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Abstract—Air traffic is playing a leading role in the global
economical growth. Air traffic is indispensable from airport
networks which accommodate the traffic demands. Note that
airport networks are confronted with intractable uncertainties
such as severe meteorological conditions, random mechanical
failures of aircraft instruments, terrorist attacks, etc., which
give rise to the failures of the components of airport networks.
It is of great significance to improve the robustness of airport
networks to component failures as the failures can cause stag-
gering economical losses. Existing works either employ network
rewire mechanism or add more links to an airport network to
enhance the robustness of the given network. In this paper, we
provide a counter-intuitive way to enhance the robustness of
airport networks. Specifically, we propose to remove links from
a given airport network to improve its robustness in face of
perturbations. To do so, we develop a single-objective genetic
algorithm to locate the links of an airport network whose removal
will increase its robustness. Experimental studies on six real-
world airport networks validate the feasibility of the proposed
research idea. This work provides a new perspective for aviation
decision makers to manage airports and air routes, and therefore
sheds new light towards robust airspace design.

Index Terms—Air traffic, airport networks, network robust-
ness, evolutionary computation

I. INTRODUCTION

Air traffic facilitates not only our daily travel but also
commodity delivery. According to the reports released by
the International Civil Aviation Organization (ICAO) and the
International Air Transport Association (IATA), an extremely
large number of people travel through planes [1], [2], and a
magnificent amount of freight are delivered via air traffic [3],
[4]. Nowadays, more passengers and express companies have
prioritised air traffic as their major choice for transportation.
Air traffic is now contributing a great deal to the world
globalization [5], [6].

As air traffic plays a critical role in the world economy, it
is therefore of pertinent significance to ensure the reliability
of air traffic [7], [8]. Note that air traffic is conducted through
a complicated air transport system which involves a colossal
amount of entities and amongst which is the airport. Air traffic
is indispensable to airports which serve departures and arrivals
for aircraft. In reality, airports frequently suffer from manifold
perturbations like runway icing due to bad weather, GPS
signal loss due to interference signals, airport closure due to
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terrorist attacks or persistently low visibility caused by volcano
eruption or smog, etc [9], [10]. All these perturbations impact
airports’ operations, and as an outcome flight cancellations and
delays occur which hurt all the aviation players [8], [11].

Note that for the sake of maximizing passenger flow so
as to gain higher profit, airlines normally schedule the plan
of an aircraft with multiple flight legs that travel between
multiple airports [12]. As a consequence, airports “interact”
with one another, forming the airport networks. When one
airport suffers from perturbations, its capacity has been altered
and departures from and arrivals at that airport are therefore
affected [8], [11]. Those disturbances then propagate on the
airport network through the connections between airports.
In order to gauge how robust an air transport system is to
external/internal perturbations, one of the most straightforward
and effective ways is to model an air transport system as an
airport network and then estimate its network robustness [13]–
[15].

Robustness calculation for airport networks has been well
studied [16]–[19]. Many metrics and methods have been de-
veloped to estimate the robustness of a given airport network,
and among which is the eigenvalue of the Laplasian matrix
corresponding to an airport network [20], [21]. The rationale
behind this is that the eigenvalue has a positive correlation with
the connectivity of a network in face of network component
failures [20], [22]. Assisted with the eigenvalue metric, in the
literature researchers have proposed a vast body of methods to
improve the robustness of airport networks. Existing studies on
the robustness enhancement of airport networks can be roughly
categoried into two classes, viz., network rewire mechanism
[23], [24] and link addition strategy [25], [26]. Network rewire
mechanism aims to modify the structure of a network by
rewiring (reconnect) the links but keeping the same degree
distribution (the number of links attached to each node remains
unchanged) of the focal network so as to achieve higher
network robustness. Network rewire mechanism has proved
as a potent instrument for improving a network’s robustness
and has been widely utilized in many domains. However, to
rewire an airport network may not be of practical use since
many routes have been in use for decades. Besides, rewiring
an airport network needs to take into account operational and
procedure factors before proceedings. Compared to network
rewire mechanism, link addition strategy is more appealing as
it does not profoundly change the structure of a given network.
Link addition strategy improves the robustness of a network by
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adding extra links to the network. The basic principle behind
this is in light of the fact that the most robust structure of a
network is a clique structure [27] in which each node is linked
to all the rest nodes. It should be well aware that construction
of an airport network with clique structure is impossible in
reality. Meanwhile, adding more links to an airport network
could elicit air traffic congestion as current airport networks
are already saturated.

In order to provide a more feasible and much easier way
to improve the robustness of airport networks, we in this
paper suggest to achieve this goal by removing links from an
airport network. In order to determine the links of an airport
network whose removal will increase the robustness of the
focal network, we develop a genetic algorithm to maximize the
robustness of the focal network with respect to the eigenvalue.
We carry out simulations on six real-world airport networks to
validate the effectiveness of the developed algorithm. Experi-
ments demonstrate that it is feasible to improve the robustness
of airport networks by removing links. This work provides
a new perspective for decision makers for better air traffic
management and therefore sheds new lights towards robust
airspace design.

The remainder of this paper is structured as follows. In
what follows we provide the related backgrounds for better
understanding of this work. Afterward, we formulate our
proposed research problem and delineate in detail the designed
algorithm for solving the formulated problem. Finally we
present the experiments and conclude the paper.

II. RELATED BACKGROUNDS

A. Airport Network Representation

Airports are critical infrastructures of air traffic [28]. Air-
ports interact with each other by the flights traveling between
them. It is straightforward and helpful to construct an airport
network to capture the interacts between the airports [11]. An
airport network in general is modelled as a graph which is
composed of a set of nodes/vertices and links/edges. Mathe-
matically, a graph is denoted by G = {V,E}. The symbols V
and E respectively represent the node set and the link set.

For an airport network G = {V,E}, a node i ∈ V
denotes an airport. Generally, we use cardinalities n = |V |
and m = |E| to respectively denote the number of airports
and the number of links in G. Note that the physical meaning
of a link eij ∈ E may vary with respect to specific research
purposes. In this study, we construct a link between airports i
and j if there exist flights between those two airports.

B. Network Robustness Calculation

Complex networks in reality will inevitably suffer from
versatile perturbations which cause failures to network com-
ponents [29], [30]. In order to gauge how robust a network is
in face of perturbations, the research on network robustness
came into being and has received enormous attention in the
past decade [31]–[34].

In the literature, a dozen of methods and metrics have been
proposed to quantify the robustness of a network [20], [35]–
[37]. Among existing avenues, network spectral analysis has
proven as a potent tool for measuring the robustness of a
complex network. Given a network G, let A be its adjacency
matrix. The entry aij ∈ A denotes the interactions between
nodes i and j. Typically, aij = 1, if there is an interaction
between nodes i and j, and 0, otherwise. With all these, the
Laplacian matrix L of network G can be formulated as

L = D−A (1)

where D = diag(d1, d2, ..., dn) is a diagonal matrix with di =∑n
j=1 aij being the i-th diagonal element.
Let x be the eigenvector of L. Therefore, we have Lx =

λx where λ is the eigenvalue with respect to x. As L is a
square matrix, thus, it has maximumly n eigenvalues. Then
researchers quantify the robustness of network G as λ2 which
is the second smallest non-negative eigenvalue [27], [38]. The
larger the value of λ2, the more robust the network is.

C. Evolutionary Algorithms

Many scientific and engineering problems are essentially
optimization problems and in many cases, those problems
are NP-hard. In order to find approximately optimal solutions
within acceptable time, evolutionary algorithms (EAs) mainly
inspired by Darwinism were developed and have been widely
applied to solve diverse optimization problems that cannot be
solved by canonical mathematical methods [39], [40].

An EA approximates the global optimal solution(s) to an
optimization problem with a population of chromosomes.
Each chromosome is a feasible solution to the problem to
be optimized. An EA iteratively generates the new population
by harnessing genetic operators, viz., crossover and mutation.
During each iteration, the EA saves the best solution found
so far. After a given number of iterations, the EA takes the
best solution discovered by the algorithm as the “global” best
solution to the optimization problem.

III. RESEARCH PROBLEM AND METHODOLOGY

A. Research Problem

This paper aims to investigate if it is possible to improve
the robustness of an airport network by removing links instead
of adding new ones or totally rewiring the network. Fig. 1
presents the concept diagram of the research problem investi-
gated in this work.

For a given airport network like the toy network shown in
Fig. 1, we estimate its network robustness based on spectral
analysis. In this work we design a genetic algorithm to see if
it is possible to remove some links from the given network to
improve its robustness. For the toy network shown in Fig. 1,
the designed genetic algorithm suggests that the link between
nodes 2 and 6 can be removed and its robustness has been
improved from 0.4374 to 1.3820. In what follows we will
formulate our research problem and describe in detail the
algorithm design.
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Fig. 1. Concept diagram of the proposed research problem.

B. Problem Modeling

In order to locate the links that can be removed to improve
the robustness of an airport network, we therefore construct an
optimization problem. Given an airport network G = {V,E}
with A being its adjacency matrix. Then we propose to solve
the following maximization problem:

argmax
E0

λ2

s.t. L0x = λ2x
L0 = D0 −A0

A0 = A
∣∣E − E0, E0 ⊆ E

(2)

where L0 is the Laplacian matrix of A0 and A0 is the surplus
of A from which E0 – a portion of its links – are removed.

By solving the above optimization problem we can get the
subset E0 with respect to the maximum value of λ2. Let λ′2 be
the second smallest non-negative eigenvalue of the Laplacian
matrix corresponding to A. Then we say that the robustness
of the given airport network G can be improved by removing
some of its links if the following condition is satisfied:

λ2 ≥ λ′2 ∧ E0 6= ∅ (3)

C. Algorithm Overview

As can be seen from Eq. 2, the formulated problem is
a combinatorial optimization problem. In order to solve it
properly, we here introduce and design a genetic algorithm
(GA). The framework of the developed GA is provided in
Algorithm 1.

In step 3 of Algorithm 1, the population P consists of psize
individuals each of which is also called a chromosome. Each
chromosome represents a feasible solution to the problem to
be optimized. In what follows we provide details for all the
key steps of Algorithm 1.

Algorithm 1 Framework of the proposed genetic algorithm
Input: An×n – adjacency matrix of a network with m links
Output: E0 – a subset of the link set E of A

1) Hyper-parameters settings of psize, pm, pc and iter;
2) Set E0 = [ ] and λ2 = −∞;
3) P = (p1,p2, ...,ppsize)

T ; //initialize a population, see
subsec III-D

4) [E0, λ2] = FitnessEvaluation(P,A); //see Eq. 2
5) [E0, λ2] = UpdateGlobalBest(E0, λ2,P);
6) For i = 1 to iter, do

a) P = GeneticOperation(P, pc, pm); //create new
population, see subsec III-E

b) [E0, λ2] = FitnessEvaluation(P,A);
c) [E0, λ2] = UpdateGlobalBest(E0, λ2,P);
d) P = ElitismMechanism(λ2,P); //subsec III-F

7) end

D. Chromosome Representation

How to represent a chromosome is the key to bridge a GA
with an optimization problem. In this paper we aim to delete
some links from a given network G to improve its robustness.
To do so, we represent a chromosome pi as follows:

pi = (p1i , p
2
i , ..., p

m
i ) (4)

where m is the number of links of network G and pji ∈ {0, 1}
is a binary variable. For a GA, pji is also called the j-th gene
of the i-th chromosome.

The above representation corresponds to a feasible solution
to the problem formulated in Eq. 2. The j-th gene of chromo-
some pi specifies whether the j-th link of G can be removed
or not. Specifically, based on pi we determine E0 as

E0 = {j
∣∣pji = 1,∀j ∈ [1,m]} (5)

Substituting E0 into Eq. 2 we get the value of λ2 and per
the condition formulated in Eq. 3 we then get to know whether
E0 is indeed the set of links whose removal will increase the
robustness of the original network G.

E. Genetic Operation

The genetic operation as shown in step 6a of Algorithm 1 is
to generate a new population. The genetic operation consists
of two operators, viz., crossover and mutation.

Single Point Crossover) The crossover operator is imple-
mented pairwise. For a pair of chromosomes pi and pj , in this
paper we adopt single point crossover operation. Specifically,
we first randomly select a position r between 1 and m. Then
we swap the genes of pi and pj starting from the position r
with a given crossover probability pc. As a consequence, we
generate two new chromosomes p′i and p′j .

Single Point Mutation) For chromosomes p′i and p′j we
then carry out single point mutation operation. Specifically,
for p′i and p′j we randomly select one gene from each
chromosome with a probability pm and change its value.
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Fig. 2. Best values of λ2 found by GA and DPSO when applied to the airport networks. The values of λ2 are drawn with respect to the iteration number.

F. Elitism Mechanism

Note that GA is a stochastic method. In order to improve
its searching ability, we introduce an elitism mechanism. For
a given population P, the elitism mechanism first locates all
the worst individuals pi that have the smallest fitness value. If
the best individual of P is worse than the historically best
individuals, then the elitism mechanism replaces the worst
individuals in P with the historical ones.

IV. EXPERIMENTAL STUDY

A. Airport Network Datasets

In the experiments we carry out case studies on six real-
world airport networks which are abstracted from the Open-
Flight dataset [41]. Table I lists the basic properties of the
studied airport networks.

TABLE I
PROPERTIES OF THE TESTED AIRPORT NETWORKS. SYMBOL 〈k〉 DENOTES

THE AVERAGED DEGREE, AND λ′2 IS THE ROBUSTNESS OF A NETWORK.

Region n m 〈k〉 λ′2
Australia 113 227 4.0 0.1646

Brazil 127 374 5.9 0.1228
Canada 205 436 4.3 0.0919
China 178 1402 15.7 0.9871
Europe 566 5101 18.0 0.4115
India 72 199 5.5 0.9587

Note that each constructed airport network is unweighted.
Putting it another way, we construct a link between two
airports as long as there are flights that fly between them.
We are not considering the weights of the links of a network
as the traffic demand varies from day to month.

B. Experimental Settings

In the experiments we compare the designed GA against a
discrete particle swarm optimization (DPSO) algorithm [42].
The DPSO algorithm utilizes the same individual represen-
tation scheme as that of GA. The settings of the hyper-
parameters for the GA and the DPSO algorithm are provided
as follows:

1) GA – psize = 100; iter = 100; pc = 0.9; pm = 0.1;
2) DPSO – psize = 100; iter = 100; c1 = 1.496; c2 =

1.496; w = 0.729.
Note that the parameter settings are based on experience. We

do not tune all the parameters and see their impact on the final
results. This is because that the main purpose of this paper is
to validate whether the proposed research idea is feasible or
not.

C. Fitness Comparison

For each tested network, we apply GA and DPSO to
maximize Eq. 2. During each iteration we record the best
value of λ2 found by each algorithm. Fig. 2 demonstrates the
corresponding results on the tested airport networks.



As can be seen from Fig. 2 that the DPSO algorithm
performs better than GA with respect to the best value of λ2.
As GA and DPSO are stochastic algorithms, each independent
run of GA or DPSO could yield different results. Since the
results shown in Fig. 2 are the outcome of one run of each
algorithm, we therefore further compare the two algorithms
by running each algorithm for 30 independent times.
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Fig. 3. Box plot of the best values of λ2 found by GA and DPSO for 30
independent runs on each studied airport network.

Fig. 3 displays the box plot of the best values of λ2 obtained
by GA and DPSO through 30 independent runs. We can
clearly see from Fig. 3 that the values of λ2 obtained by the
DPSO algorithm through 30 independent runs on China airport
network vary a lot which indicates that the DPSO algorithm
is unstable. This is mainly due to the stochastic nature of the
algorithm. The box plot results indicate that for the six tested
networks, DPSO outperforms GA in terms of the maximum
objective value.

D. Link Removal Comparison

The above experiments demonstrate that DPSO can obtain
higher fitness values than GA does. For each airport network
we record the best solutions (λ2 and E0) found by DPSO and
GA during the 30 independent runs. Table II summarizes the
statistical results.

By comparing Table II and Table I, we can see that the
robustness of the studied airport networks have been increased
by removing links from the networks. Although results shown
in Figs. 2 and 3 indicate that the DPSO algorithm yields
solutions with higher objective values, Table II reveals that
the solutions yielded by the DPSO algorithm need to remove
more links from an airport network than that obtained by GA
does to increase the network’s robustness.

We can observe from Table II that the GA yields more
optimal solutions (reflected by #E0) than the DPSO does.
This is due to the intrinsic nature of GA and DPSO. GA em-
ploys the genetic operators which help in better exploitation,

while DPSO harnesses particle status update equations which
contribute to better exploration. Although DPSO can yield
solutions with higher objective function values, this does not
necessarily mean that DPSO outperforms GA. This is because
that the solutions obtained by DPSO suggest to remove more
links from an airport network which may not be realistic.

TABLE II
STATISTICS OF THE BEST SOLUTIONS FOUND BY DPSO AND GA FOR 30

INDEPENDENT RUNS. #E0 IS THE NUMBER OF OPTIMAL SOLUTIONS, AND
MIN|E0| IS THE MINIMUM NUMBER OF REMOVED LINKS WITH RESPECT

TO ALL THE OPTIMAL SOLUTIONS.

Reigion GA DPSO
λ2 #E0 min|E0| λ2 #E0 min|E0|

Australia 0.2378 1 11 0.3904 1 12
Brazil 0.6730 1 19 0.7005 1 19
Canada 0.1563 1 22 0.1661 1 26
China 0.9960 4 51 1.8494 1 70
Europe 0.4527 2 108 0.5103 1 255
India 0.9807 2 7 0.9881 1 10

E. Network Structure Comparison

The best solutions presented in Table II suggest that the
robustness of an airport network can be improved by removing
links. Since GA requires less link removal to improve a
network’s robustness, we therefore take the results generated
by GA as the final output. In what follows we compare
the original airport network structures against those being
optimized by GA with respect to their robustness.

For better visualization, here we only analyze the Australian
and Indian airport networks as these two networks are smaller
in size than the remaining four networks. As shown in Table
II that GA respectively needs to remove 11 and 7 links from
the Australian and Indian airport networks to improve their
robustness, we therefore in Fig. 4 exhibits the original airport
network structures and the structures obtained by removing
the corresponding links from the original networks.

Note that the positions of the nodes of the networks
displayed in Fig. 4 are exactly based on their real GPS
coordinates. Fig. 4 demonstrate that some of the removed
links are associated with several hub nodes (the red nodes
of the Australian airport network and the purple nodes of
the Indian airport network). If a hub airport suffers from
perturbations, then many flights will be affected. If some
routes/links attached to a hub airport are removed, then the hub
airport becomes less centralised and therefore perturbations to
that airport may impact relatively less flights.

One may notice from the bottom panel of Fig. 4 that after
removing the link between the red nodes, one node becomes
isolated. On one hand, the solutions obtained by GA may not
be the global optima due to the stochastic nature of GA. On the
other hand, the node isolation does not necessarily mean that
flights between those two airports are permanently cancelled.
In order to minimize economical losses in face of perturbations
occurred to airports, airlines can cancelled flights within a
time window and will resume in the near future when the
perturbations disappear.
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Fig. 4. Comparisons between the original airport network structures (left panel) and those optimized by GA (right panel) with respect to λ2. The upper and
bottom panels respectively exhibit the network structures of the Australian and Indian airport networks.

V. CONCLUSION

Airport networks inevitably suffers from internal/external
perturbations which gives rise to the dysfunction or unavail-
ability of airports that will elicit staggering traffic delays and
economical losses. How to improve the robustness of an airport
network in face of perturbations is of pertinent significance to
aviation industry. Existing studies on improving the robustness
of airport networks either apply network rewire strategy or
argument a network by adding in more links. In this study we
provided a more realistic and much easier way to achieve this
goal. Specifically, we proposed to improve the robustness of
an airport network by removing some of its “redundant” links.
To do so, we developed a genetic algorithm to locate those
links by maximizing the second non-negative eigenvalue of
the Laplacian matrix for a given airport network. Experiments
on real-world airport networks had been carried out and the
feasibility of the proposed idea had been validated. This work
provides a new perspective towards robust airspace design.
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