
It has two solutions for A, one of which is 0 (it means the
symmetric vector vg and the current velocity v are overlapped).
The other solution for 4 is
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In this way, we can obtain the symmetric vector of each
individual current velocity w.r.t the best velocity. Let m is the
number of valuable directions (similar with population size in
classical PSO). The detailed updating rules are shown in Egs.
8 and 9.

o v+ A\ + Vbest;

v, = 3 , (7N
4

vit! :Gzlvf—l—Zu/ovﬁ, (8)
=1

XE-H = X{)est -I-Vl;-H, 9

where [ = 1,2,3,4 indicates the aforementioned four types of
best velocities. v; is the geometric mean of the current velocity,
the corresponding symmetric vector vy, and the corresponding
best velocity Ves,. ¢ is the iteration number. w; is a D-
dimensional uniform random vector drawn from [0, 1]. v} is
the current status of the ith direction. x{_ is the historical best
position, which is the current position of the search agent. x?“
is a sample in the ith updated direction. z; represent random
numbers drawn from a Gaussian distribution .4#°(0,1). | and
ry are uniform random numbers drawn from (0,1). o >0 is
the step size control factor.

If the agent does not update its position for 2 iterations (it
indicates the agent gets stuck somewhere), the velocity will
further update in a Gaussian perturbation way according to
the scale of the velocity. Otherwise, the velocity will scale
up. The complete algorithm details of VRPSO is shown in
Algorithm 1.

TABLE I
PARAMETER SETTINGS OF THE INVOLVED PSO ALGORITHMS.

Algorithms Parameter settings

PSO [15] Global ring, ®:0.792, ¢; = ¢, =2, Viax = 0.2 X Range
PSO_Bounds [19] Fully connected, @ :0.9—0.1, ¢; = ¢ =2, Vyux = Range
DMSPSO [18] Multi-swarm, @ : 0.9—0.2, @ = ¢ =2, Vinax = 0.2 X Range
FIPS [16] Local ring, x =0.7298, Y ¢ = 4.1

VRPSO c=03

VRS o=1

C. Improvement in VRS

Inspired by VRPSO, we further implement a velocity rein-
forced search method (Fig. 1). The agent updates the velocities
by generating a group of vectors that are surrounded by the
best velocity. The norm of the vector is scaled with the angle
between the vector and the best velocity, in which the closer to
the best velocity, the longer the vector is, and vice versa. The
key formula of velocity updating rule is defined as follows.

vl
i.: || best” i (10)
(Al
zZ- Vi
6] = arccos(— 25, (11)
”Zi” Hvbest|
o!2
T 0<0<EZ
o = oy T, (12)
ez <6 <nm
vitl = zvl oV, (13)

where z ~ .4°(0, I) is a D-dimensional standard Gaussian
random vector and z ~ .47(0, 1) is a standard Gaussian random
number. The other necessary components are the same with
VRPSO.

IV. EXPERIMENTS

This study tries to test performance of VRPSO and VRS
on ill-conditional benchmark functions. All of the 5 high
conditioning functions and 1 moderate conditioning function
are tested between 10, 20 and 40 dimensions. Table II shows
the formulas of these functions.

A. Benchmark Functions and Compared Algorithms

Four PSO variants are compared with VRPSO and VRS.
The parameter configurations for all involved algorithms are
summarized in Table 1. All of the PSO variants are tested
with the same population size of 40 and maximum number
of function evaluations D x 10° for problems with different
dimensions to ensure fairness. Each function randomly ini-
tializes 10 independent instances and each instance tests each
algorithm for 10 independent repeated times. That is, each
algorithm is tested 100 times independently for every function
to decrease statistical errors.
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Fig. 2. The convergence plots of all the methods on 10,20 and 40 dimensional functions in logarithm scale. #F Ess denotes the number of fitness evaluations
and D is the dimension of function. Each curve is plotted with the median of best fitness values of the summarized 100 independent runs.

B. Results and Discussion

Table III and the Fig. 2 summarize the performances of all
the involved PSO methods on 10,20 and 40 dimensional ill-
conditioned functions. VRS does not work well on the 10D
problems but ranks first on three out of six 20D functions. It
is observed that on most of functions VRPSO spends less time
finding the best regions compared to other methods, whereas
the agent got stuck somewhere at the late phase of optimization
and the best fitness value did not change due to the shrank
scale and diversity of velocities. One of the reasons is the

agent of VRPSO searches homogeneous directions on high
dimensional problems since the velocity update is in reality
a linear combination way, which results in that all velocities
converge to the the best velocity, the geometric center of all
the velocities, if the agent cannot find a better solution in a
long time. It is worth noting that DMSPSO performs well
on all the 10D functions and does not indicate premature
convergence compared to the best algorithm (PSO) on several
functions such as f; and f4. DMSPSO adopts a dynamic multi-
swarm topology to comprehensively utilize more information



TABLE II
ILL CONDITION BENCHMARK FUNCTIONS TESTED IN THIS PAPER.

Function name Formula

D-1

fi= _Zl (100(112 _ZHI)Z + (Zi - 1)2) +fopl,
i=

z=max(1, ¥2)Rx+1/2, 2P = |

D 6=l > .
= Z 10°D=T 25+ fopt,

Rotated Rosenbrock

Ellipsoidal =
2 = Tos, (R(x — x°PY))
6.2, 2 2
Discus f3=10°z +£ Zi + fopts
2= Tos, (R(x — x°PY))
D
_ 2 6 v 2
Bent Cigar fa=z+10 EZZ; +fopts
2= RIS R(x x)
2 D 2
Sharp Ridge fs =2 +1004 | ¥ 2+ fope

z = QA'"'R(x —x°P)
fom | B a5 4
Different Powers 6 P < opts

z=R(x—x°)

Note: All the candidate solutions x are transformed into z in both linear and
nonlinear ways before input to the functions. Q and R are orthogonal
rotation matrices. Talzy and Ty, are two nonlinear mappings. The optimal
fitness value fopt is randomly initialized for each function with all the
dimensions. The search spaces for all the functions are [—3,5]P. The
accuracy levels for all the functions are set 10~ in these experiments. The
reader is referred to [2] for more implementation details.

and can continuously decrease the fitness. It implies that
the hierarchical structure or multi-population topology may
improve the diversity in search. Therefore, we may consider
further increasing probability on diversified directions in terms
of population structure for larger search space in future.

From dynamic two dimensional visualization of search
process of VRPSO and VRS (not shown in this paper), we
can observe that the agent searches optimum in three stages.
In the first stage the agent finds the rough region of optimum in
very short time. Then it gets stuck a little for correcting search
directions (around 20D #FEs in Fig. 2). Finally it finishes
tuning directions and fast approaches optimum. The three
search stages conform the convergence process of VRPSO and
VRS in Fig. 2. The agent of VRPSO and VRS sniffs multiple
directions simultaneously and increases the probability to find
better directions, which guide the agent to the optimum in a
efficient way. We can also observe that there are rough curves
that are falling and work well.

The performance results from Table III and Fig. 2 indicate
that the VRPSO and VRS do not rank first on such on 10D and
20D ill-conditioned functions. Although VRPSO decreases
the fitness value fast at the early stage of optimization, it
gets stuck later. The VRS can continuously reduce the error
yet still slower than other PSO methods finally because it
spend too much time on exploring more valuable directions at
first. However, VRS outperforms VRSPSO on 10D and 20D
problems and VRS works better on 20D problems compared
to 10D. It gives us a reasonable assumption that the VRS

performs better on higher dimension problems due to its
stronger exploration ability. An additional experiment on 40D
functions is conducted to verify it.

The bottom part of Table III and Fig.2 summarize the
performances of all the involved PSO methods on 40 dimen-
sional ill-conditioned functions. VRS ranks first on most of the
tested functions except f;. In addition, there is a considerable
difference between the fitness values of the best and the second
best method. Although the convergence speed of VRS is slow
at the beginning of optimization compared with other methods,
it has ability to continuously search the optimum. Therefore,
the diversity of search velocities is essential to the optimization
process and it is worthy enhancing the exploration ability
of the velocity reinforced mechanism to improvement its
performance.

V. CONCLUSION

This study proposes a novel velocity reinforced mechanism
(VR), which updates its velocity by learning best veloci-
ties directly and increases the possibility that finds better
directions for solving ill-conditional problems. This scheme
is implemented in two methods, namely velocity reinforced
particle swarm optimization (VRPSO) and velocity reinforced
search (VRS). The direction with high fitness value or largest
improvement in fitness value and its surroundings have higher
probability being exploited in the next iteration. In this
way, the agent is consistently correcting its velocities and
approaching actual best direction and global best position
fast. Experiments have shown that the novel scheme performs
promising results and is competitive to other PSO variants on
ill-conditional problems.

In future, we will explore how to design step size control
mechanism and further increase possibility finding better di-
rections. In addition, we will improve the current method to
search on high dimensional problems efficiently.
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