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Abstract—Multimodal program optimizations (MMPOs) have
been studied in recent years. MMPOs aims at obtaining multiple
optimal programs with different structures simultaneously. This
paper proposes novel MMPO benchmark problems to evaluate
the performance of the multimodal program search algorithms.
In particular, we propose five MMPOs, which have different
characteristics, the similarity between optimal programs, the
complexity of optimal programs, and the number of local optimal
programs. We apply multimodal genetic programming (MMGP)
proposed in our previous work to the proposed MMPOs to verify
their difficulty and effectiveness, and evaluate the performance
of MMGP. The experimental results reveal that the proposed
MMPOs are difficult and complex to obtain the global and
local optimal programs simultaneously as compared to the
conventional benchmark. In addition, the experimental results
clarify mechanisms to improve the performance of MMGP.

Index Terms—Multimodal program optimization, genetic pro-
gramming, benchmark, multimodal search, symbolic regression

I. INTRODUCTION

In recent years, multimodal optimization that aims at obtain-
ing a global optimal solution and a plurality of local optimal
solutions simultaneously using evolutionary algorithms (EAs)
has been studied. Here, a local optimal solution is a solution
that has a lower fitness than a global optimal one but is optimal
in a local region [1]. We have introduced the concept of
multimodal optimization into genetic programming (GP) [2],
which targets program optimization, and proposed multimodal
genetic programming (MMGP) [3] that obtains global and
local optimal programs simultaneously. Since programs are
represented by a tree structure in GP, MMGP divides a popu-
lation into multiple clusters by clustering using the similarity
of the tree structure and performs optimization considering the
clusters to enable the multimodal search.

The previous study on MMGP [4] has been tested on the
multimodal program optimization (MMPO) benchmark pro-
posed in the previous work [3]. However, in the conventional
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benchmark, the global and local optimization programs are
both simple and the number of the local optimal program is
only one. This makes it relatively easy to find multiple optima.
Therefore, the evaluation of the performance of MMGP was
not enough, and it is unclear whether it can be applied to prob-
lems with more complex global and local optimal programs
and/or problems with multiple local optimal programs.

In order to overcome this problem, this research proposes
new MMPO benchmark problems for enabling algorithm
evaluation of multimodal genetic programming. In particular,
we propose new benchmarks that have different characteristics
of the complexity of programs, the similarity between the
global and local optimal programs, and the number of local
optima. In this paper, MMPOs are designed by connecting
multiple formulas used in the symbolic regression problem,
referring to the GP benchmark problems provided in the work
of McDermott et al. [5].

We apply the simple GP, which does not consider the multi-
modality, and MMGP to the proposed MMPO benchmarks to
investigate the difficulty and the effectiveness of the proposed
benchmarks. In addition, we evaluate the performance of
MMGP and reveal the direction to improve its performance.

II. BACKGROUND

A. Multimodal Optimization

The multimodal optimization problem [1] is a problem that
aims at obtaining not only a global optimal solutions but also
all local optimal solutions. A local optimal solution is an
optimal solution in the local region. Fig. 1 shows an example
of a multimodal optimization problem. In Fig. 1, the x-axis
indicates the search space, while the y-axis indicates the fitness
or the objective function. The higher the fitness, the better
the solution. In this figure, the solution indicated by the red
circle is the global optimal solution because it has the best
fitness value in the entire search space. On the other hand, the
solutions indicated by the blue circle have lower fitness than
the global optimal solution, but is defined as the local optimal
solutions because they are the best solution in a certain local
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Fig. 1: An example of a multimodal optimization. The x-axis
indicates the search space, while the y-axis indicates the fitness
(maximization). The solution indicated by the red circle is the
global optimal solution, while the solutions indicated by the
blue circles are the local optimal solutions.

Fig. 2: An example of a tree representation of the mathematical
expression (2× (x− x)) in GP

region. The final goal of multimodal optimization is to obtain
all solutions indicated by the red and the blue circles in this
example simultaneously in a single run.

B. Genetic Programming

GP is an extension of Genetic Algorithm (GA) [6] proposed
by Koza and handles mathematical expressions and programs
as optimization targets. Unlike genotype expression in GA is
mainly an array, GP typically uses a tree structure. This makes
it possible to represent structured data such as mathematical
formulas and program codes that are hard to be represented
by an array structure.

Fig. 2 shows an example of a tree structure expressing the
mathematical expression (2 × (x − x)). This tree structure
consists of operators (“×” and “−” in the figure), variables
(“x” in the figure), and constants (“2” in the figure).

C. Multimodal program optimization

In our previous works, we invented a multimodal program
optimization (MMPO) that applies a concept of multimodal
optimization to program optimization. The purpose of MMPO
is to obtain a global optimal program and local optimal
programs with different genotypes (i.e., program structures)
for one objective. For example, in a symbolic regression
problem that identifies a function from a given input-output
relationship, multiple functions (programs) using different
operators and combinations of variables are obtained.

In our previous works, we proposed a benchmark problem
for MMPO. The benchmark problem is defined as a symbolic
regression problem based on the input and output values given
by the following equations, taking the 4 variables x, y, z, w as
inputs:

f(x, y, z, w) = x2 + y2 (1)
z = (x+ y + α)2 + δ (2)

w =
α2

2
+ xy + xα+ yα+ δ, (3)

where α is a constant, while δ is the random noise given to the
variables z and w. The domains of x and y are both defined
as [−1.0, 1.0]. If δ is 0, this expression is reconstructed as:

f(x, y, z, w) = x2 + y2

= z − 2w. (4)

From the formula in (1), when certain values of x and y
are given, input/output values can be expressed as (4) using
variables z and w. If δ is not 0 and the random noise is added
to z and w, the value calculated by (4) has an error compared
to the correct calculation result calculated by (1). For this, a
program given by the formula of (4) can be regarded as a local
optimal program in this problem.

D. Multimodal Genetic Programming

We proposed multimodal genetic programming (MMGP) [3]
as a method for solving MMPOs. MMGP focuses on the
similarity of the tree structure, which is an expression of
programs, and realizes multimodal search by dividing the
population into multiple clusters based on the tree structure
similarity.

A pseudo-code of MMGP is shown in Algorithm 1. In the
algorithm, Pg represents the population at the gth generation,
while Cg represents a set of clusters constructed from Pg . Cig
represents the ith cluster in Cg , which consists of one or more
programs (solutions). Pc indicates the crossover probability.

In MMGP, new programs are generated through the
crossover and the mutation operators in line 5–18. The
crossover operator is applied to two parent programs, one
is selected from the target cluster, while another is selected
from randomly selected cluster. By this, all clusters are evenly
referred, and the search is executed locally in the cluster.
The mutation operator is also executed by considering the
cluster. After generating new programs, the old and the new
populations are merged, and the clustering based on the tree
structure similarity is performed. Then, programs with low
fitness values are eliminated from each cluster until the size of
each cluster is reduced by half. These procedures are repeated
until the number of generations reaches the maximum.

Algorithm 2 shows the pseudocode of the clustering in
MMGP. In Algorithm 2, pi indicates the ith program in
the population P , while Ci indicates the ith cluster in the
set of cluster C. MMGP uses the agglomerative hierarchical
clustering. The similarity between two clusters is determined
by the smallest similarity between programs in these clusters.



Algorithm 1 A pseudo-code of MMGP

1: P0 ← initialize()
2: C0 ← clustering(P0)
3: for g = 0 to G do
4: P ′g ← ∅
5: for i = 1 to |Cg| do
6: for j = 1 to |Pg|/|Cg| do
7: if rand(0, 1) < Pc then
8: p1 ← tournament(Cig)
9: r ← randInt(0, |Cg|)

10: p2 ← tournament(Crg )
11: p′ ← crossover(p1, p2)
12: else
13: p← tournament(Cig)
14: p′ ← mutation(p)
15: end if
16: P ′i ← P ′g ∪ {p′}
17: end for
18: end for
19: Pg+1 ← Pg ∪ P ′g
20: Cg+1 ← clustering(Pg+1)
21: for i = 1 to |Cg+1| do
22: Li ← max(1, |Cig|/2)
23: end for
24: while |Pg+1| > |Pg| do
25: for i = 1 to |Cg+1| do
26: if |Pg+1| = |Pg| ∨ |Cig+1| ≤ Li then
27: break
28: end if
29: p← negative_tournament(Cig+1)
30: Cig+1 ← Cig+1\{p}
31: end for
32: end while
33: end for

First, all programs in the population are set in one cluster
from line 1. Then, from lines 2 to 6, the similarities between
all clusters (programs) are calculated, where Di,j indicates the
similarity between the ith and jth clusters (programs). Next,
this algorithm finds the clusters with the highest similarity
in lines 8 to 16, and they are merged in line 20. After that,
the similarities between the cluster generated by the merge
and others are updated according to the smallest similarity of
programs in two clusters in lines 21 to 23. And finally, the
merged cluster is removed from C in line 24. This procedure
is repeated until the maximum similarity of clusters reaches
the user-defined threshold d, and the clustered population is
returned. As the tree structure similarity, the previous research
employed one proposed by Yang et al. [7] (see [7] or [3] for
detail).

III. PROPOSED BENCHMARK PROBLEMS

In the previous MMPO problem shown in (4), the global
optimal program and the local optimal program are similar and
simple. Furthermore, since it includes only one local optimal

Algorithm 2 Clustering procedure

1: C ← {{P 1}, {P 2}, . . . , {PN}}
2: for i = 1 to |C| do
3: for j = i+ 1 to |C| do
4: Di,j ← similarity(P i, P j)
5: end for
6: end for
7: while |C| > 1 do
8: maxi ← 1,maxj ← 2
9: for i = 1 to |C| do

10: for j = i+ 1 to |C| do
11: if Dmaxi,maxj

< Di,j then
12: maxi ← i
13: maxj ← j
14: end if
15: end for
16: end for
17: if Dmaxi,maxj

≤ d then
18: break
19: end if
20: Cmaxi ← Cmaxi ∪ Cmaxj

21: for i = 1 to |C| do
22: Di,maxi

← min(Di,maxi
, Di,maxj

)
23: end for
24: C ← C\{Cmaxj}
25: end while
26: return C

program, it is relatively easy to obtain the global and local
optimal program simultaneously. Therefore, it cannot be said
that the performance of MMGP has been sufficiently evaluated
only by the previous MMPO problem.

In this paper, we propose new five MMPO problems with
complex structure of global and local optimal programs and
with multiple local optimal programs. Specifically, the pro-
posed MMPO problems combine multiple symbolic regression
problems with reference to the work of McDermott et al. [5],
which summarizes the GP benchmark problems used in lit-
erature. This enables more detailed analyses of multimodal
program optimization methods.

A. Problem description

The five proposed MMPO benchmark problems are detailed
as follows:

MMPO1: The first benchmark, MMPO1, connects the
following three formulas:

f(x) = log(x+ 1) + log(x2 + 1) (5)
g(y, z) = 2− 2.1 cos(9.8y) sin(1.3z) (6)
h(w, v) = 2 sin(w) cos(v). (7)

To let these three have the same calculation result, the variables



y, z, w and v are decided from x as:

y =
f(x) + 1

9.8α
+ δ (8)

z =
1

1.3
sin−1

 2− f(x)

2.1 cos
(
f(x)+1
α

)
+ δ (9)

w = sin
log(x+ 1)

log(x2 + 1) + 1
+ δ (10)

v = cos−1
(
f(x)

2 sinw

)
+ δ. (11)

Similar to the previous MMPO problem, δ is the random noise
given to each variable, while α is constant. The domain of x
is defined as [0.01, 0.5]. If δ = 0, the above formulas have the
same calculation result.

MMPO2: The second benchmark, MMPO2, connects the
following two formulas:

f(x) = x3 + x2 + x (12)
g(y, z) = sin(y2) + sin(z). (13)

Same as MMPO1, the variables y and z are decided from x
as following to let these two have the same calculation result:

y =
x6 + x4 + x

α
+ δ (14)

z = sin−1
(
f(x)− sin(y2)

)
+ δ. (15)

The domain of x is defined as [−0.5, 0.5].
MMPO3: The third benchmark, MMPO3, connects the

following two formulas:

f(x) = sin(x2) cos(x)− 1 (16)
g(y, z) = 6 sin(y) cos(z). (17)

The variables y and z are decided from x as following to let
these two have the same calculation result:

y = 2x3 + 1 + δ (18)

z = cos−1
(

f(x)

6 sin(y)

)
+ δ. (19)

The domain of x is defined as [−0.5, 1.0].
MMPO4: The fourth benchmark, MMPO4, connects the

following two formulas:

f(x) = sin(x) + sin(x+ x2) (20)
g(y, z) = 2 sin(y) cos(z). (21)

The variables y and z are decided from x as following to let
these two have the same calculation result:

y = cos(f(x)) + δ (22)

z = cos−1
(

f(x)

2 sin(y)

)
+ δ. (23)

The domain of x is defined as [−0.5, 0.5].

TABLE I: Characteristics of the proposed MMPOs

Similarity Complexity # locals
MMPO0 High Low 1
MMPO1 Low High 2
MMPO2 Low Low 1
MMPO3 High Low 1
MMPO4 Low High 1
MMPO5 Low High 2

MMPO5: The fifth benchmark, MMPO5, connects the
following three formulas:

f(x) = x4 + x3 + x2 + x (24)
g(y, z) = sin(y) + sin(z2) (25)

h(v, w) = v4 − v3 + w2

2
− w. (26)

To let these three have the same calculation result, the variables
y, z, w and v are decided from x as:

y = sin−1(3x3 + x2) + δ (27)

z =

√
sin−1(x4 − 2x3 + x) + δ (28)

v =
1

1 + x
+ δ, (29)

w = 1−

√
1− 2

(
− x

(1 + x)4
− f(x)

)
+ δ. (30)

(31)

The domain of x is defined as [0.0, 0.5].

B. Characteristics of the proposed benchmarks

The above five MMPOs have more complex structures
than the previous benchmark and MMPO1 and MMPO5 have
multiple local optimal programs. This makes it difficult to
obtain global and local optimal programs simultaneously.
Table I summarizes the characteristics of each benchmark
(the similarity of the global and the local optimal programs,
program complexity, and the number of local solutions). The
benchmark proposed in the previous research is represented as
MMPO0 hereafter.

The previous benchmark, MMPO0, has only one local
optimal program, and the global and local optimal programs
are similar and simple, both of them are constructed with a
few arithmetic operations. Three of the proposed benchmarks,
MMPO2, MMPO3, and MMPO4, also have one local optimal
program. On the other hand, MMPO1 and MMPO5 include
two local optima. The characteristic of MMPO3 is similar to
MMPO0, because its similarity is high and the complexity is
low. In particular, The global and local optimal programs have
the same structure, for example sin(·)× cos(·) in MMPO3.

IV. EXPERIMENT

To investigate the difficulty of the proposed MMPOs and
investigate the search capability of MMGP proposed in the
previous work, this paper conducts an experiment to solve
MMPOs with MMGP and a simple GP.



A. Setting
In this experiment, we use MMPO0 and the five MMPOs

proposed in this research, for a total of six benchmarks are
used. Considering the complexity of the optimal programs,
the maximum depth of the program tree is 4 for MMPO0, 10
for MMPO1, MMPO3, and MMPO5, and 6 for MMPO2, and
MMPO4.

In MMGP, since the result differs depending on the thresh-
old d at which clustering is stopped in MMGP, the threshold
d = {0.5, 0.6, 0.7} are used. A simple GP is regarded as
a special case of MMGP with d = 1.0, i.e., the clustering
is executed until all clusters are merged. The experiment
is executed 20 independent runs for each method and each
problem. The number of generations is 500 and the popu-
lation size is 500. The crossover probability is 0.9, and the
mutation probability is 0.1. The variables x, y, z, w are used
for MMPO0, x, y, z, w, v for MMPO1 and MMPO5, x, y, z
for MMPO2 and MMPO3 and MMPO4. Eight function nodes
are used: +,−,×,%1, sin, cos, tan, log 2. The random real
constant value c ∈ [−1, 1] as the terminal node other than
the variable. The fitness function is defined as:

fitness =

D∑
i=1

|resulti − targeti| , (32)

where D represents the number of the training data. resulti
represents the execution result of a program for the ith
input value, while targeti represents the output value re-
spective to ith input value. The number of data D is set to
121, 50, 100, 150, 100, 50 from MMPO0 to MMPO5, respec-
tively, and distributed uniformly in the domain defined for each
MMPO.

B. Evaluation criteria
In this experiment, the best individuals with the use of

limited variables are identified in order to evaluate whether the
global and local optimal programs with different genotypes can
be obtained simultaneously. Concretely, among the programs
obtained in each trial, the best program that uses only the
variables included in the assumed local optimal program is
considered. For example, when the local optimal program
shown in (6) of MMPO1 has been acquired, even if the
variables x,w, v are not used, the program using the variables
y, z can achieve a low (excellent) fitness. The percentage of
which the optimal program found for 20 trials and its transition
are confirmed. This confirms whether the global and local
optimal programs have been acquired simultaneously in one
trial. We define that the global optimal program is found if
the fitness is less than 0.02, while not found if it is more than
0.02. Moreover, we define that the local optimal programs are
found if the fitness is less than the value calculated by (6)
and (7) in MMPO1, (13) in MMPO2, (17) in MMPO3, (21)
in MMPO4, and (25) and (26) in MMPO5 when using certain
variables, respectively.

1Protected division.
2Since our previous research [3] does not use sin, cos, tan, log, the

experimental results are different.

V. RESULT

A. Acquisition percentage of the global and local optimal
programs

Table II shows the percentage of which the global and local
optimal programs are found in the final population in 20 trials.
Each column represents the global and local optimal programs.
The “all” column represents the result when all variables are
used, while the other columns represent the result when only
some variables are used, for example, the “x” column indicates
the result when the only variable x is used. Each row shows
the threshold d of MMGP and the simple GP.

From the results of Table II, MMGP obtains the global and
local optimal programs in most of trials in MMPO0, which is
the benchmark proposed in the previous work. On the other
hand, the simple GP obtains only the local optimal program
in 15% trials, while does not find the global optimal program
only using the variables x and y. From this, it is revealed that
the benchmark proposed in the previous work is easily solved
by MMGP.

In MMPO1 and 2, MMGP is more likely to find the global
and local optimal programs than the simple GP. However, in
MMPO1, all global and local optimal programs cannot be
simultaneously found even with MMGP. For MMPO3, both
MMGP and the simple GP hardly found the global and local
optimal programs. In MMPO4, although the MMGP could find
the local optimum program in all trials, the global optimal
program could not be found. The simple GP does not also
find the global optimal program. In MMPO5, MMGP does
not only find the local optimal program, but not the global
optimal program. On the other hand, the simple GP finds the
global optimal program with a high percentage, but it does not
find the local optimal program.

From this result, it is revealed that it was difficult to obtain
the global and local optimal programs simultaneously for
both the simple GP and MMGP when using the proposed
benchmark. This indicates that the proposed MMPOs are more
complex and difficult than the previous benchmark.

B. Transition of the acquisition percentage

Fig. 3 to 8 show the generation transition of the percentage
of the global and local optimal program acquisition for each
method. The vertical axis shows the percentage of acquir-
ing the global/local optimal program in 20 trials, while the
horizontal axis shows the number of generations. In each
figure, the type of line represents the acquisition percentage
in consideration of the program using only certain variables
corresponding to the global or local optimal program, as in
Table II.

From the results of Fig. 3, it can be indicated that both
the simple GP and MMGP do not find the local optimal
program other than the final population. On the other hand,
MMGP can acquire the global optimal program with a high
percentage from the beginning of the search, while the simple
GP stagnates its search and cannot acquire the global optimal
program. From Fig. 4, in MMPO1, all methods can find the



TABLE II: The acquisition percentage of the global and the local optimal programs

MMPO0 (Depth=4) MMPO1 (Depth=10) MMPO2 (Depth=6)
Method all x, y z, w all x y, z w, v all x y, z

MMGP d = 0.5 100% 80% 95% 60% 30% 0% 0% 75% 60% 100%
MMGP d = 0.6 100% 80% 95% 35% 15% 5% 15% 35% 25% 100%
MMGP d = 0.7 100% 60% 100% 55% 15% 0% 15% 70% 60% 100%

Simple GP 15% 0% 15% 35% 10% 0% 0% 50% 45% 10%
MMPO3 (Depth=10) MMPO4 (Depth=6) MMPO5 (Depth=10)

Method all x y, z all x y, z all x y, z w, v
MMGP d = 0.5 0% 0% 0% 0% 0% 100% 20% 15% 0% 0%
MMGP d = 0.6 0% 0% 0% 0% 0% 85% 0% 0% 10% 0%
MMGP d = 0.7 5% 5% 5% 15% 0% 75% 10% 0% 0% 0%

Simple GP 0% 0% 5% 0% 0% 30% 85% 80% 0% 0%

!

"!

#!

$!

%!

&!!

! &!! "!! '!! #!! (!!

!
"
#
$
%&
%'
%(
)
*+
,
-
"
,
)
'.
/
,

0,),-.'%()&

(a) MMGP with d = 0.5
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(c) MMGP with d = 0.7
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(d) Simple GP

Fig. 3: Transition of the percentage of the global/local optimal program acquisition (MMPO0, d = 6), blue: use of all variables,
orange: use of only x and y, gray: use of only z and w
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(b) MMGP with d = 0.6
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(c) MMGP with d = 0.7
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(d) Simple GP

Fig. 4: Transition of the percentage of the global/local optimal program acquisition (MMPO1, d = 10), blue: use of all variables,
orange: use of only x, gray: use of only y and z, yellow: use of only w and v

optimal solution when all variables are used from the early
stage of the evolution, but it is indicated that the global
optimal program consisting only of the variable x has not
been obtained. Moreover, both the simple GP and MMGP
hardly obtain the local optimal program during their search
process. From Fig. 5, in MMPO2, the local optimal program
using the variables y and z could be obtained early, and then
global optimal programs begin to be obtained. From Fig. 6,
in MMPO3, both the simple GP and MMGP cannot acquire
both the global and local optimal programs at all. From Fig. 7,
in MMPO4, the local optimal program using the variables y
and z is obtained in the early stage of the evolution, but no
global optimal program was found except for MMGP (d = 0.7).
Regarding MMPO5, from Fig. 8 the simple GP could obtain
the global optimal program in a high percentage, whereas
MMGPs could not. In addition, the local optimal program has
not been obtained for both the simple GP and MMGP.

VI. DISCUSSION

The experimental results show that it is difficult to obtain
the global and local optimal program simultaneously in the
proposed MMPOs with the simple GP and MMGP. In this
section, we consider the improvements required for MMGP
to solve these MMPOs.

In MMPO1, the global optimal program using all vari-
ables was obtained, but the global optimal program using
only the variables x, which is the only variable required
in (5), was not obtained. This is caused by the inclusion
of meaningless substructures (introns) that include the other
unnecessary variables y, z, w, and v. From this, it can be
indicated that a mechanism that realizes more appropriate
clustering by removing unnecessary substructures after finding
better programs is necessary.

In MMPO2 and MMPO4, the local optimal program can be
acquired with a simple structure (a small number of nodes)
compared to the global optimal one. This makes it easier to
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(c) MMGP with d = 0.7
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(d) Simple GP

Fig. 5: Transition of the percentage of the global/local optimal program acquisition (MMPO2, d = 6), blue: use of all variables,
orange: use of only x, gray: use of only y and z
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(a) MMGP with d = 0.5
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(b) MMGP with d = 0.6
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(c) MMGP with d = 0.7
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(d) Simple GP

Fig. 6: Transition of the percentage of the global/local optimal program acquisition (MMPO3, d = 10), blue: use of all variables,
orange: use of only x, gray: use of only y and z
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(a) MMGP with d = 0.5

!

"!

#!

$!

%!

&!!

! &!! "!! '!! #!! (!!

!
"
#
$
%&
%'
%(
)
*+
,
-
"
,
)
'.
/
,

0,),-.'%()&

(b) MMGP with d = 0.6
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(c) MMGP with d = 0.7
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(d) Simple GP

Fig. 7: Transition of the percentage of the global/local optimal program acquisition (MMPO4, d = 6), blue: use of all variables,
orange: use of only x, gray: use of only y and z
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(a) MMGP with d = 0.5
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(b) MMGP with d = 0.6
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(c) MMGP with d = 0.7
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(d) Simple GP

Fig. 8: Transition of the percentage of the global/local optimal program acquisition (MMPO5, d = 10), blue: use of all variables,
orange: use of only x, gray: use of only y and z, yellow: use of only w and v



obtain the local optimal program than the global one. On the
other hand, the global optimal program has low similarity
with the local optimal program. Therefore, once the evolution
converges to the local optimal program, it becomes difficult
to search for the global optimal program thereafter. Therefore,
in these MMPOs, the acquisition ratio of the local optimal
program is high, and the acquisition ratio of the global optimal
program is low.

In MMPO3, it was confirmed that the GP population tends
to be filled with a program returning a negative constant
(for example, sin(c)). Because such a simple structure can
be easily generated, it is necessary to have a mechanism to
maintain diversity so that it does not converge to a simple
structure of a program.

In the case of MMPO5, the percentage to acquire the global
optimal program in the simple GP is high, while it is low
in MMGP. The global optimal program of MMPO5 is a
polynomial consisting of “+” and “×”. When expressing this
in a tree structure, various structures are possible depending
on the branch point. However, according to the tree structure
similarity used in the conventional MMGP, the similarity of
the same expression is calculated low if these programs have
different structures. Therefore, appropriate clustering becomes
difficult, and the search performance is degraded.

From these facts, to solve the proposed benchmark, the
following mechanisms should be introduced to MMGP:

• A simplification mechanism that removes unnecessary
structures.

• A search mechanism that maintains the population diver-
sity.

• A mechanism to search for a new structure when the
search converges.

• Similarity considering not only the structure but also the
semantics of the program.

VII. CONCLUSION

This paper proposed five new MMPO benchmarks with
reference to the work of McDermott et al. [5]. The proposed
benchmarks have different characteristics, the similarity be-
tween optimal programs, the complexity of optimal programs,
and the number of local optimal programs. We applied MMGP
and the simple GP to the proposed MMPOs to verify their
difficulty and effectiveness, and evaluated the performance and
problems of MMGP.

The experimental results showed that the proposed MMPOs
are difficult and complex to obtain the global and local optimal
programs simultaneously as compared to the conventional
benchmark. In addition, the improvement required for MMGP
was clarified from the experimental results.

In the future, we will devise problems with three or more
local optimal programs and problems using common variables
in the global and local optimal programs. Furthermore, using
those benchmark problems, we will improve the search capa-
bility of MMGP that can search multimodal problems more
reliably.
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