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Abstract—Endmember selection of hyperspectral images is a
practical yet difficult task due to the high spectral resolution
and low spatial resolution of the hyperspectral cameras. The
paradigm of multitask optimization has been investigated over
two decades, which aim to handle multiple tasks simultane-
ously. To address these issues, we propose a novel multitasking
framework based on multiobjective optimization evolutionary
algorithm based on decomposition (MOEA/D). Specifically, we
use a single population to simultaneously perform multiple subset
selection tasks and apply it to a specific scene-the endmember
selection of hyperspectral images. It is natural to consider that
pixels in a homogeneous region of hyperspectral image as a task.
Then, a within-task and between-task genetic transfer operator
is constructed to reinforce the exchange of genetic material
belonging to the same or different tasks for better and quicker
search of the decision space. After that, this algorithm obtains
a set of nondominated solutions for better decision of the active
endmembers. Experiments on hyperspectral datasets show the
effectiveness of our method in finding the real active endmembers.

Index Terms—hyperspectral image, endmember selection, mul-
titask optimization, evolutionary algorithm

I. INTRODUCTION AND RELATED WORK

With the development of remote sensing technology, hyper-

spectral cameras (HSCs) with higher spectral resolution than

multispectral cameras, can measure electromagnetic energy

scattered in their instantaneous field view in hundreds or

thousands of spectral channels [1]. Compared with RGB

images, hyperspectral images contain more information, which

greatly improve the ability of material identification. By using

this feature, researchers have applied it to many fields, such

as agricultural production, geological analysis, environmental

monitoring, urban planning and military applications [2], [3].

However, in hyperspectral imagery, the pixels may contain

more than one types of ground object signatures due to the

low spatial resolution of the HSCs, which called the mixed

pixels [4]. The ground object signatures mentioned above are

also known as endmembers, which normally correspond to

familiar macroscopic objects in the real scenario, such as

water, soil, metal, vegetation, etc. [1], [4]. Because of the

existence of mixed pixels, the accuracy of hyperspectral image

processing is severely limited. Under the circumstances, how

to identify the real active endmembers in mixed pixels is a

key preprocessing technique for hyperspectral image analysis.

Extracting the pure spectral signatures (i.e. endmembers)

in the scene is the first step of hyperspectral unmixing, and

the second step is to estimate the corresponding proportions

(called abundances) of these endmembers [4]. Note that we

only focus on the endmember selection process since it is a

prerequisite for the subsequent steps. There are two main mod-

els of hyperspectral unmixing: linear mixture model (LMM)

[4], [5] and nonlinear mixture model (NLMM) [6]. Different

from the NLMM, the LMM has more extensive applications

to date because of it advantages of simplicity, flexibility, high

efficiency and clear physical meaning.

In the LMM model, each mixed pixel of hyperspectral

image is considered as a linear combination of endmembers

weighted by its corresponding abundance fractions [4]. And

under this theory, a group of unmixing approaches based on

geometry [7], [8], statistics [9], and nonnegative matrix factor-

ization (NMF) [10]–[13] has been proposed. These algorithms

only require a small amount of prior knowledge of the hy-

perspectral image, nevertheless, some of these methods could

extract virtual endmembers with no physical meaning [11] and

others [7], [8] assume the existence of pure pixel, which is

hard to guarantee in hyperspectral images. In addition, these

algorithms perform poorly when hyperspectral image data in

highly mixed scenario or have much noise [14].

In reality, the complexity and diversity of the ground

substances increase the difficulty of endmember selection,

that is to say, the endmembers extracted from the observed

hyperspectral data are not accurate enough. In order to over-

come inaccurate endmember extraction during the unmixing

processing, some methods based on sparse representation [14],

[15], have attracted more and more researchers’ attention. The

spectral library is used in sparse unmixing technology to con-

stitute endmember matrix, which is a collection of reflectance

spectral data of various kinds of ground objects measured by

high spectral spectrometer under certain conditions, just like a

“dictionary”. To be precise, mixed pixels in the hyperspectral
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image have been modeled with a few spectra in the library, as

illustrated in Fig. 1. In the actual spectral mixing phenomenon

of hyperspectral images, the number of active endmembers

existing in a pixel or image is far less than the number of the

spectral signatures in the library, so this method often leads

to sparse solution [14].
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Fig. 1. Illustration on sparse regression-based endmember selection of
hyperspectral data. M is formed by the active endmembers (in gray) which
contributes to Y, and S is formed by the corresponding rows of M in X.

According to the above description, selecting active end-

members from spectral library is essentially a subset selection

problem. Subset selection is to select a subset of size k
from a total set of n variables for optimizing some criterion

[16]. Subset selection can be considered as a bi-objective

optimization problem that optimizes the given criteria and

the size of the subset simultaneously [16], and these two

objectives are generally contradictory to each other. In other

words, the subset selection problem is essentially a multiob-

jective optimization problem (MOP). Therefore, there is no

single solution in the feasible region that can simultaneously

minimize all the objective functions. Instead, there is a set of

Pareto optimal solutions that are tradeoffs between different

objectives [17]. The Pareto set (PS) is a set of all Pareto

optimal solutions and mapping it to objective space is the

Pareto front (PF). A Pareto optimization for subset selection

(POSS) algorithm has been proposed in [16]. The POSS solves

the subset selection problem by assigning external variables

to subsets gradually until the stop criterion is reached, but

the convergence speed is slow, because of the single flipping

strategy.

Multiobjective optimization evolutionary algorithms

(MOEAs) aim to find a set of approximate solutions

to the PF [17]–[20], therefore, it is natural that we use

MOEA to solve the problem of hyperspectral endmember

selection. In addition, MOEAs also have some common

advantages, such as the low modeling complexity and the

needless relaxation of the nonconvex regularizers [21]–[24].

In [24], a multiobjective optimization algorithm based on

the NSGA-II has been proposed, but the nondominated

sorting strategy used in it is time-consuming. In addition,

the multiobjective optimization evolutionary algorithm based

on decomposition (MOEA/D) proposed in [19] decomposes

MOP into a sequence of scalar subproblems and optimizes

them simultaneously, thus, it can generate evenly distributed

objective vectors along the PF.

As mentioned earlier, evolutionary algorithms can solve

optimization problem, notwithstanding, its are often designed

to effectively solve one optimization problem at a time. In

modern times, many scientists are devoted to the research

of intelligent algorithms and systems that can efficiently per-

form multitasking, utilizing the basic commonality between

different optimization tasks to simultaneously handle multiple

optimization tasks [25]. These multitask algorithms are usu-

ally implemented through parameter sharing to improve the

processing efficiency in the actual problem solving. Gupta et

al. proposed multifactorial evolutionary algorithm (MFEA) in

[26] in order to process multiple task simultaneouly and then

extended to a multiobjective version in [27].

In this paper, we combine the MOEA/D with the idea

of multitask, and propose a novel multitask endmember se-

lection (MTES) framework. Multitask optimization refers to

process multiple tasks simultaneously and utilizes the basic

commonality between different optimization tasks so as to

improve the processing efficiency in practical problem. The

proposed framework uses a single population to simultane-

ously perform multiple subset selection tasks and applies it

to a specific scene-the endmember selection of hyperspectral

image. Therein, the within-task and between-task genetic

transfer operator is constructed to reinforce the exchange of

genetic material belonging to the same or different tasks for

better and quicker search of the decision space. Experimental

results on hyperspectral data reveal that MTES can process

multiple regions of hyperspectral images simultaneously and

has a faster convergence rate.

II. EVOLUTIONARY MULTITASKING ENDMEMBER

SELECTION

Multitasking endmember selection aims to extracting the

active endmembers of hyperspectral corresponding to the

given task. We define Y = [y1,y2, · · · ,yl] as a hyper-

spectral image that contains l pixels, where yi denote the

ith pixel in hyperspectral image with D spectral bands.

A = [a1,a2, · · · ,am] is a spectral library with m spectral

signatures and each of them also has D spectral bands.

Suppose X = [x1,x2, · · · ,xl] is the abundance fraction

matrix. To ensure that the solution of the abundance has

practical significance, the LMM introduces two constraints,

named the abundance nonnegative constraint (ANC) [28] and



the abundance sum-to-one constraint (ASC) [28]. If noise is

considered, y and Y can be expressed as

y = Ax+ n s.t. x ≥ 0, (1)

Y = AX +N s.t. X ≥ 0, 1TmX = 1Tl , (2)

where n ∈ R
D is the additive noise. X ≥ 0 is the ANC in the

component-wise sense; 1TmX = 1Tl is the ASC for physical

interpretability.

It is well known that the active endmembers might be

different between pixels. In practice, the collaborative sparse

unmixing model employed in [29], [30] assumes that all pixels

in a hyperspectral image can share the same active set of

endmembers. Compared to the pixels in the entire image,

the pixels in the same homogeneous region are more likely

to share the same active set of endmembers. Therefore, we

partition the hyperspectral image into several homogeneous

regions and find small set of endmembers (i.e., M1, M2, ...)

to unmix all the pixels in the same region. Various clustering

or classification methods for hyperspectral image have been

proposed [31], so we can use them in this step. Assuming that

we have K homogeneous regions, Y can be represented as

Y =

K⋃

k=1

Y k, (3)

where Y k is the pixels in the kth homogeneous region. As

similar with (2), for each region, we have

Y k = AXk +Nk. (4)

Because the estimated endmembers M are selected from the

spectral library A, a binary variable I formed by 0 and 1

is used to indicate the locations of the active endmembers

in the spectral library. If the jth element of I is equal to

1, the signature in the jth column of the spectral library is

selected as active, otherwise it is inactive. Thus, the active

endmembers Mk is the nonzero rows of corresponding A in

the kth homogeneous region and abundance matrix Sk is the

subvector of Xk containing the rows specified in the Ik.

In each task, the endmember selection problem is essentially

an MOP, which can be described as

min F (x) = (f1(x), f2(x), · · · , fn(x))�
s.t. x = (x1, x2, · · · , xm)

� ∈ Ω,
(5)

where F i(x) is the objective functions with n real-valued of

and Ω is the feasible set. Assuming x1,x2 ∈ Ω, x1 is said

to be dominated by x2 (denoted as x1 ≺ x2) if and only if

∀i = 1, 2, · · · , n fi(x1) ≥ fi(x2)
∃i = 1, 2, · · · , n fi(x1) > fi(x2).

(6)

The solution x′ is a Pareto optimal if and only if no other

solution in Ω dominates it. All the Pareto optimal solutions

in Ω constitute the Pareto set (PS) and the objective vectors

of all the solutions in PS compose the Pareto front (PF) as

PF = {F (x)|x ∈ PS} (7)

In MOEA/D, tchebycheff approach [19] is use to decompose

the MOP into a sequence of scalar optimization subproblems

as

min
x

gte (x|λ, z∗) = max
1≤i≤n

{λi |fi(x)− z∗i |}
s.t. x ∈ Ω,

(8)

where z∗ = (z∗1 , . . . , z
∗
n) is the ideal or reference points, e.g.,

z∗i = 0 or z∗i = min{fi(x)|x ∈ Ω} . For each specific weight

vector λ, there exists an optimal solution of (8) that solution is

Pareto optimal with regard to (5). Therefore, different Pareto

optimal solutions can be obtained by varying the weight vector,

which plays an important role in maintaining the diversity of

population.
Empirically, the real active endmembers are the least num-

ber of endmembers that can best represent the hyperspectral

data. Therefore, the active endmembers can be estimated by

min F (x) = min (|I|, ‖Y −MS‖2). (9)

To be precise, when the objective I is small, the endmembers

contained in the matrix M are generally not enough to

represent the data Y , so the unmixing residuals will be large.

When the number of endmembers increases sufficiently to

represent the data Y , the unmixing residuals will be small.

Therefore, the two objectives in model (9) are suitable for

estimating the active endmembers and the knee point in the

PF should be selected to locate the active endmembers [32].
A multitasking optimization problem with K tasks can be

mathematically expressed as

{x1,x2, · · · ,xK} = argmin {F 1(x),F 2(x), · · · ,FK(x)}
s.t. xi ∈ Ωi, i = 1, 2, · · · ,K.

(10)
In [33], Gupta et al. proposed a multifactorial optimization

technique to solve the multitasking optimization problems,

then extended it to deal with multiobjective optimization

problems. In evolutionary multitasking optimization, every

individual pi in a population P is associated with a task. For

the pi in the kth task Tk, the factorial rank rik, skill factor τi
and scalar fitness φi are defined as follows:

• The factorial rank rik is the index of pi in the list

of population members sorted in ascending order with

respect to Tk.

• The skill factor τi indicates the associated task. τi = K
means individual pi belongs to the Kth task.

• The scalar fitness of pi in a multitasking environment is

given by φi = 1/riτi .

Each individual is associated with the most effective task, on

which the individual has the best factorial rank. If φ1 > φ2,

the individual p1 is considered to dominate p2.
As mentioned in the preceding discussion, the pixels in

hyperspectral image share similar sparsity pattern. We divide

hyperspectral image into several homogeneous regions and

make each region into a sub-task by selecting the endmembers.

In order to take full advantage of the parallelism of population-

based search, we are motivated to design evolutionary multi-

tasking framework for endmember selection, as depicted in

Fig. 2.
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Fig. 2. Illustration on the proposed MTES framework. The procedures in green and orange regions represent initialization and population evolution, respectively.
The procedure in gray region represents within-task and between-task genetic transfer.

In the initialization step (the green module in Fig. 2.),

population is initialized by randomly generating N binary

vectors (i.e., I1, I2, . . . , IN ) to form the initial population

P0. The length of each vector is equal to the column number

of the spectral library. Individuals are encoded into a unified

space, and we assign skill factor of each individual to indicate

the associated task. After that, we generate N uniformly

distributed vectors ω1, ω2, . . . , ωN that uniformly distributed

between (0, 1) and (1, 0). Size of neighbors T is set to 10

and the Euclidean distance is used to find the neighbor set

B(i) (i.e., B(i) = {i1, i2, . . . , iT }) for each weight vector ωi.

Lastly, the ideal point z∗ is initialized with the objectives of

the individual I1 in first task.

In the evolution phase (the orange module in Fig. 2.), we

firstly acquire new individual Īi and its skill factor τi. Then,

the ideal point z∗ updated by z∗ = min{z∗,F τi(Īi)} and

the solutions to the neighbors of the ith subproblem should be

updated by (6). To be precise, for each index j ∈ B(i), let

Ij = Īi if gteτi (Īi|ωj) < gteτi (Ij |ωj). The evolution process

of all the subproblems is not terminated until the number of

iterations (300 in this paper) meets the upper limit. Finally,

we arrive at a set of nondominated solutions for each task.

During the evolution of the population, the genetic materials

can be transferred among the candidate parents belonging to

the same or different tasks, as depicted in the gray module of

Fig. 2. When the skill factors of the two parents are different,

the random mating probability (rmp) is defined to determine

whether the two parents belonging different tasks conduct

genetic transfer. The skill factor of the offspring is obtained

from one of its parents. When the value of rmp is close to 0,

only culturally alike individuals are allowed to crossover. In

contrast, when the value of rmp is close to 1, the between-

task genetic transfer is able to enhance exploration of the

entire search space. The transfer turns out to be beneficial

if the genetic material from one task happens to be useful

for the another task. We let rmp = 0.8 in this paper and

use multipoint crossover operator and single-point mutation

operator in [15].

III. EXPERIMENTAL STUDY

A. Data Sets and Evaluation Indicators

In this paper, we use famous USGS digital spectral li-

brary (denoted splib061) to generate synthetic data based on

the LMM. USGS library contains spectral signatures which

reflectance values are measured in 224 spectral bands and

uniformly distributed in the interval of 0.4-2.5 μm. In order

to analyze the influence of the mutual coherence among

the spectral signatures on the performance of the proposed

method, we pruned the above spectral library through the

spectral angle distance (SAD) to form two spectral libraries A1

and A2. To be precise, the SAD of any two signatures in A1

is not smaller than 4.4◦ and the SAD of any two signatures in

A2 is not smaller than 10◦. The synthetic data sets constructed

by library A1 and library A2 based on the LMM were named

as DS1 and DS2 respectively, and each of them contains 300

pixels.

In order to compare the performance of our endmember

selection algorithm, three evaluation indicators are considered

in the experiments:

a) Average number (AN): This index can be used to mea-

sure the accurately estimated endmembers, which is defined

as

AN =

∑NT
n=1 Nn

NT
, (11)

1http://speclab.cr.usgs.gov/spectral.lib06
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Fig. 3. Illustration on the use of MTES. The top row is the results on the DS1 and the bottom row is the results on the DS2 (SNR = 40).

where NT is the total number of the estimation trials and Nn

is the number of accurately estimated endmembers in the nth

trial.

b) Correct estimation rate (CER): The CER can be used

to measure the number of correct estimations of the whole

trials. NC denotes the number of correct estimations of the

whole endmembers; NT is the total number of the estimation

trials. The CER can be calculated by

CER = NC/NT. (12)

c) Hypervolume: The hypervolume indicator is used to

measure the quality of the Pareto front, which can evaluate

convergence and distribution of the solution set simultane-

ously. We prefer hypervolume indicator because the true

Pareto front is not known beforehand for real-world problems.

Hypervolume is calculated using a reference point 1% larger

in every component than the corresponding nadir point [20].

B. Results and Discussions

To demonstrate the ability of the proposed MTES for

finding the real endmembers in multitasking environment, we

conducted two experiments on A1 and A2 respectively. Each

experiment consisted of two tasks and the endmember numbers

of each task was set to 10, moreover, the Gaussian white noise

with SNR = 40 dB was imposed on each hyperspectral data.

Note that Fig. 3 only shows the results of the first task of

the two experiments, and the top row is the results on DS1

, the bottom row is the results on DS2. The PF of above

two experiments show in Fig. 3(a) and (d) and the knee

points (in red) are located to find the corresponding estimated

endmembers. Extracted endmembers of DS1 and DS2 were

shown in Fig. 3(b) and (e), respectively. It can be seen that

the estimated endmembers presented in Fig. 3(b) and (e) are

identical to the real active endmembers presented in Fig. 3(c)

and (f). The only difference lies in that the column indices of

the same endmember in estimated endmember set M and real

active endmember set M are inconsistent.
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Fig. 4. Comparing the evolution of the hypervolume indicator for DS1 and
DS2 (SNR = 40). (b) and (d) are the first 80 iterations of (a) and (c).



TABLE I
PERFORMANCE OF THE MUSIC-CSR, TP-MOSU AND MTES UNDER THE VARYING NUMBER OF ENDMEMBERS ON DS1 AND DS2 (SNR = 40)

p

MUSIC-CSR Tp-MoSU MTES

AN CER AN CER AN CER

DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2

4 3.6 4 0.9 1 4 4 1 1 4 4 1 1
6 5.5 5.8 0.7 0.8 6 6 1 1 6 6 6 1
8 5.2 7.2 0.3 0.6 8 8 1 1 8 8 1 1

10 6.3 8.7 0.1 0.3 9.8 10 0.8 1 10 10 1 1
20 8.5 14.6 0 0 15.3 19.8 0 0.9 20 20 1 1
30 11.5 19.7 0 0 18.6 27.3 0 0 27.3 28.4 0.3 0.6

TABLE II
EXPERIMENTAL RESULTS OF AN BY THE MTES UNDER THE VARYING

NUMBER OF TASKS ON DS1 (SNR = 20, 30, 40)

TASK p
AN

SNR=20 SNR=30 SNR=40

1 10 9.35 9.6 9.8

2 20 16.45 18.75 19.9

3 30 24.2 28.5 29.8

4 40 30.8 38.25 40

5 50 34.7 47.65 49.9

TABLE III
EXPERIMENTAL RESULTS OF CER BY THE MTES UNDER THE VARYING

NUMBER OF TASKS ON DS1 (SNR = 20, 30, 40)

TASK p
CER

SNR=20 SNR=30 SNR=40

1 10 0.6 0.7 0.8

2 20 0.1 0.43 0.95

3 30 0.07 0.55 0.93

4 40 0.03 0.61 1

5 50 0 0.59 0.98

Next, we did two experiments with different number of

tasks to analyze the influence of the number of tasks on our

algorithm. When TASK is equal to 1 (denoted as TASK1),

it consists of one task, TASK2 consist of two tasks (each

task had 10 endmembers), and so on. Note that there is no

between-task genetic transfer in TASK1, because it only has

one task. In addition, we also considered the robustness to the

noise interference. We conducted 40 repeated trails on each

experiment with SNR = 20,30,40, respectively, then obtained

the mean values of AN and CER. The quantitative results of

AN and CER are presented in Table II and Table III on the

DS1 respectively. EA-based endmember selection approaches

face the curse of dimensionality [33]. It is worth noting that

with the increase of the number of total endmembers p, AN

and CER decreased somewhat but not dramatically in Table II

and Table III, indicating that our multitasking framework could

effectively avoid the precision attenuation caused by too many

endmembers.

The evolution of the hypervolume indicator for DS1 and

DS2 is shown in Fig. 4. We conducted 5 experiments on DS1

and DS2, respectively, corresponding to five different numbers

of tasks. In Fig. 4(a), five broken lines represent five exper-

imental results of the hypervolume indicator on DS1, which

line “1-task” represents the experiment with one task and line

“5-task” represents the experiment with five tasks. It can be

concluded from the convergence trends of the hypervolume

in Fig. 4(b), (d), when the number of iterations is small, the

experiments with between-task genetic transfer obtains higher

hypervolume values than experiment not have between-task

genetic transfer (e.g. line “1-task”). That is to say, when

multiple relevant tasks are optimized simultaneously by the

MTES with the between-task genetic transfer, the overall

convergence characteristics can be significantly improved.

In the end, three methods are compared in this paper: 1)

MUSIC-CSR [30]; 2) Tp-MoSU [15]; 3) MTES proposed

in this work. The first two algorithms are single-task hy-

perspectral endmember selection methods, while ours is a

multi-task algorithm (we used the bi-task in this experiment.).

As is shown in Table I, the proposed MTES significantly

outperforms other methods on both two datasets with the

increase of active endmembers p.

IV. CONCLUSION

In this paper, we proposed a MTES framework for bet-

ter handling of the hyperspectral endmember selection. The

MTES considers that the pixels in a homogeneous region

are considered as a task and then solves these tasks simul-

taneously. Experimental studies on hyperspectral data have

demonstrated that the proposed algorithm was robust to the

number of active endmembers because of the between-task ge-

netic transfer. Quantitative results on MUSIC-CSR, Tp-MoSU

demonstrate the effectiveness of the proposed framework. In

the future, we hope to improve the proposed framework for

more applications.
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