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Abstract—In nature, the exploration of a design space is
achieved by evolution. However, using artificial evolution to evolve
physical shapes has been challenging because both the mapping
from the genotype to phenotype and the means of measuring
the resulting shape to estimate fitness are not straightforward.
This contribution brings together recent advances in generative
design with novelty search, an evolutionary method that replaces
the fitness function with reward based purely on novelty. Bringing
these techniques together yields a new methodology for exploring
the power of shape descriptors. Novelty search with and without
an archive is used to explore the range of shapes that are
reachable from a hand-designed genotype, and compared with
random walk mutations. Results indicate that the novelty search
technique without an archive evolves a wider range of shapes
than when an archive is used, but both are better than random
walk.

Index Terms—generative evolution, novelty search, genotype-
phenotype mapping

I. INTRODUCTION

Innovation in product design is crucial, not just to ensure
market competitiveness but to meet increasingly stringent en-
gineering and manufacturing requirements. A typical product
development process begins with a concept which in effect
is a shape/form of a final product. Subsequent processes will
reduce the design space further to converge on the final design
that meets the product requirements and thus satisfying the
goal.

A key drawback of this approach is that innovation is
stifled, because designers are heavily influenced by preceding
products and new designs are often mere perturbations of
existing ones. To avoid predicted solutions, a new design
system and philosophy are required, such as generative design
[1], [2], which takes an additive approach that highly encour-
ages divergent exploration and exploitation with no predefined
solution [3].

Generative design requires an algorithm to drive the search
for good designs, since brute-force evaluation of the entire
search space is usually intractable. Evolutionary algorithms
(EAs) are a good fit for such tasks as they are easily config-
urable and generally able to find good solutions in complex

search spaces. However, the application of EAs to generative
design remains challenging. A suitably flexible genomic rep-
resentation must be found, along with a genotype-phenotype
(GP) mapping. In addition, a set of descriptors of the resulting
shape must be found that are capable of measuring the fitness
of the resulting phenotype. For product design, a means of
incorporating feedback from the environment into the fitness
measure is necessary to ensure that the phenotype is fit for
purpose.

Each of the components of a generative design platform
is critical to the overall performance of the system, but it
is difficult to evaluate each of them simultaneously. One
approach is to carry out a series of case studies on different
aspects of this challenge. One such case study is presented
here: the flexibility of the G-P mapping is explored using
novelty search [4], which is known to work well where the G-P
mapping is nontrivial. This allows the mapping and the search
technique to be studied independently of various engineering
constraints that can be introduced in subsequent work.

A simple grammar is used in this work, developed from
Zhang et al [5], which has an interesting combination of
grammar-like growth rules and position-based firing of these
rules. There are many systems which use recursive firing of
rules to generate complex forms, such as L-Systems and their
variants [6]. However, in these systems it becomes difficult
to specify particular features at particular locations, making
it difficult to engineer useful objects which would need these
features to perform some vital function. The representation
used here combines the recursive feature generation properties
of the more natural systems with a facility to add particular
features at exact locations.

This approach aims to further enhance the generative design
philosophy by creating a genotype as a design gene that
will create a geometric shape from specific parameters in the
gene. To date this work has successfully created a suitable
phenotype that has met engineering requirements, but not
as a direct response to them, rather it is limited by preset
parameters in the gene that have controlled the emergence of
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Fig. 1. Stages in the development of the phenotype as it develops from the genotype in table I using algorithm 1. Orientation in x (red), y (green) and z
(blue) are indicated in the figure on the right.

Fig. 2. Developmental stages of the original shape from [5]

this “table shape” phenotype. The challenge then becomes how
to evolve these representations whilst preserving something of
the essential characteristics that are required.

The key advantage of novelty search is that the emphasis
of selection is not on fitness, but on descriptors which give
a measure as to whether a similar or identical phenotype has
been seen previously [7]. However, it appears that there is
as yet little consensus about the best way to configure the
search [8] even in established applications. The experiments
presented here compare two representative configurations of
this approach, one using an archive of phenotypes and one in
which the search is based solely on the current generation. As
a baseline, a run with the same population size and number
of generations is used where there is no selection at all, to
determine the phenotypes that could be achieved by random
changes to the genotype.

The experiments presented below aim to give a methodol-
ogy for the evaluation of the G-P mapping and EA parameters
within the wider framework of generative design. A quantita-
tive and qualitative interpretation of the approach is provided,
with the goal of identifying and characterising the critical
features of a new design paradigm.

II. METHODS

In order to explore these ideas both a genomic represen-
tation of shape and the genotype mapping must be defined.
These are both challenging tasks, particularly in the application
to engineering structures. In addition, a series of metrics that
are used to compare shapes is also needed. Without this, it
is not possible to make any decisions regarding selection in

an evolutionary algorithm. Even novelty search requires each
member of the population to be placed in a space over which
the search is carried out. Finally, an evolutionary algorithm is
needed to bring each of these components together.

A. Genome

Each gene in the representation is a tuple of the follow-
ing pieces of information. These values are coded directly,
although there is scope for a more homogeneous genomic
representation. The fields of each gene tuple are as follows:

• Name: the name of the gene - used for reference only
• Type: a text string that indicates how the gene is to

be interpreted. This string can be parsed with regular
expressions.

• Value: a text string giving a specifier to the gene type
• Start & Stop: the range of values on the X,Y or Z axis

within which the gene is active. Where necessary, the axis
is indicated by the last letter of the type string.

• Dominance is used where more than one gene could
be expressed at a particular position - the gene with the
higher dominance value takes precedent in this situation,
and only this gene is expressed.

Note that in this representation the dominance value is used
to separate genes into groups of three – one gene for each
axis. This representation is easily extendable to incorporate
environmental feedback in the growth process by adding extra
fields where appropriate.

The genome that is used to initialise the experiments is
shown in table I. This gene was designed by hand, to give a
realistic representation of a table shape that might have utility
in an engineering application and to give an identical baseline
for each treatment. Other strategies such as random initiali-
sation are feasible. The phenotype-shape that is described by
these genes can be seen in the right hand image of figure 1.

There are eight groups of three genes. Genes 1 to 3 define
the basic shape unit that is used throughout, since the work
reported here concerns shapes made from a single shape
primitive. The remaining blocks of genes express different
portions of the final shape, as shown in figure 1. Genes 4 to 6
define the first leg at position [0,0,0]. Genes 7 to 9 form two
sides and the centre of the horizontal portion of the shape.
It has a branching nature of “L” shapes that is repeatedly
expressed to form the table top. Genes 10 to 12 commence
construction of the second corner at the far end of the Y axis
and the far border, and genes 13 to 15 do the same for the



Name Type Value Start Stop Dominance
gene01 “Cross Section” “Square” -40 40 1
gene02 “Length” 5 -40 40 1
gene03 “Diameter” 0.5 -40 40 1
gene04 “X 1X” 0 0 1 50
gene05 “Y 1Y” 0 0 1 50
gene06 “Z 1Z” 1 0 5 50
gene07 “T1 2X” 1 0 5 48
gene08 “T1 2Y” 1 0 10 48
gene09 “T1 2Z” 0 0 15 48
gene10 “T3 2X” 1 0 1 47
gene11 “T3 2Y” 0 15 16 47
gene12 “T3 2Z” -1 6 10 47
gene13 “T4 2X” 0 10 11 46
gene14 “T4 2Y” 1 0 4 46
gene15 “T4 2Z” -1 6 10 46
gene16 “T5 2X” 0 10 11 45
gene17 “T5 2Y” 1 4 14 45
gene18 “T5 2Z” 0 6 10 45
gene19 “L3 2X” 1 5 9 44
gene20 “L3 2Y” 0 11 15 44
gene21 “L3 2Z” 0 6 10 44
gene22 “L4 2X” 0 0 30 43
gene23 “L4 2Y” 0 0 15 43
gene24 “L4 2Z” -1 1 12 43

TABLE I
GENOME FOR THE INITIAL SHAPE. GENES ARE GROUPED BY THEIR

DOMINANCE VALUE.

far end of the X axis of the shape. Genes 16 to 18 and 19 to
21 specify the edges of the table along the far X and Y axes
respectively. Finally, Genes 22 to 24 grow the lower parts of
the three unfinished legs of the table shape. The resulting shape
is similar in design and development to Zhang et al’s original
design [5], which is shown in figure 2 for comparison.
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Fig. 3. Change in mean distance d of the population of phenotypes for the
three different experimental approaches. Higher values of ‘distance to seed’
on the y-axis indicate better exploration of the shape space.

B. Genotype-phenotype mapping

The development algorithm is based on Zhang et al’s work
[5] but with some important simplifications. Firstly, no use is

made of the “active” field, allowing all control of the firing of
a gene to be governed by the dominance of the gene relative
to the current position in processing the shape. Secondly, the
x, y, z values and start positions are compounded into three
genes rather than nine to control the direction of firing and
the zone of dominance.

Algorithm 1 Genotype-phenotype mapping algorithm
1: procedure GPMAP(g, p,N )
2: rp← p
3: n← 1
4: while p 6= ∅ ∧ n ≤ N do
5: nextp← ∅
6: n← n+ 1
7: for pp ∈ p do . for each position
8: s← GETSHAPE(pp, g)
9: d← DOMATPOS(pp, g)

10: if d 6= ∅ then
11: V ← GETGROWTHVECTORS(d, g)
12: for v ∈ V do
13: nextp← nextp ∪ ADDPOSITION(s, v)
14: render(s, v)
15: end for
16: end if
17: end for
18: p← nextp
19: rp← rp ∪ nextp
20: end while
21: return rp . rp is the set of visited positions
22: end procedure

Algorithm 1 shows how a genotype is rendered into a
phenotype. A genotype is processed by iteratively adding
shape primitives to new coordinates as they are reached. The
start, stop and dominance values determine which genes fire at
each new position as it is reached. The following subroutines
are needed: GETSHAPE scans the genome for the dominant
shape description at the current position. Since there is only
one shape primitive, this is trivial. DOMATPOS returns the
dominant growth genes at this position. GETGROWTHVEC-
TORS uses the genome and the dominance value to determine
the directions of growth at the current position. ADDPOSITION
identifies any new positions that may have been generated by
growth. To prevent infinite loops of growth, each position is
visited only once so a position is not added if it has already
been processed.

To illustrate this process, figure 1 shows the seven stages
of development of the shape genotype described in table
I. Starting from x, y, z position [0, 0, 0] one of the legs of
the table is constructed first, as described in section II-A.
The iteration limit N was set to 100 even though only nine
iterations of the processing loop were needed to generate
this shape. This approach was taken to impose a reasonable
limit on computation time but to allow sufficient processing
to generate rich phenotypes.



Fig. 4. State of the population of shapes after 100 generations using random walk

C. Shape metrics

The G-P mapping is too unwieldy to act as the basis for a
direct comparison of different phenotypes. Algorithm 1 returns
a set of unique points that have been visited during processing
of the genotype. These can be used to generate a set of metrics
that allow numerical comparison between different shapes,
which in turn can be used in evolutionary experiments. As
a proof of concept, eight measurements of the resulting shape
after the G-P mapping were used: size of range of points in
each x, y, z axis; mean position of points in each of x, y, z
axis; number of iterations of the G-P mapping algorithm; and
the total number of positions visited.

D. Novelty Measure

Novelty search allows the trajectory of the evolution through
the shape space to be controlled, with emphasis on exploring
the space of all possible shapes. This allows the expressibility
of the G-P mapping to be evaluated without reference to a
particular application, which would be defined by a fitness
function in a standard (possibly multi-objective) EA.

The novelty measure is based on the distance between each
member of the population in the space defined by the shape
metrics. Firstly, the K nearest neighbours are calculated using
these distances. The novelty measure is then the mean of
these distances. Expressed formally, for each individual x, the
novelty score ρ(x) is defined as:

ρ(x) =
1

K

K∑
k=1

δ(x, µk) (1)

where δ(x, µk) is the Euclidean distance between individual
phenotype x and its kth nearest neighbour in the shape metric
space.

This approach allows the search algorithm to identify geno-
types that are on average the furthest away from their K
nearest neighbours.

E. Mutation

The genomic representation is a tuple, so mutation must
accommodate the different data types in each gene. Since the

Algorithm 2 Novelty search algorithm
1: procedure NOVSEARCH(g, p)
2: popsize← 100
3: elite← 5
4: ngen← 100
5: K ← 15 . Generate the initial population
6: for pp = 1 . . . popsize do
7: gpop[pp]← MUTATEGENE(g)
8: ppop[pp]← GPMAP(gpop[pp])
9: end for

10: for gg = 1 . . . ngen do
11: for pp = 1 . . . popsize do
12: npop[pp]← SHAPEMEASURE(ppop[pp])
13: end for
14: for pp = 1 . . . popsize do
15: dpop[pp]← MEANKDIST(npop[pp],K)
16: end for
17: rank ← ORDER(dpop)
18: for ee = 1 . . . elite do . select elites
19: next[ee]← gpop[rank[ee]]
20: end for
21: for pp = (elite+1) . . . popsize do. Tournaments
22: ppair < −SAMPLE(popsize, 2))
23: next[pp]← MUTATEGENE(WINNER(ppair))
24: end for
25: gpop← next
26: for pp = 1 . . . popsize do
27: ppop[pp]← GPMAP(gpop[pp])
28: end for
29: end for
30: end procedure

goal is to explore shapes, and the metrics use the growth
positions to measure the shapes, only the growth genes were
mutated (so the first group of genes in table I are fixed).
Similarly, no genes are added or removed from a genome
during mutation in order to get a clearer understanding of
what shapes are possible from a genome of fixed size. A single



Fig. 5. State of the population of shapes after 100 generations using novelty search

mutation is defined as an increment or decrement of the integer
value of the Shape, Start or Stop fields.

The dominance value can also be mutated, but the grouping
stays fixed, and the new dominance value matches another
group of genes, then that group adopts the original value
of the group being mutated. For example, a mutation to the
dominance value of gene 7 from 48 to 47 would change the
dominance value of genes 7, 8 and 9 to 47, and genes 10, 11
and 12 to 48. Note that as in other Novelty Search applications,
crossover is not used in this implementation.

F. Evolution

Apart from the novelty measure itself, well-established
genetic algorithm techniques can be used pretty much arbitrar-
ily for novelty search. To allow straightforward comparison
related techniques, the evolutionary algorithm is also based
on the findings of Gomes et al [8], as detailed in algorithm
2. Following Gomes, a population size of 100 was used. The
population was initialised with single mutations of the seed
shape described above. Each generation involves the following
stages as described in algorithm 2:

1) obtain the shape metrics from each member of the
population (SHAPEMEASURE function)

2) get the mean distance d to the K = 15 nearest neigh-
bours of each member of the population (MEANKDIST
function)

3) Elitism: rank the population by d - the individuals with
the 5 largest d values are copied directly to the next
generation.

4) Tournament selection with a tournament size of 2 is used
to complete the individuals entered into the next genera-
tion. The winner of each tournament is then subjected to
a mutation event (MUTATEGENE & WINNER functions).

III. EXPERIMENTS

The experiments with these configurations were intended to
determine whether novelty search was capable of exploring the

range of available shapes that could be reached from a hand-
designed initial shape using the configuration outlined above.
Accordingly, three different configurations were run, each with
a population size of 100 and running for 100 generations,
resulting in 10,000 mutations in total per trial (excepting
elites where used). The first of these acted as a baseline
for the experiments. Here, each generation was produced by
mutating each member of the previous generation. The result
is a random walk through the mutation space of the genotype,
whereby the distance of the corresponding phenotypes to the
seed could be measured in the same manner as the other
techniques.

The second experiment followed algorithm 2 exactly,
closely following the recommendations in Gomes et al [8]
for novelty search in evolution of effective maze-solving
behaviours. Properties of the resulting phenotype shapes are
captured using simple shape metrics to define the distance
measure by which the novelty search was executed.

Finally, the third experiment examined the use of an archive
of visited shapes to add a ‘memory’ to the stages in novelty
search. If an archive is not available, it is possible that the
distance measure could select mutations that caused previously
observed states to be revisited. To investigate the effect of
an archive the two most novel individuals at each generation
were added to an archive of phenotypes. The archive was
used along with the current generation to calculate the novelty
distance metric for each generation. Other than that, the third
experiment was identical to the second.

Ten trials of each configuration were used, each with
different random number seeds to compensate for the influence
of random events at particular points in the trial.

IV. RESULTS

One of the challenges in investigating the range of shapes a
mapping can produce is to determine how to measure success.
There are two routes to this evaluation in this contribution.
Firstly, the increase in the mean distance of each generation



Fig. 6. State of the population of shapes after 100 generations using novelty search with archive

to the initial shape is studied. This is done for each of
the three configurations as shown in figure 3. Secondly, the
phenotypes in the final generation can be explored to get visual
confirmation of the range of shapes that have evolved.

A. Quantitative analysis

Figure 3 shows clearly that evolution by novelty search
generates phenotypes that have greater distance to the seed
shape than simple random walk. Some other interesting fea-
tures are revealed. The control experiment using random walk
shows a gentle, regular increase in distance until around
generation 50, when there is little further increase. The change
in distance with each generation was similar for each trial
in this configuration, as shown by the tight arrangement of
individual lines around the mean. The novelty search with
an archive is shown in red in the figure. There is more
variability in each trial and generally the distance to the initial
shape is around double the random walk. The novelty search
configuration without an archive evolves on average to the
greatest distance from the initial phenotype shape. This is
unexpected since the lack of an archive means there is no
‘memory’ of shapes that the search algorithm is able to mutate
away from.

B. Qualitative analysis

An example of the population at the end of one of the
random walk trials is shown in figure 4. It is clear that after 100
mutations, little if anything of the table-like shape of the initial
phenotype remains. The population is arranged on a grid, but
some members of the population are not visible, meaning that
there were no growth genes firing at the initial x, y, z position
of [0,0,0]. This demonstrates that whilst growth iterates over a
single position, then mutation can be highly deleterious on the
phenotype. Also, many of the shapes that are present are less
complex than the initial shape for the same reason: mutations
have occurred which prevent any gene from firing early on in
the G-P mapping.

By contrast, the final population of the novelty search trial
without an archive is shown in figure 5. The shapes are

generally more complex than the random walk although there
are a small number of simpler shapes as well. One of the
striking features is the manner in which the shapes fill their
convex hull with relatively little branching of the growth.

The final population of one of the trials with an archive is
shown in figure 6. Visual inspection indicates that the shapes
tend to be less dense than those generated in novelty search
without archive, with less regular filling along the orthogonal
axes. Although this is difficult to measure in a statistically
useful way in the current environment, this implies that the
archive is having some positive effect on shape generation
that isn’t currently detected with the shape measures.

V. DISCUSSION

Novelty search has not been previously used in the area of
generative design. It is intriguing to consider that generative
growth has many similarities with maze-solving - both con-
sider a range of positions at each stage in the iteration and
both require an explicit method of making decisions based on
local context.

The ability of novelty search to drive the exploration of
the “reachable” shapes available from an initial seed has
been demonstrated in this paper. Both configurations generated
shapes that were more than double the distance from the seed
than could be achieved by random walk. A counter-intuitive
feature of the results is that the search using an archive yielded
populations that were not as distant from the initial seed as the
configuration without an archive. How could adding memory
to the search make the exploration of the space less wide?
One explanation of this is that features of the G-P mapping
mean that there are critical points in the evolutionary trajectory
that must be visited several times to ensure mutation along a
pathway that yields shapes that are the most distant from the
seed. Using an archive prevents revisiting previously novel
shapes, forcing evolution down the first mutation pathway
that emerges. An alternative explanation would be that the
shape metrics used in these experiments are not capturing
the richness of the search, so the archive-based search is



continuously finding new features that are not rewarded in the
distance measure. There is some empirical evidence for this
in figures 5 and 6, where the pattern of branching between the
two configurations is visually different.

It is also intriguing that the random walk experiment shows
a gradual slowing down in the rate of increase in distance
towards the end of each run. Why would random mutations
uniformly drive the system to a constant distance from the
seed? Figure 4 gives a clue as to why this might be - random
mutations can be highly deleterious in terms of the growth of
the shape, and if this happens to a genotype, further mutations
are unlikely to chance upon richer phenotypes.

These observations indicate an important issue for gen-
erative design. The simple shape metrics used here are the
only means of evaluating the phenotypes. The shape metrics
are linear, whereas the G-P mapping is highly non-linear, so
mutations in the genotype can have no effect or a huge effect,
depending on the configuration of the rest of the genotype.
Thus, more sophisticated ways of evaluating phenotypes are
required.

The genomic representation used in these experiments has a
mix of grammar-like properties combined with position-based
switching of particular genes. This approach is useful because
if particular features are needed in precise positions, this can
be accommodated in the representation. The Dominance field
in the gene tuple facilitates this, but may also be the cause
of highly deleterious mutations. A further challenge remains
in designing a representation that has these facilities, but is
also more capable of generating useful and robust phenotypes
under mutation. The framework presented here provides a clear
mechanism for evaluating these developments.

Generative design is intended to open up the design space,
so with this genotype and the novelty algorithm in this work,
the design alternatives and the multitude of phenotypes that
can arise from this single genotype can be explored. However
to ensure the phenotype has manufacturing credibility we must
integrate manufacturing based constraints within the novelty
measurement. In product development these constraints are
dictated by multidisciplinary analysis, design for manufacture,
requirements, goals and quality. Each of these constraints
can have their own effect on the products shape and form,
determining the final design structure. The inclusion of such
constraints into this work, for example a common finite
element constraint such as Stress, will directly influence how
the genotype evolves in the design space thus radically altering
the resulting phenotypes.

Novelty search is an important tool in generating diversity
in the design space. Future work will focus on methods
for adding environmental feedback to the search, and the
inclusion of specific fitness measures to drive the later stages
of evolution towards a range of applicable solutions.

The software used to generate the analysis in this contri-
bution was written in R and is available from the authors on
request.
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